parallel.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549
  1. /*
  2. * QEMU Parallel PORT emulation
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. * Copyright (c) 2007 Marko Kohtala
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a copy
  8. * of this software and associated documentation files (the "Software"), to deal
  9. * in the Software without restriction, including without limitation the rights
  10. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. * copies of the Software, and to permit persons to whom the Software is
  12. * furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice shall be included in
  15. * all copies or substantial portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23. * THE SOFTWARE.
  24. */
  25. #include "hw.h"
  26. #include "qemu-char.h"
  27. #include "isa.h"
  28. #include "pc.h"
  29. //#define DEBUG_PARALLEL
  30. #ifdef DEBUG_PARALLEL
  31. #define pdebug(fmt, arg...) printf("pp: " fmt, ##arg)
  32. #else
  33. #define pdebug(fmt, arg...) ((void)0)
  34. #endif
  35. #define PARA_REG_DATA 0
  36. #define PARA_REG_STS 1
  37. #define PARA_REG_CTR 2
  38. #define PARA_REG_EPP_ADDR 3
  39. #define PARA_REG_EPP_DATA 4
  40. /*
  41. * These are the definitions for the Printer Status Register
  42. */
  43. #define PARA_STS_BUSY 0x80 /* Busy complement */
  44. #define PARA_STS_ACK 0x40 /* Acknowledge */
  45. #define PARA_STS_PAPER 0x20 /* Out of paper */
  46. #define PARA_STS_ONLINE 0x10 /* Online */
  47. #define PARA_STS_ERROR 0x08 /* Error complement */
  48. #define PARA_STS_TMOUT 0x01 /* EPP timeout */
  49. /*
  50. * These are the definitions for the Printer Control Register
  51. */
  52. #define PARA_CTR_DIR 0x20 /* Direction (1=read, 0=write) */
  53. #define PARA_CTR_INTEN 0x10 /* IRQ Enable */
  54. #define PARA_CTR_SELECT 0x08 /* Select In complement */
  55. #define PARA_CTR_INIT 0x04 /* Initialize Printer complement */
  56. #define PARA_CTR_AUTOLF 0x02 /* Auto linefeed complement */
  57. #define PARA_CTR_STROBE 0x01 /* Strobe complement */
  58. #define PARA_CTR_SIGNAL (PARA_CTR_SELECT|PARA_CTR_INIT|PARA_CTR_AUTOLF|PARA_CTR_STROBE)
  59. struct ParallelState {
  60. uint8_t dataw;
  61. uint8_t datar;
  62. uint8_t status;
  63. uint8_t control;
  64. qemu_irq irq;
  65. int irq_pending;
  66. CharDriverState *chr;
  67. int hw_driver;
  68. int epp_timeout;
  69. uint32_t last_read_offset; /* For debugging */
  70. /* Memory-mapped interface */
  71. int it_shift;
  72. };
  73. static void parallel_update_irq(ParallelState *s)
  74. {
  75. if (s->irq_pending)
  76. qemu_irq_raise(s->irq);
  77. else
  78. qemu_irq_lower(s->irq);
  79. }
  80. static void
  81. parallel_ioport_write_sw(void *opaque, uint32_t addr, uint32_t val)
  82. {
  83. ParallelState *s = opaque;
  84. pdebug("write addr=0x%02x val=0x%02x\n", addr, val);
  85. addr &= 7;
  86. switch(addr) {
  87. case PARA_REG_DATA:
  88. s->dataw = val;
  89. parallel_update_irq(s);
  90. break;
  91. case PARA_REG_CTR:
  92. val |= 0xc0;
  93. if ((val & PARA_CTR_INIT) == 0 ) {
  94. s->status = PARA_STS_BUSY;
  95. s->status |= PARA_STS_ACK;
  96. s->status |= PARA_STS_ONLINE;
  97. s->status |= PARA_STS_ERROR;
  98. }
  99. else if (val & PARA_CTR_SELECT) {
  100. if (val & PARA_CTR_STROBE) {
  101. s->status &= ~PARA_STS_BUSY;
  102. if ((s->control & PARA_CTR_STROBE) == 0)
  103. qemu_chr_write(s->chr, &s->dataw, 1);
  104. } else {
  105. if (s->control & PARA_CTR_INTEN) {
  106. s->irq_pending = 1;
  107. }
  108. }
  109. }
  110. parallel_update_irq(s);
  111. s->control = val;
  112. break;
  113. }
  114. }
  115. static void parallel_ioport_write_hw(void *opaque, uint32_t addr, uint32_t val)
  116. {
  117. ParallelState *s = opaque;
  118. uint8_t parm = val;
  119. int dir;
  120. /* Sometimes programs do several writes for timing purposes on old
  121. HW. Take care not to waste time on writes that do nothing. */
  122. s->last_read_offset = ~0U;
  123. addr &= 7;
  124. switch(addr) {
  125. case PARA_REG_DATA:
  126. if (s->dataw == val)
  127. return;
  128. pdebug("wd%02x\n", val);
  129. qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_WRITE_DATA, &parm);
  130. s->dataw = val;
  131. break;
  132. case PARA_REG_STS:
  133. pdebug("ws%02x\n", val);
  134. if (val & PARA_STS_TMOUT)
  135. s->epp_timeout = 0;
  136. break;
  137. case PARA_REG_CTR:
  138. val |= 0xc0;
  139. if (s->control == val)
  140. return;
  141. pdebug("wc%02x\n", val);
  142. if ((val & PARA_CTR_DIR) != (s->control & PARA_CTR_DIR)) {
  143. if (val & PARA_CTR_DIR) {
  144. dir = 1;
  145. } else {
  146. dir = 0;
  147. }
  148. qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_DATA_DIR, &dir);
  149. parm &= ~PARA_CTR_DIR;
  150. }
  151. qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_WRITE_CONTROL, &parm);
  152. s->control = val;
  153. break;
  154. case PARA_REG_EPP_ADDR:
  155. if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT)
  156. /* Controls not correct for EPP address cycle, so do nothing */
  157. pdebug("wa%02x s\n", val);
  158. else {
  159. struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 };
  160. if (qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE_ADDR, &ioarg)) {
  161. s->epp_timeout = 1;
  162. pdebug("wa%02x t\n", val);
  163. }
  164. else
  165. pdebug("wa%02x\n", val);
  166. }
  167. break;
  168. case PARA_REG_EPP_DATA:
  169. if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT)
  170. /* Controls not correct for EPP data cycle, so do nothing */
  171. pdebug("we%02x s\n", val);
  172. else {
  173. struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 };
  174. if (qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg)) {
  175. s->epp_timeout = 1;
  176. pdebug("we%02x t\n", val);
  177. }
  178. else
  179. pdebug("we%02x\n", val);
  180. }
  181. break;
  182. }
  183. }
  184. static void
  185. parallel_ioport_eppdata_write_hw2(void *opaque, uint32_t addr, uint32_t val)
  186. {
  187. ParallelState *s = opaque;
  188. uint16_t eppdata = cpu_to_le16(val);
  189. int err;
  190. struct ParallelIOArg ioarg = {
  191. .buffer = &eppdata, .count = sizeof(eppdata)
  192. };
  193. if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) {
  194. /* Controls not correct for EPP data cycle, so do nothing */
  195. pdebug("we%04x s\n", val);
  196. return;
  197. }
  198. err = qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg);
  199. if (err) {
  200. s->epp_timeout = 1;
  201. pdebug("we%04x t\n", val);
  202. }
  203. else
  204. pdebug("we%04x\n", val);
  205. }
  206. static void
  207. parallel_ioport_eppdata_write_hw4(void *opaque, uint32_t addr, uint32_t val)
  208. {
  209. ParallelState *s = opaque;
  210. uint32_t eppdata = cpu_to_le32(val);
  211. int err;
  212. struct ParallelIOArg ioarg = {
  213. .buffer = &eppdata, .count = sizeof(eppdata)
  214. };
  215. if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) {
  216. /* Controls not correct for EPP data cycle, so do nothing */
  217. pdebug("we%08x s\n", val);
  218. return;
  219. }
  220. err = qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg);
  221. if (err) {
  222. s->epp_timeout = 1;
  223. pdebug("we%08x t\n", val);
  224. }
  225. else
  226. pdebug("we%08x\n", val);
  227. }
  228. static uint32_t parallel_ioport_read_sw(void *opaque, uint32_t addr)
  229. {
  230. ParallelState *s = opaque;
  231. uint32_t ret = 0xff;
  232. addr &= 7;
  233. switch(addr) {
  234. case PARA_REG_DATA:
  235. if (s->control & PARA_CTR_DIR)
  236. ret = s->datar;
  237. else
  238. ret = s->dataw;
  239. break;
  240. case PARA_REG_STS:
  241. ret = s->status;
  242. s->irq_pending = 0;
  243. if ((s->status & PARA_STS_BUSY) == 0 && (s->control & PARA_CTR_STROBE) == 0) {
  244. /* XXX Fixme: wait 5 microseconds */
  245. if (s->status & PARA_STS_ACK)
  246. s->status &= ~PARA_STS_ACK;
  247. else {
  248. /* XXX Fixme: wait 5 microseconds */
  249. s->status |= PARA_STS_ACK;
  250. s->status |= PARA_STS_BUSY;
  251. }
  252. }
  253. parallel_update_irq(s);
  254. break;
  255. case PARA_REG_CTR:
  256. ret = s->control;
  257. break;
  258. }
  259. pdebug("read addr=0x%02x val=0x%02x\n", addr, ret);
  260. return ret;
  261. }
  262. static uint32_t parallel_ioport_read_hw(void *opaque, uint32_t addr)
  263. {
  264. ParallelState *s = opaque;
  265. uint8_t ret = 0xff;
  266. addr &= 7;
  267. switch(addr) {
  268. case PARA_REG_DATA:
  269. qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_READ_DATA, &ret);
  270. if (s->last_read_offset != addr || s->datar != ret)
  271. pdebug("rd%02x\n", ret);
  272. s->datar = ret;
  273. break;
  274. case PARA_REG_STS:
  275. qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_READ_STATUS, &ret);
  276. ret &= ~PARA_STS_TMOUT;
  277. if (s->epp_timeout)
  278. ret |= PARA_STS_TMOUT;
  279. if (s->last_read_offset != addr || s->status != ret)
  280. pdebug("rs%02x\n", ret);
  281. s->status = ret;
  282. break;
  283. case PARA_REG_CTR:
  284. /* s->control has some bits fixed to 1. It is zero only when
  285. it has not been yet written to. */
  286. if (s->control == 0) {
  287. qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_READ_CONTROL, &ret);
  288. if (s->last_read_offset != addr)
  289. pdebug("rc%02x\n", ret);
  290. s->control = ret;
  291. }
  292. else {
  293. ret = s->control;
  294. if (s->last_read_offset != addr)
  295. pdebug("rc%02x\n", ret);
  296. }
  297. break;
  298. case PARA_REG_EPP_ADDR:
  299. if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT))
  300. /* Controls not correct for EPP addr cycle, so do nothing */
  301. pdebug("ra%02x s\n", ret);
  302. else {
  303. struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 };
  304. if (qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ_ADDR, &ioarg)) {
  305. s->epp_timeout = 1;
  306. pdebug("ra%02x t\n", ret);
  307. }
  308. else
  309. pdebug("ra%02x\n", ret);
  310. }
  311. break;
  312. case PARA_REG_EPP_DATA:
  313. if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT))
  314. /* Controls not correct for EPP data cycle, so do nothing */
  315. pdebug("re%02x s\n", ret);
  316. else {
  317. struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 };
  318. if (qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg)) {
  319. s->epp_timeout = 1;
  320. pdebug("re%02x t\n", ret);
  321. }
  322. else
  323. pdebug("re%02x\n", ret);
  324. }
  325. break;
  326. }
  327. s->last_read_offset = addr;
  328. return ret;
  329. }
  330. static uint32_t
  331. parallel_ioport_eppdata_read_hw2(void *opaque, uint32_t addr)
  332. {
  333. ParallelState *s = opaque;
  334. uint32_t ret;
  335. uint16_t eppdata = ~0;
  336. int err;
  337. struct ParallelIOArg ioarg = {
  338. .buffer = &eppdata, .count = sizeof(eppdata)
  339. };
  340. if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) {
  341. /* Controls not correct for EPP data cycle, so do nothing */
  342. pdebug("re%04x s\n", eppdata);
  343. return eppdata;
  344. }
  345. err = qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg);
  346. ret = le16_to_cpu(eppdata);
  347. if (err) {
  348. s->epp_timeout = 1;
  349. pdebug("re%04x t\n", ret);
  350. }
  351. else
  352. pdebug("re%04x\n", ret);
  353. return ret;
  354. }
  355. static uint32_t
  356. parallel_ioport_eppdata_read_hw4(void *opaque, uint32_t addr)
  357. {
  358. ParallelState *s = opaque;
  359. uint32_t ret;
  360. uint32_t eppdata = ~0U;
  361. int err;
  362. struct ParallelIOArg ioarg = {
  363. .buffer = &eppdata, .count = sizeof(eppdata)
  364. };
  365. if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) {
  366. /* Controls not correct for EPP data cycle, so do nothing */
  367. pdebug("re%08x s\n", eppdata);
  368. return eppdata;
  369. }
  370. err = qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg);
  371. ret = le32_to_cpu(eppdata);
  372. if (err) {
  373. s->epp_timeout = 1;
  374. pdebug("re%08x t\n", ret);
  375. }
  376. else
  377. pdebug("re%08x\n", ret);
  378. return ret;
  379. }
  380. static void parallel_ioport_ecp_write(void *opaque, uint32_t addr, uint32_t val)
  381. {
  382. addr &= 7;
  383. pdebug("wecp%d=%02x\n", addr, val);
  384. }
  385. static uint32_t parallel_ioport_ecp_read(void *opaque, uint32_t addr)
  386. {
  387. uint8_t ret = 0xff;
  388. addr &= 7;
  389. pdebug("recp%d:%02x\n", addr, ret);
  390. return ret;
  391. }
  392. static void parallel_reset(void *opaque)
  393. {
  394. ParallelState *s = opaque;
  395. s->datar = ~0;
  396. s->dataw = ~0;
  397. s->status = PARA_STS_BUSY;
  398. s->status |= PARA_STS_ACK;
  399. s->status |= PARA_STS_ONLINE;
  400. s->status |= PARA_STS_ERROR;
  401. s->status |= PARA_STS_TMOUT;
  402. s->control = PARA_CTR_SELECT;
  403. s->control |= PARA_CTR_INIT;
  404. s->control |= 0xc0;
  405. s->irq_pending = 0;
  406. s->hw_driver = 0;
  407. s->epp_timeout = 0;
  408. s->last_read_offset = ~0U;
  409. }
  410. /* If fd is zero, it means that the parallel device uses the console */
  411. ParallelState *parallel_init(int base, qemu_irq irq, CharDriverState *chr)
  412. {
  413. ParallelState *s;
  414. uint8_t dummy;
  415. s = qemu_mallocz(sizeof(ParallelState));
  416. s->irq = irq;
  417. s->chr = chr;
  418. parallel_reset(s);
  419. qemu_register_reset(parallel_reset, s);
  420. if (qemu_chr_ioctl(chr, CHR_IOCTL_PP_READ_STATUS, &dummy) == 0) {
  421. s->hw_driver = 1;
  422. s->status = dummy;
  423. }
  424. if (s->hw_driver) {
  425. register_ioport_write(base, 8, 1, parallel_ioport_write_hw, s);
  426. register_ioport_read(base, 8, 1, parallel_ioport_read_hw, s);
  427. register_ioport_write(base+4, 1, 2, parallel_ioport_eppdata_write_hw2, s);
  428. register_ioport_read(base+4, 1, 2, parallel_ioport_eppdata_read_hw2, s);
  429. register_ioport_write(base+4, 1, 4, parallel_ioport_eppdata_write_hw4, s);
  430. register_ioport_read(base+4, 1, 4, parallel_ioport_eppdata_read_hw4, s);
  431. register_ioport_write(base+0x400, 8, 1, parallel_ioport_ecp_write, s);
  432. register_ioport_read(base+0x400, 8, 1, parallel_ioport_ecp_read, s);
  433. }
  434. else {
  435. register_ioport_write(base, 8, 1, parallel_ioport_write_sw, s);
  436. register_ioport_read(base, 8, 1, parallel_ioport_read_sw, s);
  437. }
  438. return s;
  439. }
  440. /* Memory mapped interface */
  441. static uint32_t parallel_mm_readb (void *opaque, target_phys_addr_t addr)
  442. {
  443. ParallelState *s = opaque;
  444. return parallel_ioport_read_sw(s, addr >> s->it_shift) & 0xFF;
  445. }
  446. static void parallel_mm_writeb (void *opaque,
  447. target_phys_addr_t addr, uint32_t value)
  448. {
  449. ParallelState *s = opaque;
  450. parallel_ioport_write_sw(s, addr >> s->it_shift, value & 0xFF);
  451. }
  452. static uint32_t parallel_mm_readw (void *opaque, target_phys_addr_t addr)
  453. {
  454. ParallelState *s = opaque;
  455. return parallel_ioport_read_sw(s, addr >> s->it_shift) & 0xFFFF;
  456. }
  457. static void parallel_mm_writew (void *opaque,
  458. target_phys_addr_t addr, uint32_t value)
  459. {
  460. ParallelState *s = opaque;
  461. parallel_ioport_write_sw(s, addr >> s->it_shift, value & 0xFFFF);
  462. }
  463. static uint32_t parallel_mm_readl (void *opaque, target_phys_addr_t addr)
  464. {
  465. ParallelState *s = opaque;
  466. return parallel_ioport_read_sw(s, addr >> s->it_shift);
  467. }
  468. static void parallel_mm_writel (void *opaque,
  469. target_phys_addr_t addr, uint32_t value)
  470. {
  471. ParallelState *s = opaque;
  472. parallel_ioport_write_sw(s, addr >> s->it_shift, value);
  473. }
  474. static CPUReadMemoryFunc *parallel_mm_read_sw[] = {
  475. &parallel_mm_readb,
  476. &parallel_mm_readw,
  477. &parallel_mm_readl,
  478. };
  479. static CPUWriteMemoryFunc *parallel_mm_write_sw[] = {
  480. &parallel_mm_writeb,
  481. &parallel_mm_writew,
  482. &parallel_mm_writel,
  483. };
  484. /* If fd is zero, it means that the parallel device uses the console */
  485. ParallelState *parallel_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq, CharDriverState *chr)
  486. {
  487. ParallelState *s;
  488. int io_sw;
  489. s = qemu_mallocz(sizeof(ParallelState));
  490. s->irq = irq;
  491. s->chr = chr;
  492. s->it_shift = it_shift;
  493. parallel_reset(s);
  494. qemu_register_reset(parallel_reset, s);
  495. io_sw = cpu_register_io_memory(0, parallel_mm_read_sw, parallel_mm_write_sw, s);
  496. cpu_register_physical_memory(base, 8 << it_shift, io_sw);
  497. return s;
  498. }