omap1.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804
  1. /*
  2. * TI OMAP processors emulation.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. */
  20. #include "hw.h"
  21. #include "arm-misc.h"
  22. #include "omap.h"
  23. #include "sysemu.h"
  24. #include "qemu-timer.h"
  25. #include "qemu-char.h"
  26. #include "soc_dma.h"
  27. /* We use pc-style serial ports. */
  28. #include "pc.h"
  29. /* Should signal the TCMI/GPMC */
  30. uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
  31. {
  32. uint8_t ret;
  33. OMAP_8B_REG(addr);
  34. cpu_physical_memory_read(addr, (void *) &ret, 1);
  35. return ret;
  36. }
  37. void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
  38. uint32_t value)
  39. {
  40. uint8_t val8 = value;
  41. OMAP_8B_REG(addr);
  42. cpu_physical_memory_write(addr, (void *) &val8, 1);
  43. }
  44. uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
  45. {
  46. uint16_t ret;
  47. OMAP_16B_REG(addr);
  48. cpu_physical_memory_read(addr, (void *) &ret, 2);
  49. return ret;
  50. }
  51. void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
  52. uint32_t value)
  53. {
  54. uint16_t val16 = value;
  55. OMAP_16B_REG(addr);
  56. cpu_physical_memory_write(addr, (void *) &val16, 2);
  57. }
  58. uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
  59. {
  60. uint32_t ret;
  61. OMAP_32B_REG(addr);
  62. cpu_physical_memory_read(addr, (void *) &ret, 4);
  63. return ret;
  64. }
  65. void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
  66. uint32_t value)
  67. {
  68. OMAP_32B_REG(addr);
  69. cpu_physical_memory_write(addr, (void *) &value, 4);
  70. }
  71. /* Interrupt Handlers */
  72. struct omap_intr_handler_bank_s {
  73. uint32_t irqs;
  74. uint32_t inputs;
  75. uint32_t mask;
  76. uint32_t fiq;
  77. uint32_t sens_edge;
  78. uint32_t swi;
  79. unsigned char priority[32];
  80. };
  81. struct omap_intr_handler_s {
  82. qemu_irq *pins;
  83. qemu_irq parent_intr[2];
  84. unsigned char nbanks;
  85. int level_only;
  86. /* state */
  87. uint32_t new_agr[2];
  88. int sir_intr[2];
  89. int autoidle;
  90. uint32_t mask;
  91. struct omap_intr_handler_bank_s bank[];
  92. };
  93. static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
  94. {
  95. int i, j, sir_intr, p_intr, p, f;
  96. uint32_t level;
  97. sir_intr = 0;
  98. p_intr = 255;
  99. /* Find the interrupt line with the highest dynamic priority.
  100. * Note: 0 denotes the hightest priority.
  101. * If all interrupts have the same priority, the default order is IRQ_N,
  102. * IRQ_N-1,...,IRQ_0. */
  103. for (j = 0; j < s->nbanks; ++j) {
  104. level = s->bank[j].irqs & ~s->bank[j].mask &
  105. (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
  106. for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
  107. level >>= f) {
  108. p = s->bank[j].priority[i];
  109. if (p <= p_intr) {
  110. p_intr = p;
  111. sir_intr = 32 * j + i;
  112. }
  113. f = ffs(level >> 1);
  114. }
  115. }
  116. s->sir_intr[is_fiq] = sir_intr;
  117. }
  118. static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
  119. {
  120. int i;
  121. uint32_t has_intr = 0;
  122. for (i = 0; i < s->nbanks; ++i)
  123. has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
  124. (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
  125. if (s->new_agr[is_fiq] & has_intr & s->mask) {
  126. s->new_agr[is_fiq] = 0;
  127. omap_inth_sir_update(s, is_fiq);
  128. qemu_set_irq(s->parent_intr[is_fiq], 1);
  129. }
  130. }
  131. #define INT_FALLING_EDGE 0
  132. #define INT_LOW_LEVEL 1
  133. static void omap_set_intr(void *opaque, int irq, int req)
  134. {
  135. struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
  136. uint32_t rise;
  137. struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
  138. int n = irq & 31;
  139. if (req) {
  140. rise = ~bank->irqs & (1 << n);
  141. if (~bank->sens_edge & (1 << n))
  142. rise &= ~bank->inputs;
  143. bank->inputs |= (1 << n);
  144. if (rise) {
  145. bank->irqs |= rise;
  146. omap_inth_update(ih, 0);
  147. omap_inth_update(ih, 1);
  148. }
  149. } else {
  150. rise = bank->sens_edge & bank->irqs & (1 << n);
  151. bank->irqs &= ~rise;
  152. bank->inputs &= ~(1 << n);
  153. }
  154. }
  155. /* Simplified version with no edge detection */
  156. static void omap_set_intr_noedge(void *opaque, int irq, int req)
  157. {
  158. struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
  159. uint32_t rise;
  160. struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
  161. int n = irq & 31;
  162. if (req) {
  163. rise = ~bank->inputs & (1 << n);
  164. if (rise) {
  165. bank->irqs |= bank->inputs |= rise;
  166. omap_inth_update(ih, 0);
  167. omap_inth_update(ih, 1);
  168. }
  169. } else
  170. bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
  171. }
  172. static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
  173. {
  174. struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
  175. int i, offset = addr;
  176. int bank_no = offset >> 8;
  177. int line_no;
  178. struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
  179. offset &= 0xff;
  180. switch (offset) {
  181. case 0x00: /* ITR */
  182. return bank->irqs;
  183. case 0x04: /* MIR */
  184. return bank->mask;
  185. case 0x10: /* SIR_IRQ_CODE */
  186. case 0x14: /* SIR_FIQ_CODE */
  187. if (bank_no != 0)
  188. break;
  189. line_no = s->sir_intr[(offset - 0x10) >> 2];
  190. bank = &s->bank[line_no >> 5];
  191. i = line_no & 31;
  192. if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
  193. bank->irqs &= ~(1 << i);
  194. return line_no;
  195. case 0x18: /* CONTROL_REG */
  196. if (bank_no != 0)
  197. break;
  198. return 0;
  199. case 0x1c: /* ILR0 */
  200. case 0x20: /* ILR1 */
  201. case 0x24: /* ILR2 */
  202. case 0x28: /* ILR3 */
  203. case 0x2c: /* ILR4 */
  204. case 0x30: /* ILR5 */
  205. case 0x34: /* ILR6 */
  206. case 0x38: /* ILR7 */
  207. case 0x3c: /* ILR8 */
  208. case 0x40: /* ILR9 */
  209. case 0x44: /* ILR10 */
  210. case 0x48: /* ILR11 */
  211. case 0x4c: /* ILR12 */
  212. case 0x50: /* ILR13 */
  213. case 0x54: /* ILR14 */
  214. case 0x58: /* ILR15 */
  215. case 0x5c: /* ILR16 */
  216. case 0x60: /* ILR17 */
  217. case 0x64: /* ILR18 */
  218. case 0x68: /* ILR19 */
  219. case 0x6c: /* ILR20 */
  220. case 0x70: /* ILR21 */
  221. case 0x74: /* ILR22 */
  222. case 0x78: /* ILR23 */
  223. case 0x7c: /* ILR24 */
  224. case 0x80: /* ILR25 */
  225. case 0x84: /* ILR26 */
  226. case 0x88: /* ILR27 */
  227. case 0x8c: /* ILR28 */
  228. case 0x90: /* ILR29 */
  229. case 0x94: /* ILR30 */
  230. case 0x98: /* ILR31 */
  231. i = (offset - 0x1c) >> 2;
  232. return (bank->priority[i] << 2) |
  233. (((bank->sens_edge >> i) & 1) << 1) |
  234. ((bank->fiq >> i) & 1);
  235. case 0x9c: /* ISR */
  236. return 0x00000000;
  237. }
  238. OMAP_BAD_REG(addr);
  239. return 0;
  240. }
  241. static void omap_inth_write(void *opaque, target_phys_addr_t addr,
  242. uint32_t value)
  243. {
  244. struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
  245. int i, offset = addr;
  246. int bank_no = offset >> 8;
  247. struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
  248. offset &= 0xff;
  249. switch (offset) {
  250. case 0x00: /* ITR */
  251. /* Important: ignore the clearing if the IRQ is level-triggered and
  252. the input bit is 1 */
  253. bank->irqs &= value | (bank->inputs & bank->sens_edge);
  254. return;
  255. case 0x04: /* MIR */
  256. bank->mask = value;
  257. omap_inth_update(s, 0);
  258. omap_inth_update(s, 1);
  259. return;
  260. case 0x10: /* SIR_IRQ_CODE */
  261. case 0x14: /* SIR_FIQ_CODE */
  262. OMAP_RO_REG(addr);
  263. break;
  264. case 0x18: /* CONTROL_REG */
  265. if (bank_no != 0)
  266. break;
  267. if (value & 2) {
  268. qemu_set_irq(s->parent_intr[1], 0);
  269. s->new_agr[1] = ~0;
  270. omap_inth_update(s, 1);
  271. }
  272. if (value & 1) {
  273. qemu_set_irq(s->parent_intr[0], 0);
  274. s->new_agr[0] = ~0;
  275. omap_inth_update(s, 0);
  276. }
  277. return;
  278. case 0x1c: /* ILR0 */
  279. case 0x20: /* ILR1 */
  280. case 0x24: /* ILR2 */
  281. case 0x28: /* ILR3 */
  282. case 0x2c: /* ILR4 */
  283. case 0x30: /* ILR5 */
  284. case 0x34: /* ILR6 */
  285. case 0x38: /* ILR7 */
  286. case 0x3c: /* ILR8 */
  287. case 0x40: /* ILR9 */
  288. case 0x44: /* ILR10 */
  289. case 0x48: /* ILR11 */
  290. case 0x4c: /* ILR12 */
  291. case 0x50: /* ILR13 */
  292. case 0x54: /* ILR14 */
  293. case 0x58: /* ILR15 */
  294. case 0x5c: /* ILR16 */
  295. case 0x60: /* ILR17 */
  296. case 0x64: /* ILR18 */
  297. case 0x68: /* ILR19 */
  298. case 0x6c: /* ILR20 */
  299. case 0x70: /* ILR21 */
  300. case 0x74: /* ILR22 */
  301. case 0x78: /* ILR23 */
  302. case 0x7c: /* ILR24 */
  303. case 0x80: /* ILR25 */
  304. case 0x84: /* ILR26 */
  305. case 0x88: /* ILR27 */
  306. case 0x8c: /* ILR28 */
  307. case 0x90: /* ILR29 */
  308. case 0x94: /* ILR30 */
  309. case 0x98: /* ILR31 */
  310. i = (offset - 0x1c) >> 2;
  311. bank->priority[i] = (value >> 2) & 0x1f;
  312. bank->sens_edge &= ~(1 << i);
  313. bank->sens_edge |= ((value >> 1) & 1) << i;
  314. bank->fiq &= ~(1 << i);
  315. bank->fiq |= (value & 1) << i;
  316. return;
  317. case 0x9c: /* ISR */
  318. for (i = 0; i < 32; i ++)
  319. if (value & (1 << i)) {
  320. omap_set_intr(s, 32 * bank_no + i, 1);
  321. return;
  322. }
  323. return;
  324. }
  325. OMAP_BAD_REG(addr);
  326. }
  327. static CPUReadMemoryFunc *omap_inth_readfn[] = {
  328. omap_badwidth_read32,
  329. omap_badwidth_read32,
  330. omap_inth_read,
  331. };
  332. static CPUWriteMemoryFunc *omap_inth_writefn[] = {
  333. omap_inth_write,
  334. omap_inth_write,
  335. omap_inth_write,
  336. };
  337. void omap_inth_reset(struct omap_intr_handler_s *s)
  338. {
  339. int i;
  340. for (i = 0; i < s->nbanks; ++i){
  341. s->bank[i].irqs = 0x00000000;
  342. s->bank[i].mask = 0xffffffff;
  343. s->bank[i].sens_edge = 0x00000000;
  344. s->bank[i].fiq = 0x00000000;
  345. s->bank[i].inputs = 0x00000000;
  346. s->bank[i].swi = 0x00000000;
  347. memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
  348. if (s->level_only)
  349. s->bank[i].sens_edge = 0xffffffff;
  350. }
  351. s->new_agr[0] = ~0;
  352. s->new_agr[1] = ~0;
  353. s->sir_intr[0] = 0;
  354. s->sir_intr[1] = 0;
  355. s->autoidle = 0;
  356. s->mask = ~0;
  357. qemu_set_irq(s->parent_intr[0], 0);
  358. qemu_set_irq(s->parent_intr[1], 0);
  359. }
  360. struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
  361. unsigned long size, unsigned char nbanks, qemu_irq **pins,
  362. qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
  363. {
  364. int iomemtype;
  365. struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
  366. qemu_mallocz(sizeof(struct omap_intr_handler_s) +
  367. sizeof(struct omap_intr_handler_bank_s) * nbanks);
  368. s->parent_intr[0] = parent_irq;
  369. s->parent_intr[1] = parent_fiq;
  370. s->nbanks = nbanks;
  371. s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
  372. if (pins)
  373. *pins = s->pins;
  374. omap_inth_reset(s);
  375. iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
  376. omap_inth_writefn, s);
  377. cpu_register_physical_memory(base, size, iomemtype);
  378. return s;
  379. }
  380. static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
  381. {
  382. struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
  383. int offset = addr;
  384. int bank_no, line_no;
  385. struct omap_intr_handler_bank_s *bank = 0;
  386. if ((offset & 0xf80) == 0x80) {
  387. bank_no = (offset & 0x60) >> 5;
  388. if (bank_no < s->nbanks) {
  389. offset &= ~0x60;
  390. bank = &s->bank[bank_no];
  391. }
  392. }
  393. switch (offset) {
  394. case 0x00: /* INTC_REVISION */
  395. return 0x21;
  396. case 0x10: /* INTC_SYSCONFIG */
  397. return (s->autoidle >> 2) & 1;
  398. case 0x14: /* INTC_SYSSTATUS */
  399. return 1; /* RESETDONE */
  400. case 0x40: /* INTC_SIR_IRQ */
  401. return s->sir_intr[0];
  402. case 0x44: /* INTC_SIR_FIQ */
  403. return s->sir_intr[1];
  404. case 0x48: /* INTC_CONTROL */
  405. return (!s->mask) << 2; /* GLOBALMASK */
  406. case 0x4c: /* INTC_PROTECTION */
  407. return 0;
  408. case 0x50: /* INTC_IDLE */
  409. return s->autoidle & 3;
  410. /* Per-bank registers */
  411. case 0x80: /* INTC_ITR */
  412. return bank->inputs;
  413. case 0x84: /* INTC_MIR */
  414. return bank->mask;
  415. case 0x88: /* INTC_MIR_CLEAR */
  416. case 0x8c: /* INTC_MIR_SET */
  417. return 0;
  418. case 0x90: /* INTC_ISR_SET */
  419. return bank->swi;
  420. case 0x94: /* INTC_ISR_CLEAR */
  421. return 0;
  422. case 0x98: /* INTC_PENDING_IRQ */
  423. return bank->irqs & ~bank->mask & ~bank->fiq;
  424. case 0x9c: /* INTC_PENDING_FIQ */
  425. return bank->irqs & ~bank->mask & bank->fiq;
  426. /* Per-line registers */
  427. case 0x100 ... 0x300: /* INTC_ILR */
  428. bank_no = (offset - 0x100) >> 7;
  429. if (bank_no > s->nbanks)
  430. break;
  431. bank = &s->bank[bank_no];
  432. line_no = (offset & 0x7f) >> 2;
  433. return (bank->priority[line_no] << 2) |
  434. ((bank->fiq >> line_no) & 1);
  435. }
  436. OMAP_BAD_REG(addr);
  437. return 0;
  438. }
  439. static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
  440. uint32_t value)
  441. {
  442. struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
  443. int offset = addr;
  444. int bank_no, line_no;
  445. struct omap_intr_handler_bank_s *bank = 0;
  446. if ((offset & 0xf80) == 0x80) {
  447. bank_no = (offset & 0x60) >> 5;
  448. if (bank_no < s->nbanks) {
  449. offset &= ~0x60;
  450. bank = &s->bank[bank_no];
  451. }
  452. }
  453. switch (offset) {
  454. case 0x10: /* INTC_SYSCONFIG */
  455. s->autoidle &= 4;
  456. s->autoidle |= (value & 1) << 2;
  457. if (value & 2) /* SOFTRESET */
  458. omap_inth_reset(s);
  459. return;
  460. case 0x48: /* INTC_CONTROL */
  461. s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */
  462. if (value & 2) { /* NEWFIQAGR */
  463. qemu_set_irq(s->parent_intr[1], 0);
  464. s->new_agr[1] = ~0;
  465. omap_inth_update(s, 1);
  466. }
  467. if (value & 1) { /* NEWIRQAGR */
  468. qemu_set_irq(s->parent_intr[0], 0);
  469. s->new_agr[0] = ~0;
  470. omap_inth_update(s, 0);
  471. }
  472. return;
  473. case 0x4c: /* INTC_PROTECTION */
  474. /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
  475. * for every register, see Chapter 3 and 4 for privileged mode. */
  476. if (value & 1)
  477. fprintf(stderr, "%s: protection mode enable attempt\n",
  478. __FUNCTION__);
  479. return;
  480. case 0x50: /* INTC_IDLE */
  481. s->autoidle &= ~3;
  482. s->autoidle |= value & 3;
  483. return;
  484. /* Per-bank registers */
  485. case 0x84: /* INTC_MIR */
  486. bank->mask = value;
  487. omap_inth_update(s, 0);
  488. omap_inth_update(s, 1);
  489. return;
  490. case 0x88: /* INTC_MIR_CLEAR */
  491. bank->mask &= ~value;
  492. omap_inth_update(s, 0);
  493. omap_inth_update(s, 1);
  494. return;
  495. case 0x8c: /* INTC_MIR_SET */
  496. bank->mask |= value;
  497. return;
  498. case 0x90: /* INTC_ISR_SET */
  499. bank->irqs |= bank->swi |= value;
  500. omap_inth_update(s, 0);
  501. omap_inth_update(s, 1);
  502. return;
  503. case 0x94: /* INTC_ISR_CLEAR */
  504. bank->swi &= ~value;
  505. bank->irqs = bank->swi & bank->inputs;
  506. return;
  507. /* Per-line registers */
  508. case 0x100 ... 0x300: /* INTC_ILR */
  509. bank_no = (offset - 0x100) >> 7;
  510. if (bank_no > s->nbanks)
  511. break;
  512. bank = &s->bank[bank_no];
  513. line_no = (offset & 0x7f) >> 2;
  514. bank->priority[line_no] = (value >> 2) & 0x3f;
  515. bank->fiq &= ~(1 << line_no);
  516. bank->fiq |= (value & 1) << line_no;
  517. return;
  518. case 0x00: /* INTC_REVISION */
  519. case 0x14: /* INTC_SYSSTATUS */
  520. case 0x40: /* INTC_SIR_IRQ */
  521. case 0x44: /* INTC_SIR_FIQ */
  522. case 0x80: /* INTC_ITR */
  523. case 0x98: /* INTC_PENDING_IRQ */
  524. case 0x9c: /* INTC_PENDING_FIQ */
  525. OMAP_RO_REG(addr);
  526. return;
  527. }
  528. OMAP_BAD_REG(addr);
  529. }
  530. static CPUReadMemoryFunc *omap2_inth_readfn[] = {
  531. omap_badwidth_read32,
  532. omap_badwidth_read32,
  533. omap2_inth_read,
  534. };
  535. static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
  536. omap2_inth_write,
  537. omap2_inth_write,
  538. omap2_inth_write,
  539. };
  540. struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
  541. int size, int nbanks, qemu_irq **pins,
  542. qemu_irq parent_irq, qemu_irq parent_fiq,
  543. omap_clk fclk, omap_clk iclk)
  544. {
  545. int iomemtype;
  546. struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
  547. qemu_mallocz(sizeof(struct omap_intr_handler_s) +
  548. sizeof(struct omap_intr_handler_bank_s) * nbanks);
  549. s->parent_intr[0] = parent_irq;
  550. s->parent_intr[1] = parent_fiq;
  551. s->nbanks = nbanks;
  552. s->level_only = 1;
  553. s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
  554. if (pins)
  555. *pins = s->pins;
  556. omap_inth_reset(s);
  557. iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
  558. omap2_inth_writefn, s);
  559. cpu_register_physical_memory(base, size, iomemtype);
  560. return s;
  561. }
  562. /* MPU OS timers */
  563. struct omap_mpu_timer_s {
  564. qemu_irq irq;
  565. omap_clk clk;
  566. uint32_t val;
  567. int64_t time;
  568. QEMUTimer *timer;
  569. QEMUBH *tick;
  570. int64_t rate;
  571. int it_ena;
  572. int enable;
  573. int ptv;
  574. int ar;
  575. int st;
  576. uint32_t reset_val;
  577. };
  578. static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
  579. {
  580. uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
  581. if (timer->st && timer->enable && timer->rate)
  582. return timer->val - muldiv64(distance >> (timer->ptv + 1),
  583. timer->rate, ticks_per_sec);
  584. else
  585. return timer->val;
  586. }
  587. static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
  588. {
  589. timer->val = omap_timer_read(timer);
  590. timer->time = qemu_get_clock(vm_clock);
  591. }
  592. static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
  593. {
  594. int64_t expires;
  595. if (timer->enable && timer->st && timer->rate) {
  596. timer->val = timer->reset_val; /* Should skip this on clk enable */
  597. expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
  598. ticks_per_sec, timer->rate);
  599. /* If timer expiry would be sooner than in about 1 ms and
  600. * auto-reload isn't set, then fire immediately. This is a hack
  601. * to make systems like PalmOS run in acceptable time. PalmOS
  602. * sets the interval to a very low value and polls the status bit
  603. * in a busy loop when it wants to sleep just a couple of CPU
  604. * ticks. */
  605. if (expires > (ticks_per_sec >> 10) || timer->ar)
  606. qemu_mod_timer(timer->timer, timer->time + expires);
  607. else
  608. qemu_bh_schedule(timer->tick);
  609. } else
  610. qemu_del_timer(timer->timer);
  611. }
  612. static void omap_timer_fire(void *opaque)
  613. {
  614. struct omap_mpu_timer_s *timer = opaque;
  615. if (!timer->ar) {
  616. timer->val = 0;
  617. timer->st = 0;
  618. }
  619. if (timer->it_ena)
  620. /* Edge-triggered irq */
  621. qemu_irq_pulse(timer->irq);
  622. }
  623. static void omap_timer_tick(void *opaque)
  624. {
  625. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  626. omap_timer_sync(timer);
  627. omap_timer_fire(timer);
  628. omap_timer_update(timer);
  629. }
  630. static void omap_timer_clk_update(void *opaque, int line, int on)
  631. {
  632. struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
  633. omap_timer_sync(timer);
  634. timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
  635. omap_timer_update(timer);
  636. }
  637. static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
  638. {
  639. omap_clk_adduser(timer->clk,
  640. qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
  641. timer->rate = omap_clk_getrate(timer->clk);
  642. }
  643. static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
  644. {
  645. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  646. switch (addr) {
  647. case 0x00: /* CNTL_TIMER */
  648. return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
  649. case 0x04: /* LOAD_TIM */
  650. break;
  651. case 0x08: /* READ_TIM */
  652. return omap_timer_read(s);
  653. }
  654. OMAP_BAD_REG(addr);
  655. return 0;
  656. }
  657. static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
  658. uint32_t value)
  659. {
  660. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
  661. switch (addr) {
  662. case 0x00: /* CNTL_TIMER */
  663. omap_timer_sync(s);
  664. s->enable = (value >> 5) & 1;
  665. s->ptv = (value >> 2) & 7;
  666. s->ar = (value >> 1) & 1;
  667. s->st = value & 1;
  668. omap_timer_update(s);
  669. return;
  670. case 0x04: /* LOAD_TIM */
  671. s->reset_val = value;
  672. return;
  673. case 0x08: /* READ_TIM */
  674. OMAP_RO_REG(addr);
  675. break;
  676. default:
  677. OMAP_BAD_REG(addr);
  678. }
  679. }
  680. static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
  681. omap_badwidth_read32,
  682. omap_badwidth_read32,
  683. omap_mpu_timer_read,
  684. };
  685. static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
  686. omap_badwidth_write32,
  687. omap_badwidth_write32,
  688. omap_mpu_timer_write,
  689. };
  690. static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
  691. {
  692. qemu_del_timer(s->timer);
  693. s->enable = 0;
  694. s->reset_val = 31337;
  695. s->val = 0;
  696. s->ptv = 0;
  697. s->ar = 0;
  698. s->st = 0;
  699. s->it_ena = 1;
  700. }
  701. struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
  702. qemu_irq irq, omap_clk clk)
  703. {
  704. int iomemtype;
  705. struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
  706. qemu_mallocz(sizeof(struct omap_mpu_timer_s));
  707. s->irq = irq;
  708. s->clk = clk;
  709. s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
  710. s->tick = qemu_bh_new(omap_timer_fire, s);
  711. omap_mpu_timer_reset(s);
  712. omap_timer_clk_setup(s);
  713. iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
  714. omap_mpu_timer_writefn, s);
  715. cpu_register_physical_memory(base, 0x100, iomemtype);
  716. return s;
  717. }
  718. /* Watchdog timer */
  719. struct omap_watchdog_timer_s {
  720. struct omap_mpu_timer_s timer;
  721. uint8_t last_wr;
  722. int mode;
  723. int free;
  724. int reset;
  725. };
  726. static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
  727. {
  728. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  729. switch (addr) {
  730. case 0x00: /* CNTL_TIMER */
  731. return (s->timer.ptv << 9) | (s->timer.ar << 8) |
  732. (s->timer.st << 7) | (s->free << 1);
  733. case 0x04: /* READ_TIMER */
  734. return omap_timer_read(&s->timer);
  735. case 0x08: /* TIMER_MODE */
  736. return s->mode << 15;
  737. }
  738. OMAP_BAD_REG(addr);
  739. return 0;
  740. }
  741. static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
  742. uint32_t value)
  743. {
  744. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
  745. switch (addr) {
  746. case 0x00: /* CNTL_TIMER */
  747. omap_timer_sync(&s->timer);
  748. s->timer.ptv = (value >> 9) & 7;
  749. s->timer.ar = (value >> 8) & 1;
  750. s->timer.st = (value >> 7) & 1;
  751. s->free = (value >> 1) & 1;
  752. omap_timer_update(&s->timer);
  753. break;
  754. case 0x04: /* LOAD_TIMER */
  755. s->timer.reset_val = value & 0xffff;
  756. break;
  757. case 0x08: /* TIMER_MODE */
  758. if (!s->mode && ((value >> 15) & 1))
  759. omap_clk_get(s->timer.clk);
  760. s->mode |= (value >> 15) & 1;
  761. if (s->last_wr == 0xf5) {
  762. if ((value & 0xff) == 0xa0) {
  763. if (s->mode) {
  764. s->mode = 0;
  765. omap_clk_put(s->timer.clk);
  766. }
  767. } else {
  768. /* XXX: on T|E hardware somehow this has no effect,
  769. * on Zire 71 it works as specified. */
  770. s->reset = 1;
  771. qemu_system_reset_request();
  772. }
  773. }
  774. s->last_wr = value & 0xff;
  775. break;
  776. default:
  777. OMAP_BAD_REG(addr);
  778. }
  779. }
  780. static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
  781. omap_badwidth_read16,
  782. omap_wd_timer_read,
  783. omap_badwidth_read16,
  784. };
  785. static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
  786. omap_badwidth_write16,
  787. omap_wd_timer_write,
  788. omap_badwidth_write16,
  789. };
  790. static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
  791. {
  792. qemu_del_timer(s->timer.timer);
  793. if (!s->mode)
  794. omap_clk_get(s->timer.clk);
  795. s->mode = 1;
  796. s->free = 1;
  797. s->reset = 0;
  798. s->timer.enable = 1;
  799. s->timer.it_ena = 1;
  800. s->timer.reset_val = 0xffff;
  801. s->timer.val = 0;
  802. s->timer.st = 0;
  803. s->timer.ptv = 0;
  804. s->timer.ar = 0;
  805. omap_timer_update(&s->timer);
  806. }
  807. struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
  808. qemu_irq irq, omap_clk clk)
  809. {
  810. int iomemtype;
  811. struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
  812. qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
  813. s->timer.irq = irq;
  814. s->timer.clk = clk;
  815. s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
  816. omap_wd_timer_reset(s);
  817. omap_timer_clk_setup(&s->timer);
  818. iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
  819. omap_wd_timer_writefn, s);
  820. cpu_register_physical_memory(base, 0x100, iomemtype);
  821. return s;
  822. }
  823. /* 32-kHz timer */
  824. struct omap_32khz_timer_s {
  825. struct omap_mpu_timer_s timer;
  826. };
  827. static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
  828. {
  829. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  830. int offset = addr & OMAP_MPUI_REG_MASK;
  831. switch (offset) {
  832. case 0x00: /* TVR */
  833. return s->timer.reset_val;
  834. case 0x04: /* TCR */
  835. return omap_timer_read(&s->timer);
  836. case 0x08: /* CR */
  837. return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
  838. default:
  839. break;
  840. }
  841. OMAP_BAD_REG(addr);
  842. return 0;
  843. }
  844. static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
  845. uint32_t value)
  846. {
  847. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
  848. int offset = addr & OMAP_MPUI_REG_MASK;
  849. switch (offset) {
  850. case 0x00: /* TVR */
  851. s->timer.reset_val = value & 0x00ffffff;
  852. break;
  853. case 0x04: /* TCR */
  854. OMAP_RO_REG(addr);
  855. break;
  856. case 0x08: /* CR */
  857. s->timer.ar = (value >> 3) & 1;
  858. s->timer.it_ena = (value >> 2) & 1;
  859. if (s->timer.st != (value & 1) || (value & 2)) {
  860. omap_timer_sync(&s->timer);
  861. s->timer.enable = value & 1;
  862. s->timer.st = value & 1;
  863. omap_timer_update(&s->timer);
  864. }
  865. break;
  866. default:
  867. OMAP_BAD_REG(addr);
  868. }
  869. }
  870. static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
  871. omap_badwidth_read32,
  872. omap_badwidth_read32,
  873. omap_os_timer_read,
  874. };
  875. static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
  876. omap_badwidth_write32,
  877. omap_badwidth_write32,
  878. omap_os_timer_write,
  879. };
  880. static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
  881. {
  882. qemu_del_timer(s->timer.timer);
  883. s->timer.enable = 0;
  884. s->timer.it_ena = 0;
  885. s->timer.reset_val = 0x00ffffff;
  886. s->timer.val = 0;
  887. s->timer.st = 0;
  888. s->timer.ptv = 0;
  889. s->timer.ar = 1;
  890. }
  891. struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
  892. qemu_irq irq, omap_clk clk)
  893. {
  894. int iomemtype;
  895. struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
  896. qemu_mallocz(sizeof(struct omap_32khz_timer_s));
  897. s->timer.irq = irq;
  898. s->timer.clk = clk;
  899. s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
  900. omap_os_timer_reset(s);
  901. omap_timer_clk_setup(&s->timer);
  902. iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
  903. omap_os_timer_writefn, s);
  904. cpu_register_physical_memory(base, 0x800, iomemtype);
  905. return s;
  906. }
  907. /* Ultra Low-Power Device Module */
  908. static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
  909. {
  910. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  911. uint16_t ret;
  912. switch (addr) {
  913. case 0x14: /* IT_STATUS */
  914. ret = s->ulpd_pm_regs[addr >> 2];
  915. s->ulpd_pm_regs[addr >> 2] = 0;
  916. qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
  917. return ret;
  918. case 0x18: /* Reserved */
  919. case 0x1c: /* Reserved */
  920. case 0x20: /* Reserved */
  921. case 0x28: /* Reserved */
  922. case 0x2c: /* Reserved */
  923. OMAP_BAD_REG(addr);
  924. case 0x00: /* COUNTER_32_LSB */
  925. case 0x04: /* COUNTER_32_MSB */
  926. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  927. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  928. case 0x10: /* GAUGING_CTRL */
  929. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  930. case 0x30: /* CLOCK_CTRL */
  931. case 0x34: /* SOFT_REQ */
  932. case 0x38: /* COUNTER_32_FIQ */
  933. case 0x3c: /* DPLL_CTRL */
  934. case 0x40: /* STATUS_REQ */
  935. /* XXX: check clk::usecount state for every clock */
  936. case 0x48: /* LOCL_TIME */
  937. case 0x4c: /* APLL_CTRL */
  938. case 0x50: /* POWER_CTRL */
  939. return s->ulpd_pm_regs[addr >> 2];
  940. }
  941. OMAP_BAD_REG(addr);
  942. return 0;
  943. }
  944. static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
  945. uint16_t diff, uint16_t value)
  946. {
  947. if (diff & (1 << 4)) /* USB_MCLK_EN */
  948. omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
  949. if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
  950. omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
  951. }
  952. static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
  953. uint16_t diff, uint16_t value)
  954. {
  955. if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
  956. omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
  957. if (diff & (1 << 1)) /* SOFT_COM_REQ */
  958. omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
  959. if (diff & (1 << 2)) /* SOFT_SDW_REQ */
  960. omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
  961. if (diff & (1 << 3)) /* SOFT_USB_REQ */
  962. omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
  963. }
  964. static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
  965. uint32_t value)
  966. {
  967. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  968. int64_t now, ticks;
  969. int div, mult;
  970. static const int bypass_div[4] = { 1, 2, 4, 4 };
  971. uint16_t diff;
  972. switch (addr) {
  973. case 0x00: /* COUNTER_32_LSB */
  974. case 0x04: /* COUNTER_32_MSB */
  975. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  976. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  977. case 0x14: /* IT_STATUS */
  978. case 0x40: /* STATUS_REQ */
  979. OMAP_RO_REG(addr);
  980. break;
  981. case 0x10: /* GAUGING_CTRL */
  982. /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
  983. if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
  984. now = qemu_get_clock(vm_clock);
  985. if (value & 1)
  986. s->ulpd_gauge_start = now;
  987. else {
  988. now -= s->ulpd_gauge_start;
  989. /* 32-kHz ticks */
  990. ticks = muldiv64(now, 32768, ticks_per_sec);
  991. s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
  992. s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
  993. if (ticks >> 32) /* OVERFLOW_32K */
  994. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
  995. /* High frequency ticks */
  996. ticks = muldiv64(now, 12000000, ticks_per_sec);
  997. s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
  998. s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
  999. if (ticks >> 32) /* OVERFLOW_HI_FREQ */
  1000. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
  1001. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
  1002. qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
  1003. }
  1004. }
  1005. s->ulpd_pm_regs[addr >> 2] = value;
  1006. break;
  1007. case 0x18: /* Reserved */
  1008. case 0x1c: /* Reserved */
  1009. case 0x20: /* Reserved */
  1010. case 0x28: /* Reserved */
  1011. case 0x2c: /* Reserved */
  1012. OMAP_BAD_REG(addr);
  1013. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  1014. case 0x38: /* COUNTER_32_FIQ */
  1015. case 0x48: /* LOCL_TIME */
  1016. case 0x50: /* POWER_CTRL */
  1017. s->ulpd_pm_regs[addr >> 2] = value;
  1018. break;
  1019. case 0x30: /* CLOCK_CTRL */
  1020. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  1021. s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
  1022. omap_ulpd_clk_update(s, diff, value);
  1023. break;
  1024. case 0x34: /* SOFT_REQ */
  1025. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  1026. s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
  1027. omap_ulpd_req_update(s, diff, value);
  1028. break;
  1029. case 0x3c: /* DPLL_CTRL */
  1030. /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
  1031. * omitted altogether, probably a typo. */
  1032. /* This register has identical semantics with DPLL(1:3) control
  1033. * registers, see omap_dpll_write() */
  1034. diff = s->ulpd_pm_regs[addr >> 2] & value;
  1035. s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
  1036. if (diff & (0x3ff << 2)) {
  1037. if (value & (1 << 4)) { /* PLL_ENABLE */
  1038. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1039. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1040. } else {
  1041. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1042. mult = 1;
  1043. }
  1044. omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
  1045. }
  1046. /* Enter the desired mode. */
  1047. s->ulpd_pm_regs[addr >> 2] =
  1048. (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
  1049. ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
  1050. /* Act as if the lock is restored. */
  1051. s->ulpd_pm_regs[addr >> 2] |= 2;
  1052. break;
  1053. case 0x4c: /* APLL_CTRL */
  1054. diff = s->ulpd_pm_regs[addr >> 2] & value;
  1055. s->ulpd_pm_regs[addr >> 2] = value & 0xf;
  1056. if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
  1057. omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
  1058. (value & (1 << 0)) ? "apll" : "dpll4"));
  1059. break;
  1060. default:
  1061. OMAP_BAD_REG(addr);
  1062. }
  1063. }
  1064. static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
  1065. omap_badwidth_read16,
  1066. omap_ulpd_pm_read,
  1067. omap_badwidth_read16,
  1068. };
  1069. static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
  1070. omap_badwidth_write16,
  1071. omap_ulpd_pm_write,
  1072. omap_badwidth_write16,
  1073. };
  1074. static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
  1075. {
  1076. mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
  1077. mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
  1078. mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
  1079. mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
  1080. mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
  1081. mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
  1082. mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
  1083. mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
  1084. mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
  1085. mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
  1086. mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
  1087. omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
  1088. mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
  1089. omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
  1090. mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
  1091. mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
  1092. mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
  1093. mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
  1094. mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
  1095. mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
  1096. mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
  1097. omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
  1098. omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
  1099. }
  1100. static void omap_ulpd_pm_init(target_phys_addr_t base,
  1101. struct omap_mpu_state_s *mpu)
  1102. {
  1103. int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
  1104. omap_ulpd_pm_writefn, mpu);
  1105. cpu_register_physical_memory(base, 0x800, iomemtype);
  1106. omap_ulpd_pm_reset(mpu);
  1107. }
  1108. /* OMAP Pin Configuration */
  1109. static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
  1110. {
  1111. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1112. switch (addr) {
  1113. case 0x00: /* FUNC_MUX_CTRL_0 */
  1114. case 0x04: /* FUNC_MUX_CTRL_1 */
  1115. case 0x08: /* FUNC_MUX_CTRL_2 */
  1116. return s->func_mux_ctrl[addr >> 2];
  1117. case 0x0c: /* COMP_MODE_CTRL_0 */
  1118. return s->comp_mode_ctrl[0];
  1119. case 0x10: /* FUNC_MUX_CTRL_3 */
  1120. case 0x14: /* FUNC_MUX_CTRL_4 */
  1121. case 0x18: /* FUNC_MUX_CTRL_5 */
  1122. case 0x1c: /* FUNC_MUX_CTRL_6 */
  1123. case 0x20: /* FUNC_MUX_CTRL_7 */
  1124. case 0x24: /* FUNC_MUX_CTRL_8 */
  1125. case 0x28: /* FUNC_MUX_CTRL_9 */
  1126. case 0x2c: /* FUNC_MUX_CTRL_A */
  1127. case 0x30: /* FUNC_MUX_CTRL_B */
  1128. case 0x34: /* FUNC_MUX_CTRL_C */
  1129. case 0x38: /* FUNC_MUX_CTRL_D */
  1130. return s->func_mux_ctrl[(addr >> 2) - 1];
  1131. case 0x40: /* PULL_DWN_CTRL_0 */
  1132. case 0x44: /* PULL_DWN_CTRL_1 */
  1133. case 0x48: /* PULL_DWN_CTRL_2 */
  1134. case 0x4c: /* PULL_DWN_CTRL_3 */
  1135. return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
  1136. case 0x50: /* GATE_INH_CTRL_0 */
  1137. return s->gate_inh_ctrl[0];
  1138. case 0x60: /* VOLTAGE_CTRL_0 */
  1139. return s->voltage_ctrl[0];
  1140. case 0x70: /* TEST_DBG_CTRL_0 */
  1141. return s->test_dbg_ctrl[0];
  1142. case 0x80: /* MOD_CONF_CTRL_0 */
  1143. return s->mod_conf_ctrl[0];
  1144. }
  1145. OMAP_BAD_REG(addr);
  1146. return 0;
  1147. }
  1148. static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
  1149. uint32_t diff, uint32_t value)
  1150. {
  1151. if (s->compat1509) {
  1152. if (diff & (1 << 9)) /* BLUETOOTH */
  1153. omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
  1154. (~value >> 9) & 1);
  1155. if (diff & (1 << 7)) /* USB.CLKO */
  1156. omap_clk_onoff(omap_findclk(s, "usb.clko"),
  1157. (value >> 7) & 1);
  1158. }
  1159. }
  1160. static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
  1161. uint32_t diff, uint32_t value)
  1162. {
  1163. if (s->compat1509) {
  1164. if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
  1165. omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
  1166. (value >> 31) & 1);
  1167. if (diff & (1 << 1)) /* CLK32K */
  1168. omap_clk_onoff(omap_findclk(s, "clk32k_out"),
  1169. (~value >> 1) & 1);
  1170. }
  1171. }
  1172. static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
  1173. uint32_t diff, uint32_t value)
  1174. {
  1175. if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
  1176. omap_clk_reparent(omap_findclk(s, "uart3_ck"),
  1177. omap_findclk(s, ((value >> 31) & 1) ?
  1178. "ck_48m" : "armper_ck"));
  1179. if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
  1180. omap_clk_reparent(omap_findclk(s, "uart2_ck"),
  1181. omap_findclk(s, ((value >> 30) & 1) ?
  1182. "ck_48m" : "armper_ck"));
  1183. if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
  1184. omap_clk_reparent(omap_findclk(s, "uart1_ck"),
  1185. omap_findclk(s, ((value >> 29) & 1) ?
  1186. "ck_48m" : "armper_ck"));
  1187. if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
  1188. omap_clk_reparent(omap_findclk(s, "mmc_ck"),
  1189. omap_findclk(s, ((value >> 23) & 1) ?
  1190. "ck_48m" : "armper_ck"));
  1191. if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
  1192. omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
  1193. omap_findclk(s, ((value >> 12) & 1) ?
  1194. "ck_48m" : "armper_ck"));
  1195. if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
  1196. omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
  1197. }
  1198. static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
  1199. uint32_t value)
  1200. {
  1201. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1202. uint32_t diff;
  1203. switch (addr) {
  1204. case 0x00: /* FUNC_MUX_CTRL_0 */
  1205. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  1206. s->func_mux_ctrl[addr >> 2] = value;
  1207. omap_pin_funcmux0_update(s, diff, value);
  1208. return;
  1209. case 0x04: /* FUNC_MUX_CTRL_1 */
  1210. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  1211. s->func_mux_ctrl[addr >> 2] = value;
  1212. omap_pin_funcmux1_update(s, diff, value);
  1213. return;
  1214. case 0x08: /* FUNC_MUX_CTRL_2 */
  1215. s->func_mux_ctrl[addr >> 2] = value;
  1216. return;
  1217. case 0x0c: /* COMP_MODE_CTRL_0 */
  1218. s->comp_mode_ctrl[0] = value;
  1219. s->compat1509 = (value != 0x0000eaef);
  1220. omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
  1221. omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
  1222. return;
  1223. case 0x10: /* FUNC_MUX_CTRL_3 */
  1224. case 0x14: /* FUNC_MUX_CTRL_4 */
  1225. case 0x18: /* FUNC_MUX_CTRL_5 */
  1226. case 0x1c: /* FUNC_MUX_CTRL_6 */
  1227. case 0x20: /* FUNC_MUX_CTRL_7 */
  1228. case 0x24: /* FUNC_MUX_CTRL_8 */
  1229. case 0x28: /* FUNC_MUX_CTRL_9 */
  1230. case 0x2c: /* FUNC_MUX_CTRL_A */
  1231. case 0x30: /* FUNC_MUX_CTRL_B */
  1232. case 0x34: /* FUNC_MUX_CTRL_C */
  1233. case 0x38: /* FUNC_MUX_CTRL_D */
  1234. s->func_mux_ctrl[(addr >> 2) - 1] = value;
  1235. return;
  1236. case 0x40: /* PULL_DWN_CTRL_0 */
  1237. case 0x44: /* PULL_DWN_CTRL_1 */
  1238. case 0x48: /* PULL_DWN_CTRL_2 */
  1239. case 0x4c: /* PULL_DWN_CTRL_3 */
  1240. s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
  1241. return;
  1242. case 0x50: /* GATE_INH_CTRL_0 */
  1243. s->gate_inh_ctrl[0] = value;
  1244. return;
  1245. case 0x60: /* VOLTAGE_CTRL_0 */
  1246. s->voltage_ctrl[0] = value;
  1247. return;
  1248. case 0x70: /* TEST_DBG_CTRL_0 */
  1249. s->test_dbg_ctrl[0] = value;
  1250. return;
  1251. case 0x80: /* MOD_CONF_CTRL_0 */
  1252. diff = s->mod_conf_ctrl[0] ^ value;
  1253. s->mod_conf_ctrl[0] = value;
  1254. omap_pin_modconf1_update(s, diff, value);
  1255. return;
  1256. default:
  1257. OMAP_BAD_REG(addr);
  1258. }
  1259. }
  1260. static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
  1261. omap_badwidth_read32,
  1262. omap_badwidth_read32,
  1263. omap_pin_cfg_read,
  1264. };
  1265. static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
  1266. omap_badwidth_write32,
  1267. omap_badwidth_write32,
  1268. omap_pin_cfg_write,
  1269. };
  1270. static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
  1271. {
  1272. /* Start in Compatibility Mode. */
  1273. mpu->compat1509 = 1;
  1274. omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
  1275. omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
  1276. omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
  1277. memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
  1278. memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
  1279. memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
  1280. memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
  1281. memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
  1282. memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
  1283. memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
  1284. }
  1285. static void omap_pin_cfg_init(target_phys_addr_t base,
  1286. struct omap_mpu_state_s *mpu)
  1287. {
  1288. int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
  1289. omap_pin_cfg_writefn, mpu);
  1290. cpu_register_physical_memory(base, 0x800, iomemtype);
  1291. omap_pin_cfg_reset(mpu);
  1292. }
  1293. /* Device Identification, Die Identification */
  1294. static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
  1295. {
  1296. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1297. switch (addr) {
  1298. case 0xfffe1800: /* DIE_ID_LSB */
  1299. return 0xc9581f0e;
  1300. case 0xfffe1804: /* DIE_ID_MSB */
  1301. return 0xa8858bfa;
  1302. case 0xfffe2000: /* PRODUCT_ID_LSB */
  1303. return 0x00aaaafc;
  1304. case 0xfffe2004: /* PRODUCT_ID_MSB */
  1305. return 0xcafeb574;
  1306. case 0xfffed400: /* JTAG_ID_LSB */
  1307. switch (s->mpu_model) {
  1308. case omap310:
  1309. return 0x03310315;
  1310. case omap1510:
  1311. return 0x03310115;
  1312. default:
  1313. cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
  1314. }
  1315. break;
  1316. case 0xfffed404: /* JTAG_ID_MSB */
  1317. switch (s->mpu_model) {
  1318. case omap310:
  1319. return 0xfb57402f;
  1320. case omap1510:
  1321. return 0xfb47002f;
  1322. default:
  1323. cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
  1324. }
  1325. break;
  1326. }
  1327. OMAP_BAD_REG(addr);
  1328. return 0;
  1329. }
  1330. static void omap_id_write(void *opaque, target_phys_addr_t addr,
  1331. uint32_t value)
  1332. {
  1333. OMAP_BAD_REG(addr);
  1334. }
  1335. static CPUReadMemoryFunc *omap_id_readfn[] = {
  1336. omap_badwidth_read32,
  1337. omap_badwidth_read32,
  1338. omap_id_read,
  1339. };
  1340. static CPUWriteMemoryFunc *omap_id_writefn[] = {
  1341. omap_badwidth_write32,
  1342. omap_badwidth_write32,
  1343. omap_id_write,
  1344. };
  1345. static void omap_id_init(struct omap_mpu_state_s *mpu)
  1346. {
  1347. int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
  1348. omap_id_writefn, mpu);
  1349. cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
  1350. cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
  1351. if (!cpu_is_omap15xx(mpu))
  1352. cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
  1353. }
  1354. /* MPUI Control (Dummy) */
  1355. static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
  1356. {
  1357. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1358. switch (addr) {
  1359. case 0x00: /* CTRL */
  1360. return s->mpui_ctrl;
  1361. case 0x04: /* DEBUG_ADDR */
  1362. return 0x01ffffff;
  1363. case 0x08: /* DEBUG_DATA */
  1364. return 0xffffffff;
  1365. case 0x0c: /* DEBUG_FLAG */
  1366. return 0x00000800;
  1367. case 0x10: /* STATUS */
  1368. return 0x00000000;
  1369. /* Not in OMAP310 */
  1370. case 0x14: /* DSP_STATUS */
  1371. case 0x18: /* DSP_BOOT_CONFIG */
  1372. return 0x00000000;
  1373. case 0x1c: /* DSP_MPUI_CONFIG */
  1374. return 0x0000ffff;
  1375. }
  1376. OMAP_BAD_REG(addr);
  1377. return 0;
  1378. }
  1379. static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
  1380. uint32_t value)
  1381. {
  1382. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1383. switch (addr) {
  1384. case 0x00: /* CTRL */
  1385. s->mpui_ctrl = value & 0x007fffff;
  1386. break;
  1387. case 0x04: /* DEBUG_ADDR */
  1388. case 0x08: /* DEBUG_DATA */
  1389. case 0x0c: /* DEBUG_FLAG */
  1390. case 0x10: /* STATUS */
  1391. /* Not in OMAP310 */
  1392. case 0x14: /* DSP_STATUS */
  1393. OMAP_RO_REG(addr);
  1394. case 0x18: /* DSP_BOOT_CONFIG */
  1395. case 0x1c: /* DSP_MPUI_CONFIG */
  1396. break;
  1397. default:
  1398. OMAP_BAD_REG(addr);
  1399. }
  1400. }
  1401. static CPUReadMemoryFunc *omap_mpui_readfn[] = {
  1402. omap_badwidth_read32,
  1403. omap_badwidth_read32,
  1404. omap_mpui_read,
  1405. };
  1406. static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
  1407. omap_badwidth_write32,
  1408. omap_badwidth_write32,
  1409. omap_mpui_write,
  1410. };
  1411. static void omap_mpui_reset(struct omap_mpu_state_s *s)
  1412. {
  1413. s->mpui_ctrl = 0x0003ff1b;
  1414. }
  1415. static void omap_mpui_init(target_phys_addr_t base,
  1416. struct omap_mpu_state_s *mpu)
  1417. {
  1418. int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
  1419. omap_mpui_writefn, mpu);
  1420. cpu_register_physical_memory(base, 0x100, iomemtype);
  1421. omap_mpui_reset(mpu);
  1422. }
  1423. /* TIPB Bridges */
  1424. struct omap_tipb_bridge_s {
  1425. qemu_irq abort;
  1426. int width_intr;
  1427. uint16_t control;
  1428. uint16_t alloc;
  1429. uint16_t buffer;
  1430. uint16_t enh_control;
  1431. };
  1432. static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
  1433. {
  1434. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  1435. switch (addr) {
  1436. case 0x00: /* TIPB_CNTL */
  1437. return s->control;
  1438. case 0x04: /* TIPB_BUS_ALLOC */
  1439. return s->alloc;
  1440. case 0x08: /* MPU_TIPB_CNTL */
  1441. return s->buffer;
  1442. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1443. return s->enh_control;
  1444. case 0x10: /* ADDRESS_DBG */
  1445. case 0x14: /* DATA_DEBUG_LOW */
  1446. case 0x18: /* DATA_DEBUG_HIGH */
  1447. return 0xffff;
  1448. case 0x1c: /* DEBUG_CNTR_SIG */
  1449. return 0x00f8;
  1450. }
  1451. OMAP_BAD_REG(addr);
  1452. return 0;
  1453. }
  1454. static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
  1455. uint32_t value)
  1456. {
  1457. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
  1458. switch (addr) {
  1459. case 0x00: /* TIPB_CNTL */
  1460. s->control = value & 0xffff;
  1461. break;
  1462. case 0x04: /* TIPB_BUS_ALLOC */
  1463. s->alloc = value & 0x003f;
  1464. break;
  1465. case 0x08: /* MPU_TIPB_CNTL */
  1466. s->buffer = value & 0x0003;
  1467. break;
  1468. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1469. s->width_intr = !(value & 2);
  1470. s->enh_control = value & 0x000f;
  1471. break;
  1472. case 0x10: /* ADDRESS_DBG */
  1473. case 0x14: /* DATA_DEBUG_LOW */
  1474. case 0x18: /* DATA_DEBUG_HIGH */
  1475. case 0x1c: /* DEBUG_CNTR_SIG */
  1476. OMAP_RO_REG(addr);
  1477. break;
  1478. default:
  1479. OMAP_BAD_REG(addr);
  1480. }
  1481. }
  1482. static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
  1483. omap_badwidth_read16,
  1484. omap_tipb_bridge_read,
  1485. omap_tipb_bridge_read,
  1486. };
  1487. static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
  1488. omap_badwidth_write16,
  1489. omap_tipb_bridge_write,
  1490. omap_tipb_bridge_write,
  1491. };
  1492. static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
  1493. {
  1494. s->control = 0xffff;
  1495. s->alloc = 0x0009;
  1496. s->buffer = 0x0000;
  1497. s->enh_control = 0x000f;
  1498. }
  1499. struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
  1500. qemu_irq abort_irq, omap_clk clk)
  1501. {
  1502. int iomemtype;
  1503. struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
  1504. qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
  1505. s->abort = abort_irq;
  1506. omap_tipb_bridge_reset(s);
  1507. iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
  1508. omap_tipb_bridge_writefn, s);
  1509. cpu_register_physical_memory(base, 0x100, iomemtype);
  1510. return s;
  1511. }
  1512. /* Dummy Traffic Controller's Memory Interface */
  1513. static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
  1514. {
  1515. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1516. uint32_t ret;
  1517. switch (addr) {
  1518. case 0x00: /* IMIF_PRIO */
  1519. case 0x04: /* EMIFS_PRIO */
  1520. case 0x08: /* EMIFF_PRIO */
  1521. case 0x0c: /* EMIFS_CONFIG */
  1522. case 0x10: /* EMIFS_CS0_CONFIG */
  1523. case 0x14: /* EMIFS_CS1_CONFIG */
  1524. case 0x18: /* EMIFS_CS2_CONFIG */
  1525. case 0x1c: /* EMIFS_CS3_CONFIG */
  1526. case 0x24: /* EMIFF_MRS */
  1527. case 0x28: /* TIMEOUT1 */
  1528. case 0x2c: /* TIMEOUT2 */
  1529. case 0x30: /* TIMEOUT3 */
  1530. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1531. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1532. return s->tcmi_regs[addr >> 2];
  1533. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1534. ret = s->tcmi_regs[addr >> 2];
  1535. s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
  1536. /* XXX: We can try using the VGA_DIRTY flag for this */
  1537. return ret;
  1538. }
  1539. OMAP_BAD_REG(addr);
  1540. return 0;
  1541. }
  1542. static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
  1543. uint32_t value)
  1544. {
  1545. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1546. switch (addr) {
  1547. case 0x00: /* IMIF_PRIO */
  1548. case 0x04: /* EMIFS_PRIO */
  1549. case 0x08: /* EMIFF_PRIO */
  1550. case 0x10: /* EMIFS_CS0_CONFIG */
  1551. case 0x14: /* EMIFS_CS1_CONFIG */
  1552. case 0x18: /* EMIFS_CS2_CONFIG */
  1553. case 0x1c: /* EMIFS_CS3_CONFIG */
  1554. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1555. case 0x24: /* EMIFF_MRS */
  1556. case 0x28: /* TIMEOUT1 */
  1557. case 0x2c: /* TIMEOUT2 */
  1558. case 0x30: /* TIMEOUT3 */
  1559. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1560. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1561. s->tcmi_regs[addr >> 2] = value;
  1562. break;
  1563. case 0x0c: /* EMIFS_CONFIG */
  1564. s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
  1565. break;
  1566. default:
  1567. OMAP_BAD_REG(addr);
  1568. }
  1569. }
  1570. static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
  1571. omap_badwidth_read32,
  1572. omap_badwidth_read32,
  1573. omap_tcmi_read,
  1574. };
  1575. static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
  1576. omap_badwidth_write32,
  1577. omap_badwidth_write32,
  1578. omap_tcmi_write,
  1579. };
  1580. static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
  1581. {
  1582. mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
  1583. mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
  1584. mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
  1585. mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
  1586. mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
  1587. mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
  1588. mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
  1589. mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
  1590. mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
  1591. mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
  1592. mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
  1593. mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
  1594. mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
  1595. mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
  1596. mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
  1597. }
  1598. static void omap_tcmi_init(target_phys_addr_t base,
  1599. struct omap_mpu_state_s *mpu)
  1600. {
  1601. int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
  1602. omap_tcmi_writefn, mpu);
  1603. cpu_register_physical_memory(base, 0x100, iomemtype);
  1604. omap_tcmi_reset(mpu);
  1605. }
  1606. /* Digital phase-locked loops control */
  1607. static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
  1608. {
  1609. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1610. if (addr == 0x00) /* CTL_REG */
  1611. return s->mode;
  1612. OMAP_BAD_REG(addr);
  1613. return 0;
  1614. }
  1615. static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
  1616. uint32_t value)
  1617. {
  1618. struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
  1619. uint16_t diff;
  1620. static const int bypass_div[4] = { 1, 2, 4, 4 };
  1621. int div, mult;
  1622. if (addr == 0x00) { /* CTL_REG */
  1623. /* See omap_ulpd_pm_write() too */
  1624. diff = s->mode & value;
  1625. s->mode = value & 0x2fff;
  1626. if (diff & (0x3ff << 2)) {
  1627. if (value & (1 << 4)) { /* PLL_ENABLE */
  1628. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1629. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1630. } else {
  1631. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1632. mult = 1;
  1633. }
  1634. omap_clk_setrate(s->dpll, div, mult);
  1635. }
  1636. /* Enter the desired mode. */
  1637. s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
  1638. /* Act as if the lock is restored. */
  1639. s->mode |= 2;
  1640. } else {
  1641. OMAP_BAD_REG(addr);
  1642. }
  1643. }
  1644. static CPUReadMemoryFunc *omap_dpll_readfn[] = {
  1645. omap_badwidth_read16,
  1646. omap_dpll_read,
  1647. omap_badwidth_read16,
  1648. };
  1649. static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
  1650. omap_badwidth_write16,
  1651. omap_dpll_write,
  1652. omap_badwidth_write16,
  1653. };
  1654. static void omap_dpll_reset(struct dpll_ctl_s *s)
  1655. {
  1656. s->mode = 0x2002;
  1657. omap_clk_setrate(s->dpll, 1, 1);
  1658. }
  1659. static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
  1660. omap_clk clk)
  1661. {
  1662. int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
  1663. omap_dpll_writefn, s);
  1664. s->dpll = clk;
  1665. omap_dpll_reset(s);
  1666. cpu_register_physical_memory(base, 0x100, iomemtype);
  1667. }
  1668. /* UARTs */
  1669. struct omap_uart_s {
  1670. target_phys_addr_t base;
  1671. SerialState *serial; /* TODO */
  1672. struct omap_target_agent_s *ta;
  1673. omap_clk fclk;
  1674. qemu_irq irq;
  1675. uint8_t eblr;
  1676. uint8_t syscontrol;
  1677. uint8_t wkup;
  1678. uint8_t cfps;
  1679. uint8_t mdr[2];
  1680. uint8_t scr;
  1681. uint8_t clksel;
  1682. };
  1683. void omap_uart_reset(struct omap_uart_s *s)
  1684. {
  1685. s->eblr = 0x00;
  1686. s->syscontrol = 0;
  1687. s->wkup = 0x3f;
  1688. s->cfps = 0x69;
  1689. s->clksel = 0;
  1690. }
  1691. struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
  1692. qemu_irq irq, omap_clk fclk, omap_clk iclk,
  1693. qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
  1694. {
  1695. struct omap_uart_s *s = (struct omap_uart_s *)
  1696. qemu_mallocz(sizeof(struct omap_uart_s));
  1697. s->base = base;
  1698. s->fclk = fclk;
  1699. s->irq = irq;
  1700. s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
  1701. chr ?: qemu_chr_open("null", "null", NULL), 1);
  1702. return s;
  1703. }
  1704. static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
  1705. {
  1706. struct omap_uart_s *s = (struct omap_uart_s *) opaque;
  1707. addr &= 0xff;
  1708. switch (addr) {
  1709. case 0x20: /* MDR1 */
  1710. return s->mdr[0];
  1711. case 0x24: /* MDR2 */
  1712. return s->mdr[1];
  1713. case 0x40: /* SCR */
  1714. return s->scr;
  1715. case 0x44: /* SSR */
  1716. return 0x0;
  1717. case 0x48: /* EBLR (OMAP2) */
  1718. return s->eblr;
  1719. case 0x4C: /* OSC_12M_SEL (OMAP1) */
  1720. return s->clksel;
  1721. case 0x50: /* MVR */
  1722. return 0x30;
  1723. case 0x54: /* SYSC (OMAP2) */
  1724. return s->syscontrol;
  1725. case 0x58: /* SYSS (OMAP2) */
  1726. return 1;
  1727. case 0x5c: /* WER (OMAP2) */
  1728. return s->wkup;
  1729. case 0x60: /* CFPS (OMAP2) */
  1730. return s->cfps;
  1731. }
  1732. OMAP_BAD_REG(addr);
  1733. return 0;
  1734. }
  1735. static void omap_uart_write(void *opaque, target_phys_addr_t addr,
  1736. uint32_t value)
  1737. {
  1738. struct omap_uart_s *s = (struct omap_uart_s *) opaque;
  1739. addr &= 0xff;
  1740. switch (addr) {
  1741. case 0x20: /* MDR1 */
  1742. s->mdr[0] = value & 0x7f;
  1743. break;
  1744. case 0x24: /* MDR2 */
  1745. s->mdr[1] = value & 0xff;
  1746. break;
  1747. case 0x40: /* SCR */
  1748. s->scr = value & 0xff;
  1749. break;
  1750. case 0x48: /* EBLR (OMAP2) */
  1751. s->eblr = value & 0xff;
  1752. break;
  1753. case 0x4C: /* OSC_12M_SEL (OMAP1) */
  1754. s->clksel = value & 1;
  1755. break;
  1756. case 0x44: /* SSR */
  1757. case 0x50: /* MVR */
  1758. case 0x58: /* SYSS (OMAP2) */
  1759. OMAP_RO_REG(addr);
  1760. break;
  1761. case 0x54: /* SYSC (OMAP2) */
  1762. s->syscontrol = value & 0x1d;
  1763. if (value & 2)
  1764. omap_uart_reset(s);
  1765. break;
  1766. case 0x5c: /* WER (OMAP2) */
  1767. s->wkup = value & 0x7f;
  1768. break;
  1769. case 0x60: /* CFPS (OMAP2) */
  1770. s->cfps = value & 0xff;
  1771. break;
  1772. default:
  1773. OMAP_BAD_REG(addr);
  1774. }
  1775. }
  1776. static CPUReadMemoryFunc *omap_uart_readfn[] = {
  1777. omap_uart_read,
  1778. omap_uart_read,
  1779. omap_badwidth_read8,
  1780. };
  1781. static CPUWriteMemoryFunc *omap_uart_writefn[] = {
  1782. omap_uart_write,
  1783. omap_uart_write,
  1784. omap_badwidth_write8,
  1785. };
  1786. struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
  1787. qemu_irq irq, omap_clk fclk, omap_clk iclk,
  1788. qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
  1789. {
  1790. target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
  1791. struct omap_uart_s *s = omap_uart_init(base, irq,
  1792. fclk, iclk, txdma, rxdma, chr);
  1793. int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
  1794. omap_uart_writefn, s);
  1795. s->ta = ta;
  1796. cpu_register_physical_memory(base + 0x20, 0x100, iomemtype);
  1797. return s;
  1798. }
  1799. void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
  1800. {
  1801. /* TODO: Should reuse or destroy current s->serial */
  1802. s->serial = serial_mm_init(s->base, 2, s->irq,
  1803. omap_clk_getrate(s->fclk) / 16,
  1804. chr ?: qemu_chr_open("null", "null", NULL), 1);
  1805. }
  1806. /* MPU Clock/Reset/Power Mode Control */
  1807. static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
  1808. {
  1809. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1810. switch (addr) {
  1811. case 0x00: /* ARM_CKCTL */
  1812. return s->clkm.arm_ckctl;
  1813. case 0x04: /* ARM_IDLECT1 */
  1814. return s->clkm.arm_idlect1;
  1815. case 0x08: /* ARM_IDLECT2 */
  1816. return s->clkm.arm_idlect2;
  1817. case 0x0c: /* ARM_EWUPCT */
  1818. return s->clkm.arm_ewupct;
  1819. case 0x10: /* ARM_RSTCT1 */
  1820. return s->clkm.arm_rstct1;
  1821. case 0x14: /* ARM_RSTCT2 */
  1822. return s->clkm.arm_rstct2;
  1823. case 0x18: /* ARM_SYSST */
  1824. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
  1825. case 0x1c: /* ARM_CKOUT1 */
  1826. return s->clkm.arm_ckout1;
  1827. case 0x20: /* ARM_CKOUT2 */
  1828. break;
  1829. }
  1830. OMAP_BAD_REG(addr);
  1831. return 0;
  1832. }
  1833. static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
  1834. uint16_t diff, uint16_t value)
  1835. {
  1836. omap_clk clk;
  1837. if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
  1838. if (value & (1 << 14))
  1839. /* Reserved */;
  1840. else {
  1841. clk = omap_findclk(s, "arminth_ck");
  1842. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1843. }
  1844. }
  1845. if (diff & (1 << 12)) { /* ARM_TIMXO */
  1846. clk = omap_findclk(s, "armtim_ck");
  1847. if (value & (1 << 12))
  1848. omap_clk_reparent(clk, omap_findclk(s, "clkin"));
  1849. else
  1850. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1851. }
  1852. /* XXX: en_dspck */
  1853. if (diff & (3 << 10)) { /* DSPMMUDIV */
  1854. clk = omap_findclk(s, "dspmmu_ck");
  1855. omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
  1856. }
  1857. if (diff & (3 << 8)) { /* TCDIV */
  1858. clk = omap_findclk(s, "tc_ck");
  1859. omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
  1860. }
  1861. if (diff & (3 << 6)) { /* DSPDIV */
  1862. clk = omap_findclk(s, "dsp_ck");
  1863. omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
  1864. }
  1865. if (diff & (3 << 4)) { /* ARMDIV */
  1866. clk = omap_findclk(s, "arm_ck");
  1867. omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
  1868. }
  1869. if (diff & (3 << 2)) { /* LCDDIV */
  1870. clk = omap_findclk(s, "lcd_ck");
  1871. omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
  1872. }
  1873. if (diff & (3 << 0)) { /* PERDIV */
  1874. clk = omap_findclk(s, "armper_ck");
  1875. omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
  1876. }
  1877. }
  1878. static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
  1879. uint16_t diff, uint16_t value)
  1880. {
  1881. omap_clk clk;
  1882. if (value & (1 << 11)) /* SETARM_IDLE */
  1883. cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
  1884. if (!(value & (1 << 10))) /* WKUP_MODE */
  1885. qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
  1886. #define SET_CANIDLE(clock, bit) \
  1887. if (diff & (1 << bit)) { \
  1888. clk = omap_findclk(s, clock); \
  1889. omap_clk_canidle(clk, (value >> bit) & 1); \
  1890. }
  1891. SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
  1892. SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
  1893. SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
  1894. SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
  1895. SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
  1896. SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
  1897. SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
  1898. SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
  1899. SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
  1900. SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
  1901. SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
  1902. SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
  1903. SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
  1904. SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
  1905. }
  1906. static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
  1907. uint16_t diff, uint16_t value)
  1908. {
  1909. omap_clk clk;
  1910. #define SET_ONOFF(clock, bit) \
  1911. if (diff & (1 << bit)) { \
  1912. clk = omap_findclk(s, clock); \
  1913. omap_clk_onoff(clk, (value >> bit) & 1); \
  1914. }
  1915. SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
  1916. SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
  1917. SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
  1918. SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
  1919. SET_ONOFF("lb_ck", 4) /* EN_LBCK */
  1920. SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
  1921. SET_ONOFF("mpui_ck", 6) /* EN_APICK */
  1922. SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
  1923. SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
  1924. SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
  1925. SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
  1926. }
  1927. static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
  1928. uint16_t diff, uint16_t value)
  1929. {
  1930. omap_clk clk;
  1931. if (diff & (3 << 4)) { /* TCLKOUT */
  1932. clk = omap_findclk(s, "tclk_out");
  1933. switch ((value >> 4) & 3) {
  1934. case 1:
  1935. omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
  1936. omap_clk_onoff(clk, 1);
  1937. break;
  1938. case 2:
  1939. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1940. omap_clk_onoff(clk, 1);
  1941. break;
  1942. default:
  1943. omap_clk_onoff(clk, 0);
  1944. }
  1945. }
  1946. if (diff & (3 << 2)) { /* DCLKOUT */
  1947. clk = omap_findclk(s, "dclk_out");
  1948. switch ((value >> 2) & 3) {
  1949. case 0:
  1950. omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
  1951. break;
  1952. case 1:
  1953. omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
  1954. break;
  1955. case 2:
  1956. omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
  1957. break;
  1958. case 3:
  1959. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1960. break;
  1961. }
  1962. }
  1963. if (diff & (3 << 0)) { /* ACLKOUT */
  1964. clk = omap_findclk(s, "aclk_out");
  1965. switch ((value >> 0) & 3) {
  1966. case 1:
  1967. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1968. omap_clk_onoff(clk, 1);
  1969. break;
  1970. case 2:
  1971. omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
  1972. omap_clk_onoff(clk, 1);
  1973. break;
  1974. case 3:
  1975. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1976. omap_clk_onoff(clk, 1);
  1977. break;
  1978. default:
  1979. omap_clk_onoff(clk, 0);
  1980. }
  1981. }
  1982. }
  1983. static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
  1984. uint32_t value)
  1985. {
  1986. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  1987. uint16_t diff;
  1988. omap_clk clk;
  1989. static const char *clkschemename[8] = {
  1990. "fully synchronous", "fully asynchronous", "synchronous scalable",
  1991. "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
  1992. };
  1993. switch (addr) {
  1994. case 0x00: /* ARM_CKCTL */
  1995. diff = s->clkm.arm_ckctl ^ value;
  1996. s->clkm.arm_ckctl = value & 0x7fff;
  1997. omap_clkm_ckctl_update(s, diff, value);
  1998. return;
  1999. case 0x04: /* ARM_IDLECT1 */
  2000. diff = s->clkm.arm_idlect1 ^ value;
  2001. s->clkm.arm_idlect1 = value & 0x0fff;
  2002. omap_clkm_idlect1_update(s, diff, value);
  2003. return;
  2004. case 0x08: /* ARM_IDLECT2 */
  2005. diff = s->clkm.arm_idlect2 ^ value;
  2006. s->clkm.arm_idlect2 = value & 0x07ff;
  2007. omap_clkm_idlect2_update(s, diff, value);
  2008. return;
  2009. case 0x0c: /* ARM_EWUPCT */
  2010. diff = s->clkm.arm_ewupct ^ value;
  2011. s->clkm.arm_ewupct = value & 0x003f;
  2012. return;
  2013. case 0x10: /* ARM_RSTCT1 */
  2014. diff = s->clkm.arm_rstct1 ^ value;
  2015. s->clkm.arm_rstct1 = value & 0x0007;
  2016. if (value & 9) {
  2017. qemu_system_reset_request();
  2018. s->clkm.cold_start = 0xa;
  2019. }
  2020. if (diff & ~value & 4) { /* DSP_RST */
  2021. omap_mpui_reset(s);
  2022. omap_tipb_bridge_reset(s->private_tipb);
  2023. omap_tipb_bridge_reset(s->public_tipb);
  2024. }
  2025. if (diff & 2) { /* DSP_EN */
  2026. clk = omap_findclk(s, "dsp_ck");
  2027. omap_clk_canidle(clk, (~value >> 1) & 1);
  2028. }
  2029. return;
  2030. case 0x14: /* ARM_RSTCT2 */
  2031. s->clkm.arm_rstct2 = value & 0x0001;
  2032. return;
  2033. case 0x18: /* ARM_SYSST */
  2034. if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
  2035. s->clkm.clocking_scheme = (value >> 11) & 7;
  2036. printf("%s: clocking scheme set to %s\n", __FUNCTION__,
  2037. clkschemename[s->clkm.clocking_scheme]);
  2038. }
  2039. s->clkm.cold_start &= value & 0x3f;
  2040. return;
  2041. case 0x1c: /* ARM_CKOUT1 */
  2042. diff = s->clkm.arm_ckout1 ^ value;
  2043. s->clkm.arm_ckout1 = value & 0x003f;
  2044. omap_clkm_ckout1_update(s, diff, value);
  2045. return;
  2046. case 0x20: /* ARM_CKOUT2 */
  2047. default:
  2048. OMAP_BAD_REG(addr);
  2049. }
  2050. }
  2051. static CPUReadMemoryFunc *omap_clkm_readfn[] = {
  2052. omap_badwidth_read16,
  2053. omap_clkm_read,
  2054. omap_badwidth_read16,
  2055. };
  2056. static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
  2057. omap_badwidth_write16,
  2058. omap_clkm_write,
  2059. omap_badwidth_write16,
  2060. };
  2061. static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
  2062. {
  2063. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2064. switch (addr) {
  2065. case 0x04: /* DSP_IDLECT1 */
  2066. return s->clkm.dsp_idlect1;
  2067. case 0x08: /* DSP_IDLECT2 */
  2068. return s->clkm.dsp_idlect2;
  2069. case 0x14: /* DSP_RSTCT2 */
  2070. return s->clkm.dsp_rstct2;
  2071. case 0x18: /* DSP_SYSST */
  2072. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
  2073. (s->env->halted << 6); /* Quite useless... */
  2074. }
  2075. OMAP_BAD_REG(addr);
  2076. return 0;
  2077. }
  2078. static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
  2079. uint16_t diff, uint16_t value)
  2080. {
  2081. omap_clk clk;
  2082. SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
  2083. }
  2084. static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
  2085. uint16_t diff, uint16_t value)
  2086. {
  2087. omap_clk clk;
  2088. SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
  2089. }
  2090. static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
  2091. uint32_t value)
  2092. {
  2093. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2094. uint16_t diff;
  2095. switch (addr) {
  2096. case 0x04: /* DSP_IDLECT1 */
  2097. diff = s->clkm.dsp_idlect1 ^ value;
  2098. s->clkm.dsp_idlect1 = value & 0x01f7;
  2099. omap_clkdsp_idlect1_update(s, diff, value);
  2100. break;
  2101. case 0x08: /* DSP_IDLECT2 */
  2102. s->clkm.dsp_idlect2 = value & 0x0037;
  2103. diff = s->clkm.dsp_idlect1 ^ value;
  2104. omap_clkdsp_idlect2_update(s, diff, value);
  2105. break;
  2106. case 0x14: /* DSP_RSTCT2 */
  2107. s->clkm.dsp_rstct2 = value & 0x0001;
  2108. break;
  2109. case 0x18: /* DSP_SYSST */
  2110. s->clkm.cold_start &= value & 0x3f;
  2111. break;
  2112. default:
  2113. OMAP_BAD_REG(addr);
  2114. }
  2115. }
  2116. static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
  2117. omap_badwidth_read16,
  2118. omap_clkdsp_read,
  2119. omap_badwidth_read16,
  2120. };
  2121. static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
  2122. omap_badwidth_write16,
  2123. omap_clkdsp_write,
  2124. omap_badwidth_write16,
  2125. };
  2126. static void omap_clkm_reset(struct omap_mpu_state_s *s)
  2127. {
  2128. if (s->wdt && s->wdt->reset)
  2129. s->clkm.cold_start = 0x6;
  2130. s->clkm.clocking_scheme = 0;
  2131. omap_clkm_ckctl_update(s, ~0, 0x3000);
  2132. s->clkm.arm_ckctl = 0x3000;
  2133. omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
  2134. s->clkm.arm_idlect1 = 0x0400;
  2135. omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
  2136. s->clkm.arm_idlect2 = 0x0100;
  2137. s->clkm.arm_ewupct = 0x003f;
  2138. s->clkm.arm_rstct1 = 0x0000;
  2139. s->clkm.arm_rstct2 = 0x0000;
  2140. s->clkm.arm_ckout1 = 0x0015;
  2141. s->clkm.dpll1_mode = 0x2002;
  2142. omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
  2143. s->clkm.dsp_idlect1 = 0x0040;
  2144. omap_clkdsp_idlect2_update(s, ~0, 0x0000);
  2145. s->clkm.dsp_idlect2 = 0x0000;
  2146. s->clkm.dsp_rstct2 = 0x0000;
  2147. }
  2148. static void omap_clkm_init(target_phys_addr_t mpu_base,
  2149. target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
  2150. {
  2151. int iomemtype[2] = {
  2152. cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
  2153. cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
  2154. };
  2155. s->clkm.arm_idlect1 = 0x03ff;
  2156. s->clkm.arm_idlect2 = 0x0100;
  2157. s->clkm.dsp_idlect1 = 0x0002;
  2158. omap_clkm_reset(s);
  2159. s->clkm.cold_start = 0x3a;
  2160. cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
  2161. cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
  2162. }
  2163. /* MPU I/O */
  2164. struct omap_mpuio_s {
  2165. qemu_irq irq;
  2166. qemu_irq kbd_irq;
  2167. qemu_irq *in;
  2168. qemu_irq handler[16];
  2169. qemu_irq wakeup;
  2170. uint16_t inputs;
  2171. uint16_t outputs;
  2172. uint16_t dir;
  2173. uint16_t edge;
  2174. uint16_t mask;
  2175. uint16_t ints;
  2176. uint16_t debounce;
  2177. uint16_t latch;
  2178. uint8_t event;
  2179. uint8_t buttons[5];
  2180. uint8_t row_latch;
  2181. uint8_t cols;
  2182. int kbd_mask;
  2183. int clk;
  2184. };
  2185. static void omap_mpuio_set(void *opaque, int line, int level)
  2186. {
  2187. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  2188. uint16_t prev = s->inputs;
  2189. if (level)
  2190. s->inputs |= 1 << line;
  2191. else
  2192. s->inputs &= ~(1 << line);
  2193. if (((1 << line) & s->dir & ~s->mask) && s->clk) {
  2194. if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
  2195. s->ints |= 1 << line;
  2196. qemu_irq_raise(s->irq);
  2197. /* TODO: wakeup */
  2198. }
  2199. if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
  2200. (s->event >> 1) == line) /* PIN_SELECT */
  2201. s->latch = s->inputs;
  2202. }
  2203. }
  2204. static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
  2205. {
  2206. int i;
  2207. uint8_t *row, rows = 0, cols = ~s->cols;
  2208. for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
  2209. if (*row & cols)
  2210. rows |= i;
  2211. qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
  2212. s->row_latch = ~rows;
  2213. }
  2214. static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
  2215. {
  2216. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  2217. int offset = addr & OMAP_MPUI_REG_MASK;
  2218. uint16_t ret;
  2219. switch (offset) {
  2220. case 0x00: /* INPUT_LATCH */
  2221. return s->inputs;
  2222. case 0x04: /* OUTPUT_REG */
  2223. return s->outputs;
  2224. case 0x08: /* IO_CNTL */
  2225. return s->dir;
  2226. case 0x10: /* KBR_LATCH */
  2227. return s->row_latch;
  2228. case 0x14: /* KBC_REG */
  2229. return s->cols;
  2230. case 0x18: /* GPIO_EVENT_MODE_REG */
  2231. return s->event;
  2232. case 0x1c: /* GPIO_INT_EDGE_REG */
  2233. return s->edge;
  2234. case 0x20: /* KBD_INT */
  2235. return (~s->row_latch & 0x1f) && !s->kbd_mask;
  2236. case 0x24: /* GPIO_INT */
  2237. ret = s->ints;
  2238. s->ints &= s->mask;
  2239. if (ret)
  2240. qemu_irq_lower(s->irq);
  2241. return ret;
  2242. case 0x28: /* KBD_MASKIT */
  2243. return s->kbd_mask;
  2244. case 0x2c: /* GPIO_MASKIT */
  2245. return s->mask;
  2246. case 0x30: /* GPIO_DEBOUNCING_REG */
  2247. return s->debounce;
  2248. case 0x34: /* GPIO_LATCH_REG */
  2249. return s->latch;
  2250. }
  2251. OMAP_BAD_REG(addr);
  2252. return 0;
  2253. }
  2254. static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
  2255. uint32_t value)
  2256. {
  2257. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  2258. int offset = addr & OMAP_MPUI_REG_MASK;
  2259. uint16_t diff;
  2260. int ln;
  2261. switch (offset) {
  2262. case 0x04: /* OUTPUT_REG */
  2263. diff = (s->outputs ^ value) & ~s->dir;
  2264. s->outputs = value;
  2265. while ((ln = ffs(diff))) {
  2266. ln --;
  2267. if (s->handler[ln])
  2268. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  2269. diff &= ~(1 << ln);
  2270. }
  2271. break;
  2272. case 0x08: /* IO_CNTL */
  2273. diff = s->outputs & (s->dir ^ value);
  2274. s->dir = value;
  2275. value = s->outputs & ~s->dir;
  2276. while ((ln = ffs(diff))) {
  2277. ln --;
  2278. if (s->handler[ln])
  2279. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  2280. diff &= ~(1 << ln);
  2281. }
  2282. break;
  2283. case 0x14: /* KBC_REG */
  2284. s->cols = value;
  2285. omap_mpuio_kbd_update(s);
  2286. break;
  2287. case 0x18: /* GPIO_EVENT_MODE_REG */
  2288. s->event = value & 0x1f;
  2289. break;
  2290. case 0x1c: /* GPIO_INT_EDGE_REG */
  2291. s->edge = value;
  2292. break;
  2293. case 0x28: /* KBD_MASKIT */
  2294. s->kbd_mask = value & 1;
  2295. omap_mpuio_kbd_update(s);
  2296. break;
  2297. case 0x2c: /* GPIO_MASKIT */
  2298. s->mask = value;
  2299. break;
  2300. case 0x30: /* GPIO_DEBOUNCING_REG */
  2301. s->debounce = value & 0x1ff;
  2302. break;
  2303. case 0x00: /* INPUT_LATCH */
  2304. case 0x10: /* KBR_LATCH */
  2305. case 0x20: /* KBD_INT */
  2306. case 0x24: /* GPIO_INT */
  2307. case 0x34: /* GPIO_LATCH_REG */
  2308. OMAP_RO_REG(addr);
  2309. return;
  2310. default:
  2311. OMAP_BAD_REG(addr);
  2312. return;
  2313. }
  2314. }
  2315. static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
  2316. omap_badwidth_read16,
  2317. omap_mpuio_read,
  2318. omap_badwidth_read16,
  2319. };
  2320. static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
  2321. omap_badwidth_write16,
  2322. omap_mpuio_write,
  2323. omap_badwidth_write16,
  2324. };
  2325. static void omap_mpuio_reset(struct omap_mpuio_s *s)
  2326. {
  2327. s->inputs = 0;
  2328. s->outputs = 0;
  2329. s->dir = ~0;
  2330. s->event = 0;
  2331. s->edge = 0;
  2332. s->kbd_mask = 0;
  2333. s->mask = 0;
  2334. s->debounce = 0;
  2335. s->latch = 0;
  2336. s->ints = 0;
  2337. s->row_latch = 0x1f;
  2338. s->clk = 1;
  2339. }
  2340. static void omap_mpuio_onoff(void *opaque, int line, int on)
  2341. {
  2342. struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
  2343. s->clk = on;
  2344. if (on)
  2345. omap_mpuio_kbd_update(s);
  2346. }
  2347. struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
  2348. qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
  2349. omap_clk clk)
  2350. {
  2351. int iomemtype;
  2352. struct omap_mpuio_s *s = (struct omap_mpuio_s *)
  2353. qemu_mallocz(sizeof(struct omap_mpuio_s));
  2354. s->irq = gpio_int;
  2355. s->kbd_irq = kbd_int;
  2356. s->wakeup = wakeup;
  2357. s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
  2358. omap_mpuio_reset(s);
  2359. iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
  2360. omap_mpuio_writefn, s);
  2361. cpu_register_physical_memory(base, 0x800, iomemtype);
  2362. omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
  2363. return s;
  2364. }
  2365. qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
  2366. {
  2367. return s->in;
  2368. }
  2369. void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
  2370. {
  2371. if (line >= 16 || line < 0)
  2372. cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
  2373. s->handler[line] = handler;
  2374. }
  2375. void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
  2376. {
  2377. if (row >= 5 || row < 0)
  2378. cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
  2379. __FUNCTION__, col, row);
  2380. if (down)
  2381. s->buttons[row] |= 1 << col;
  2382. else
  2383. s->buttons[row] &= ~(1 << col);
  2384. omap_mpuio_kbd_update(s);
  2385. }
  2386. /* General-Purpose I/O */
  2387. struct omap_gpio_s {
  2388. qemu_irq irq;
  2389. qemu_irq *in;
  2390. qemu_irq handler[16];
  2391. uint16_t inputs;
  2392. uint16_t outputs;
  2393. uint16_t dir;
  2394. uint16_t edge;
  2395. uint16_t mask;
  2396. uint16_t ints;
  2397. uint16_t pins;
  2398. };
  2399. static void omap_gpio_set(void *opaque, int line, int level)
  2400. {
  2401. struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
  2402. uint16_t prev = s->inputs;
  2403. if (level)
  2404. s->inputs |= 1 << line;
  2405. else
  2406. s->inputs &= ~(1 << line);
  2407. if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
  2408. (1 << line) & s->dir & ~s->mask) {
  2409. s->ints |= 1 << line;
  2410. qemu_irq_raise(s->irq);
  2411. }
  2412. }
  2413. static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
  2414. {
  2415. struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
  2416. int offset = addr & OMAP_MPUI_REG_MASK;
  2417. switch (offset) {
  2418. case 0x00: /* DATA_INPUT */
  2419. return s->inputs & s->pins;
  2420. case 0x04: /* DATA_OUTPUT */
  2421. return s->outputs;
  2422. case 0x08: /* DIRECTION_CONTROL */
  2423. return s->dir;
  2424. case 0x0c: /* INTERRUPT_CONTROL */
  2425. return s->edge;
  2426. case 0x10: /* INTERRUPT_MASK */
  2427. return s->mask;
  2428. case 0x14: /* INTERRUPT_STATUS */
  2429. return s->ints;
  2430. case 0x18: /* PIN_CONTROL (not in OMAP310) */
  2431. OMAP_BAD_REG(addr);
  2432. return s->pins;
  2433. }
  2434. OMAP_BAD_REG(addr);
  2435. return 0;
  2436. }
  2437. static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
  2438. uint32_t value)
  2439. {
  2440. struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
  2441. int offset = addr & OMAP_MPUI_REG_MASK;
  2442. uint16_t diff;
  2443. int ln;
  2444. switch (offset) {
  2445. case 0x00: /* DATA_INPUT */
  2446. OMAP_RO_REG(addr);
  2447. return;
  2448. case 0x04: /* DATA_OUTPUT */
  2449. diff = (s->outputs ^ value) & ~s->dir;
  2450. s->outputs = value;
  2451. while ((ln = ffs(diff))) {
  2452. ln --;
  2453. if (s->handler[ln])
  2454. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  2455. diff &= ~(1 << ln);
  2456. }
  2457. break;
  2458. case 0x08: /* DIRECTION_CONTROL */
  2459. diff = s->outputs & (s->dir ^ value);
  2460. s->dir = value;
  2461. value = s->outputs & ~s->dir;
  2462. while ((ln = ffs(diff))) {
  2463. ln --;
  2464. if (s->handler[ln])
  2465. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  2466. diff &= ~(1 << ln);
  2467. }
  2468. break;
  2469. case 0x0c: /* INTERRUPT_CONTROL */
  2470. s->edge = value;
  2471. break;
  2472. case 0x10: /* INTERRUPT_MASK */
  2473. s->mask = value;
  2474. break;
  2475. case 0x14: /* INTERRUPT_STATUS */
  2476. s->ints &= ~value;
  2477. if (!s->ints)
  2478. qemu_irq_lower(s->irq);
  2479. break;
  2480. case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
  2481. OMAP_BAD_REG(addr);
  2482. s->pins = value;
  2483. break;
  2484. default:
  2485. OMAP_BAD_REG(addr);
  2486. return;
  2487. }
  2488. }
  2489. /* *Some* sources say the memory region is 32-bit. */
  2490. static CPUReadMemoryFunc *omap_gpio_readfn[] = {
  2491. omap_badwidth_read16,
  2492. omap_gpio_read,
  2493. omap_badwidth_read16,
  2494. };
  2495. static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
  2496. omap_badwidth_write16,
  2497. omap_gpio_write,
  2498. omap_badwidth_write16,
  2499. };
  2500. static void omap_gpio_reset(struct omap_gpio_s *s)
  2501. {
  2502. s->inputs = 0;
  2503. s->outputs = ~0;
  2504. s->dir = ~0;
  2505. s->edge = ~0;
  2506. s->mask = ~0;
  2507. s->ints = 0;
  2508. s->pins = ~0;
  2509. }
  2510. struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
  2511. qemu_irq irq, omap_clk clk)
  2512. {
  2513. int iomemtype;
  2514. struct omap_gpio_s *s = (struct omap_gpio_s *)
  2515. qemu_mallocz(sizeof(struct omap_gpio_s));
  2516. s->irq = irq;
  2517. s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
  2518. omap_gpio_reset(s);
  2519. iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
  2520. omap_gpio_writefn, s);
  2521. cpu_register_physical_memory(base, 0x1000, iomemtype);
  2522. return s;
  2523. }
  2524. qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
  2525. {
  2526. return s->in;
  2527. }
  2528. void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
  2529. {
  2530. if (line >= 16 || line < 0)
  2531. cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
  2532. s->handler[line] = handler;
  2533. }
  2534. /* MicroWire Interface */
  2535. struct omap_uwire_s {
  2536. qemu_irq txirq;
  2537. qemu_irq rxirq;
  2538. qemu_irq txdrq;
  2539. uint16_t txbuf;
  2540. uint16_t rxbuf;
  2541. uint16_t control;
  2542. uint16_t setup[5];
  2543. struct uwire_slave_s *chip[4];
  2544. };
  2545. static void omap_uwire_transfer_start(struct omap_uwire_s *s)
  2546. {
  2547. int chipselect = (s->control >> 10) & 3; /* INDEX */
  2548. struct uwire_slave_s *slave = s->chip[chipselect];
  2549. if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
  2550. if (s->control & (1 << 12)) /* CS_CMD */
  2551. if (slave && slave->send)
  2552. slave->send(slave->opaque,
  2553. s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
  2554. s->control &= ~(1 << 14); /* CSRB */
  2555. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  2556. * a DRQ. When is the level IRQ supposed to be reset? */
  2557. }
  2558. if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
  2559. if (s->control & (1 << 12)) /* CS_CMD */
  2560. if (slave && slave->receive)
  2561. s->rxbuf = slave->receive(slave->opaque);
  2562. s->control |= 1 << 15; /* RDRB */
  2563. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  2564. * a DRQ. When is the level IRQ supposed to be reset? */
  2565. }
  2566. }
  2567. static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
  2568. {
  2569. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  2570. int offset = addr & OMAP_MPUI_REG_MASK;
  2571. switch (offset) {
  2572. case 0x00: /* RDR */
  2573. s->control &= ~(1 << 15); /* RDRB */
  2574. return s->rxbuf;
  2575. case 0x04: /* CSR */
  2576. return s->control;
  2577. case 0x08: /* SR1 */
  2578. return s->setup[0];
  2579. case 0x0c: /* SR2 */
  2580. return s->setup[1];
  2581. case 0x10: /* SR3 */
  2582. return s->setup[2];
  2583. case 0x14: /* SR4 */
  2584. return s->setup[3];
  2585. case 0x18: /* SR5 */
  2586. return s->setup[4];
  2587. }
  2588. OMAP_BAD_REG(addr);
  2589. return 0;
  2590. }
  2591. static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
  2592. uint32_t value)
  2593. {
  2594. struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
  2595. int offset = addr & OMAP_MPUI_REG_MASK;
  2596. switch (offset) {
  2597. case 0x00: /* TDR */
  2598. s->txbuf = value; /* TD */
  2599. if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
  2600. ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
  2601. (s->control & (1 << 12)))) { /* CS_CMD */
  2602. s->control |= 1 << 14; /* CSRB */
  2603. omap_uwire_transfer_start(s);
  2604. }
  2605. break;
  2606. case 0x04: /* CSR */
  2607. s->control = value & 0x1fff;
  2608. if (value & (1 << 13)) /* START */
  2609. omap_uwire_transfer_start(s);
  2610. break;
  2611. case 0x08: /* SR1 */
  2612. s->setup[0] = value & 0x003f;
  2613. break;
  2614. case 0x0c: /* SR2 */
  2615. s->setup[1] = value & 0x0fc0;
  2616. break;
  2617. case 0x10: /* SR3 */
  2618. s->setup[2] = value & 0x0003;
  2619. break;
  2620. case 0x14: /* SR4 */
  2621. s->setup[3] = value & 0x0001;
  2622. break;
  2623. case 0x18: /* SR5 */
  2624. s->setup[4] = value & 0x000f;
  2625. break;
  2626. default:
  2627. OMAP_BAD_REG(addr);
  2628. return;
  2629. }
  2630. }
  2631. static CPUReadMemoryFunc *omap_uwire_readfn[] = {
  2632. omap_badwidth_read16,
  2633. omap_uwire_read,
  2634. omap_badwidth_read16,
  2635. };
  2636. static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
  2637. omap_badwidth_write16,
  2638. omap_uwire_write,
  2639. omap_badwidth_write16,
  2640. };
  2641. static void omap_uwire_reset(struct omap_uwire_s *s)
  2642. {
  2643. s->control = 0;
  2644. s->setup[0] = 0;
  2645. s->setup[1] = 0;
  2646. s->setup[2] = 0;
  2647. s->setup[3] = 0;
  2648. s->setup[4] = 0;
  2649. }
  2650. struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
  2651. qemu_irq *irq, qemu_irq dma, omap_clk clk)
  2652. {
  2653. int iomemtype;
  2654. struct omap_uwire_s *s = (struct omap_uwire_s *)
  2655. qemu_mallocz(sizeof(struct omap_uwire_s));
  2656. s->txirq = irq[0];
  2657. s->rxirq = irq[1];
  2658. s->txdrq = dma;
  2659. omap_uwire_reset(s);
  2660. iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
  2661. omap_uwire_writefn, s);
  2662. cpu_register_physical_memory(base, 0x800, iomemtype);
  2663. return s;
  2664. }
  2665. void omap_uwire_attach(struct omap_uwire_s *s,
  2666. struct uwire_slave_s *slave, int chipselect)
  2667. {
  2668. if (chipselect < 0 || chipselect > 3) {
  2669. fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
  2670. exit(-1);
  2671. }
  2672. s->chip[chipselect] = slave;
  2673. }
  2674. /* Pseudonoise Pulse-Width Light Modulator */
  2675. static void omap_pwl_update(struct omap_mpu_state_s *s)
  2676. {
  2677. int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
  2678. if (output != s->pwl.output) {
  2679. s->pwl.output = output;
  2680. printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
  2681. }
  2682. }
  2683. static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
  2684. {
  2685. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2686. int offset = addr & OMAP_MPUI_REG_MASK;
  2687. switch (offset) {
  2688. case 0x00: /* PWL_LEVEL */
  2689. return s->pwl.level;
  2690. case 0x04: /* PWL_CTRL */
  2691. return s->pwl.enable;
  2692. }
  2693. OMAP_BAD_REG(addr);
  2694. return 0;
  2695. }
  2696. static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
  2697. uint32_t value)
  2698. {
  2699. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2700. int offset = addr & OMAP_MPUI_REG_MASK;
  2701. switch (offset) {
  2702. case 0x00: /* PWL_LEVEL */
  2703. s->pwl.level = value;
  2704. omap_pwl_update(s);
  2705. break;
  2706. case 0x04: /* PWL_CTRL */
  2707. s->pwl.enable = value & 1;
  2708. omap_pwl_update(s);
  2709. break;
  2710. default:
  2711. OMAP_BAD_REG(addr);
  2712. return;
  2713. }
  2714. }
  2715. static CPUReadMemoryFunc *omap_pwl_readfn[] = {
  2716. omap_pwl_read,
  2717. omap_badwidth_read8,
  2718. omap_badwidth_read8,
  2719. };
  2720. static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
  2721. omap_pwl_write,
  2722. omap_badwidth_write8,
  2723. omap_badwidth_write8,
  2724. };
  2725. static void omap_pwl_reset(struct omap_mpu_state_s *s)
  2726. {
  2727. s->pwl.output = 0;
  2728. s->pwl.level = 0;
  2729. s->pwl.enable = 0;
  2730. s->pwl.clk = 1;
  2731. omap_pwl_update(s);
  2732. }
  2733. static void omap_pwl_clk_update(void *opaque, int line, int on)
  2734. {
  2735. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2736. s->pwl.clk = on;
  2737. omap_pwl_update(s);
  2738. }
  2739. static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
  2740. omap_clk clk)
  2741. {
  2742. int iomemtype;
  2743. omap_pwl_reset(s);
  2744. iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
  2745. omap_pwl_writefn, s);
  2746. cpu_register_physical_memory(base, 0x800, iomemtype);
  2747. omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
  2748. }
  2749. /* Pulse-Width Tone module */
  2750. static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
  2751. {
  2752. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2753. int offset = addr & OMAP_MPUI_REG_MASK;
  2754. switch (offset) {
  2755. case 0x00: /* FRC */
  2756. return s->pwt.frc;
  2757. case 0x04: /* VCR */
  2758. return s->pwt.vrc;
  2759. case 0x08: /* GCR */
  2760. return s->pwt.gcr;
  2761. }
  2762. OMAP_BAD_REG(addr);
  2763. return 0;
  2764. }
  2765. static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
  2766. uint32_t value)
  2767. {
  2768. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
  2769. int offset = addr & OMAP_MPUI_REG_MASK;
  2770. switch (offset) {
  2771. case 0x00: /* FRC */
  2772. s->pwt.frc = value & 0x3f;
  2773. break;
  2774. case 0x04: /* VRC */
  2775. if ((value ^ s->pwt.vrc) & 1) {
  2776. if (value & 1)
  2777. printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
  2778. /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
  2779. ((omap_clk_getrate(s->pwt.clk) >> 3) /
  2780. /* Pre-multiplexer divider */
  2781. ((s->pwt.gcr & 2) ? 1 : 154) /
  2782. /* Octave multiplexer */
  2783. (2 << (value & 3)) *
  2784. /* 101/107 divider */
  2785. ((value & (1 << 2)) ? 101 : 107) *
  2786. /* 49/55 divider */
  2787. ((value & (1 << 3)) ? 49 : 55) *
  2788. /* 50/63 divider */
  2789. ((value & (1 << 4)) ? 50 : 63) *
  2790. /* 80/127 divider */
  2791. ((value & (1 << 5)) ? 80 : 127) /
  2792. (107 * 55 * 63 * 127)));
  2793. else
  2794. printf("%s: silence!\n", __FUNCTION__);
  2795. }
  2796. s->pwt.vrc = value & 0x7f;
  2797. break;
  2798. case 0x08: /* GCR */
  2799. s->pwt.gcr = value & 3;
  2800. break;
  2801. default:
  2802. OMAP_BAD_REG(addr);
  2803. return;
  2804. }
  2805. }
  2806. static CPUReadMemoryFunc *omap_pwt_readfn[] = {
  2807. omap_pwt_read,
  2808. omap_badwidth_read8,
  2809. omap_badwidth_read8,
  2810. };
  2811. static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
  2812. omap_pwt_write,
  2813. omap_badwidth_write8,
  2814. omap_badwidth_write8,
  2815. };
  2816. static void omap_pwt_reset(struct omap_mpu_state_s *s)
  2817. {
  2818. s->pwt.frc = 0;
  2819. s->pwt.vrc = 0;
  2820. s->pwt.gcr = 0;
  2821. }
  2822. static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
  2823. omap_clk clk)
  2824. {
  2825. int iomemtype;
  2826. s->pwt.clk = clk;
  2827. omap_pwt_reset(s);
  2828. iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
  2829. omap_pwt_writefn, s);
  2830. cpu_register_physical_memory(base, 0x800, iomemtype);
  2831. }
  2832. /* Real-time Clock module */
  2833. struct omap_rtc_s {
  2834. qemu_irq irq;
  2835. qemu_irq alarm;
  2836. QEMUTimer *clk;
  2837. uint8_t interrupts;
  2838. uint8_t status;
  2839. int16_t comp_reg;
  2840. int running;
  2841. int pm_am;
  2842. int auto_comp;
  2843. int round;
  2844. struct tm alarm_tm;
  2845. time_t alarm_ti;
  2846. struct tm current_tm;
  2847. time_t ti;
  2848. uint64_t tick;
  2849. };
  2850. static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
  2851. {
  2852. /* s->alarm is level-triggered */
  2853. qemu_set_irq(s->alarm, (s->status >> 6) & 1);
  2854. }
  2855. static void omap_rtc_alarm_update(struct omap_rtc_s *s)
  2856. {
  2857. s->alarm_ti = mktimegm(&s->alarm_tm);
  2858. if (s->alarm_ti == -1)
  2859. printf("%s: conversion failed\n", __FUNCTION__);
  2860. }
  2861. static inline uint8_t omap_rtc_bcd(int num)
  2862. {
  2863. return ((num / 10) << 4) | (num % 10);
  2864. }
  2865. static inline int omap_rtc_bin(uint8_t num)
  2866. {
  2867. return (num & 15) + 10 * (num >> 4);
  2868. }
  2869. static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
  2870. {
  2871. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2872. int offset = addr & OMAP_MPUI_REG_MASK;
  2873. uint8_t i;
  2874. switch (offset) {
  2875. case 0x00: /* SECONDS_REG */
  2876. return omap_rtc_bcd(s->current_tm.tm_sec);
  2877. case 0x04: /* MINUTES_REG */
  2878. return omap_rtc_bcd(s->current_tm.tm_min);
  2879. case 0x08: /* HOURS_REG */
  2880. if (s->pm_am)
  2881. return ((s->current_tm.tm_hour > 11) << 7) |
  2882. omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
  2883. else
  2884. return omap_rtc_bcd(s->current_tm.tm_hour);
  2885. case 0x0c: /* DAYS_REG */
  2886. return omap_rtc_bcd(s->current_tm.tm_mday);
  2887. case 0x10: /* MONTHS_REG */
  2888. return omap_rtc_bcd(s->current_tm.tm_mon + 1);
  2889. case 0x14: /* YEARS_REG */
  2890. return omap_rtc_bcd(s->current_tm.tm_year % 100);
  2891. case 0x18: /* WEEK_REG */
  2892. return s->current_tm.tm_wday;
  2893. case 0x20: /* ALARM_SECONDS_REG */
  2894. return omap_rtc_bcd(s->alarm_tm.tm_sec);
  2895. case 0x24: /* ALARM_MINUTES_REG */
  2896. return omap_rtc_bcd(s->alarm_tm.tm_min);
  2897. case 0x28: /* ALARM_HOURS_REG */
  2898. if (s->pm_am)
  2899. return ((s->alarm_tm.tm_hour > 11) << 7) |
  2900. omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
  2901. else
  2902. return omap_rtc_bcd(s->alarm_tm.tm_hour);
  2903. case 0x2c: /* ALARM_DAYS_REG */
  2904. return omap_rtc_bcd(s->alarm_tm.tm_mday);
  2905. case 0x30: /* ALARM_MONTHS_REG */
  2906. return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
  2907. case 0x34: /* ALARM_YEARS_REG */
  2908. return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
  2909. case 0x40: /* RTC_CTRL_REG */
  2910. return (s->pm_am << 3) | (s->auto_comp << 2) |
  2911. (s->round << 1) | s->running;
  2912. case 0x44: /* RTC_STATUS_REG */
  2913. i = s->status;
  2914. s->status &= ~0x3d;
  2915. return i;
  2916. case 0x48: /* RTC_INTERRUPTS_REG */
  2917. return s->interrupts;
  2918. case 0x4c: /* RTC_COMP_LSB_REG */
  2919. return ((uint16_t) s->comp_reg) & 0xff;
  2920. case 0x50: /* RTC_COMP_MSB_REG */
  2921. return ((uint16_t) s->comp_reg) >> 8;
  2922. }
  2923. OMAP_BAD_REG(addr);
  2924. return 0;
  2925. }
  2926. static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
  2927. uint32_t value)
  2928. {
  2929. struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
  2930. int offset = addr & OMAP_MPUI_REG_MASK;
  2931. struct tm new_tm;
  2932. time_t ti[2];
  2933. switch (offset) {
  2934. case 0x00: /* SECONDS_REG */
  2935. #ifdef ALMDEBUG
  2936. printf("RTC SEC_REG <-- %02x\n", value);
  2937. #endif
  2938. s->ti -= s->current_tm.tm_sec;
  2939. s->ti += omap_rtc_bin(value);
  2940. return;
  2941. case 0x04: /* MINUTES_REG */
  2942. #ifdef ALMDEBUG
  2943. printf("RTC MIN_REG <-- %02x\n", value);
  2944. #endif
  2945. s->ti -= s->current_tm.tm_min * 60;
  2946. s->ti += omap_rtc_bin(value) * 60;
  2947. return;
  2948. case 0x08: /* HOURS_REG */
  2949. #ifdef ALMDEBUG
  2950. printf("RTC HRS_REG <-- %02x\n", value);
  2951. #endif
  2952. s->ti -= s->current_tm.tm_hour * 3600;
  2953. if (s->pm_am) {
  2954. s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
  2955. s->ti += ((value >> 7) & 1) * 43200;
  2956. } else
  2957. s->ti += omap_rtc_bin(value & 0x3f) * 3600;
  2958. return;
  2959. case 0x0c: /* DAYS_REG */
  2960. #ifdef ALMDEBUG
  2961. printf("RTC DAY_REG <-- %02x\n", value);
  2962. #endif
  2963. s->ti -= s->current_tm.tm_mday * 86400;
  2964. s->ti += omap_rtc_bin(value) * 86400;
  2965. return;
  2966. case 0x10: /* MONTHS_REG */
  2967. #ifdef ALMDEBUG
  2968. printf("RTC MTH_REG <-- %02x\n", value);
  2969. #endif
  2970. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2971. new_tm.tm_mon = omap_rtc_bin(value);
  2972. ti[0] = mktimegm(&s->current_tm);
  2973. ti[1] = mktimegm(&new_tm);
  2974. if (ti[0] != -1 && ti[1] != -1) {
  2975. s->ti -= ti[0];
  2976. s->ti += ti[1];
  2977. } else {
  2978. /* A less accurate version */
  2979. s->ti -= s->current_tm.tm_mon * 2592000;
  2980. s->ti += omap_rtc_bin(value) * 2592000;
  2981. }
  2982. return;
  2983. case 0x14: /* YEARS_REG */
  2984. #ifdef ALMDEBUG
  2985. printf("RTC YRS_REG <-- %02x\n", value);
  2986. #endif
  2987. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2988. new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
  2989. ti[0] = mktimegm(&s->current_tm);
  2990. ti[1] = mktimegm(&new_tm);
  2991. if (ti[0] != -1 && ti[1] != -1) {
  2992. s->ti -= ti[0];
  2993. s->ti += ti[1];
  2994. } else {
  2995. /* A less accurate version */
  2996. s->ti -= (s->current_tm.tm_year % 100) * 31536000;
  2997. s->ti += omap_rtc_bin(value) * 31536000;
  2998. }
  2999. return;
  3000. case 0x18: /* WEEK_REG */
  3001. return; /* Ignored */
  3002. case 0x20: /* ALARM_SECONDS_REG */
  3003. #ifdef ALMDEBUG
  3004. printf("ALM SEC_REG <-- %02x\n", value);
  3005. #endif
  3006. s->alarm_tm.tm_sec = omap_rtc_bin(value);
  3007. omap_rtc_alarm_update(s);
  3008. return;
  3009. case 0x24: /* ALARM_MINUTES_REG */
  3010. #ifdef ALMDEBUG
  3011. printf("ALM MIN_REG <-- %02x\n", value);
  3012. #endif
  3013. s->alarm_tm.tm_min = omap_rtc_bin(value);
  3014. omap_rtc_alarm_update(s);
  3015. return;
  3016. case 0x28: /* ALARM_HOURS_REG */
  3017. #ifdef ALMDEBUG
  3018. printf("ALM HRS_REG <-- %02x\n", value);
  3019. #endif
  3020. if (s->pm_am)
  3021. s->alarm_tm.tm_hour =
  3022. ((omap_rtc_bin(value & 0x3f)) % 12) +
  3023. ((value >> 7) & 1) * 12;
  3024. else
  3025. s->alarm_tm.tm_hour = omap_rtc_bin(value);
  3026. omap_rtc_alarm_update(s);
  3027. return;
  3028. case 0x2c: /* ALARM_DAYS_REG */
  3029. #ifdef ALMDEBUG
  3030. printf("ALM DAY_REG <-- %02x\n", value);
  3031. #endif
  3032. s->alarm_tm.tm_mday = omap_rtc_bin(value);
  3033. omap_rtc_alarm_update(s);
  3034. return;
  3035. case 0x30: /* ALARM_MONTHS_REG */
  3036. #ifdef ALMDEBUG
  3037. printf("ALM MON_REG <-- %02x\n", value);
  3038. #endif
  3039. s->alarm_tm.tm_mon = omap_rtc_bin(value);
  3040. omap_rtc_alarm_update(s);
  3041. return;
  3042. case 0x34: /* ALARM_YEARS_REG */
  3043. #ifdef ALMDEBUG
  3044. printf("ALM YRS_REG <-- %02x\n", value);
  3045. #endif
  3046. s->alarm_tm.tm_year = omap_rtc_bin(value);
  3047. omap_rtc_alarm_update(s);
  3048. return;
  3049. case 0x40: /* RTC_CTRL_REG */
  3050. #ifdef ALMDEBUG
  3051. printf("RTC CONTROL <-- %02x\n", value);
  3052. #endif
  3053. s->pm_am = (value >> 3) & 1;
  3054. s->auto_comp = (value >> 2) & 1;
  3055. s->round = (value >> 1) & 1;
  3056. s->running = value & 1;
  3057. s->status &= 0xfd;
  3058. s->status |= s->running << 1;
  3059. return;
  3060. case 0x44: /* RTC_STATUS_REG */
  3061. #ifdef ALMDEBUG
  3062. printf("RTC STATUSL <-- %02x\n", value);
  3063. #endif
  3064. s->status &= ~((value & 0xc0) ^ 0x80);
  3065. omap_rtc_interrupts_update(s);
  3066. return;
  3067. case 0x48: /* RTC_INTERRUPTS_REG */
  3068. #ifdef ALMDEBUG
  3069. printf("RTC INTRS <-- %02x\n", value);
  3070. #endif
  3071. s->interrupts = value;
  3072. return;
  3073. case 0x4c: /* RTC_COMP_LSB_REG */
  3074. #ifdef ALMDEBUG
  3075. printf("RTC COMPLSB <-- %02x\n", value);
  3076. #endif
  3077. s->comp_reg &= 0xff00;
  3078. s->comp_reg |= 0x00ff & value;
  3079. return;
  3080. case 0x50: /* RTC_COMP_MSB_REG */
  3081. #ifdef ALMDEBUG
  3082. printf("RTC COMPMSB <-- %02x\n", value);
  3083. #endif
  3084. s->comp_reg &= 0x00ff;
  3085. s->comp_reg |= 0xff00 & (value << 8);
  3086. return;
  3087. default:
  3088. OMAP_BAD_REG(addr);
  3089. return;
  3090. }
  3091. }
  3092. static CPUReadMemoryFunc *omap_rtc_readfn[] = {
  3093. omap_rtc_read,
  3094. omap_badwidth_read8,
  3095. omap_badwidth_read8,
  3096. };
  3097. static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
  3098. omap_rtc_write,
  3099. omap_badwidth_write8,
  3100. omap_badwidth_write8,
  3101. };
  3102. static void omap_rtc_tick(void *opaque)
  3103. {
  3104. struct omap_rtc_s *s = opaque;
  3105. if (s->round) {
  3106. /* Round to nearest full minute. */
  3107. if (s->current_tm.tm_sec < 30)
  3108. s->ti -= s->current_tm.tm_sec;
  3109. else
  3110. s->ti += 60 - s->current_tm.tm_sec;
  3111. s->round = 0;
  3112. }
  3113. memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
  3114. if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
  3115. s->status |= 0x40;
  3116. omap_rtc_interrupts_update(s);
  3117. }
  3118. if (s->interrupts & 0x04)
  3119. switch (s->interrupts & 3) {
  3120. case 0:
  3121. s->status |= 0x04;
  3122. qemu_irq_pulse(s->irq);
  3123. break;
  3124. case 1:
  3125. if (s->current_tm.tm_sec)
  3126. break;
  3127. s->status |= 0x08;
  3128. qemu_irq_pulse(s->irq);
  3129. break;
  3130. case 2:
  3131. if (s->current_tm.tm_sec || s->current_tm.tm_min)
  3132. break;
  3133. s->status |= 0x10;
  3134. qemu_irq_pulse(s->irq);
  3135. break;
  3136. case 3:
  3137. if (s->current_tm.tm_sec ||
  3138. s->current_tm.tm_min || s->current_tm.tm_hour)
  3139. break;
  3140. s->status |= 0x20;
  3141. qemu_irq_pulse(s->irq);
  3142. break;
  3143. }
  3144. /* Move on */
  3145. if (s->running)
  3146. s->ti ++;
  3147. s->tick += 1000;
  3148. /*
  3149. * Every full hour add a rough approximation of the compensation
  3150. * register to the 32kHz Timer (which drives the RTC) value.
  3151. */
  3152. if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
  3153. s->tick += s->comp_reg * 1000 / 32768;
  3154. qemu_mod_timer(s->clk, s->tick);
  3155. }
  3156. static void omap_rtc_reset(struct omap_rtc_s *s)
  3157. {
  3158. struct tm tm;
  3159. s->interrupts = 0;
  3160. s->comp_reg = 0;
  3161. s->running = 0;
  3162. s->pm_am = 0;
  3163. s->auto_comp = 0;
  3164. s->round = 0;
  3165. s->tick = qemu_get_clock(rt_clock);
  3166. memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
  3167. s->alarm_tm.tm_mday = 0x01;
  3168. s->status = 1 << 7;
  3169. qemu_get_timedate(&tm, 0);
  3170. s->ti = mktimegm(&tm);
  3171. omap_rtc_alarm_update(s);
  3172. omap_rtc_tick(s);
  3173. }
  3174. struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
  3175. qemu_irq *irq, omap_clk clk)
  3176. {
  3177. int iomemtype;
  3178. struct omap_rtc_s *s = (struct omap_rtc_s *)
  3179. qemu_mallocz(sizeof(struct omap_rtc_s));
  3180. s->irq = irq[0];
  3181. s->alarm = irq[1];
  3182. s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
  3183. omap_rtc_reset(s);
  3184. iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
  3185. omap_rtc_writefn, s);
  3186. cpu_register_physical_memory(base, 0x800, iomemtype);
  3187. return s;
  3188. }
  3189. /* Multi-channel Buffered Serial Port interfaces */
  3190. struct omap_mcbsp_s {
  3191. qemu_irq txirq;
  3192. qemu_irq rxirq;
  3193. qemu_irq txdrq;
  3194. qemu_irq rxdrq;
  3195. uint16_t spcr[2];
  3196. uint16_t rcr[2];
  3197. uint16_t xcr[2];
  3198. uint16_t srgr[2];
  3199. uint16_t mcr[2];
  3200. uint16_t pcr;
  3201. uint16_t rcer[8];
  3202. uint16_t xcer[8];
  3203. int tx_rate;
  3204. int rx_rate;
  3205. int tx_req;
  3206. int rx_req;
  3207. struct i2s_codec_s *codec;
  3208. QEMUTimer *source_timer;
  3209. QEMUTimer *sink_timer;
  3210. };
  3211. static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
  3212. {
  3213. int irq;
  3214. switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
  3215. case 0:
  3216. irq = (s->spcr[0] >> 1) & 1; /* RRDY */
  3217. break;
  3218. case 3:
  3219. irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
  3220. break;
  3221. default:
  3222. irq = 0;
  3223. break;
  3224. }
  3225. if (irq)
  3226. qemu_irq_pulse(s->rxirq);
  3227. switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
  3228. case 0:
  3229. irq = (s->spcr[1] >> 1) & 1; /* XRDY */
  3230. break;
  3231. case 3:
  3232. irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
  3233. break;
  3234. default:
  3235. irq = 0;
  3236. break;
  3237. }
  3238. if (irq)
  3239. qemu_irq_pulse(s->txirq);
  3240. }
  3241. static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
  3242. {
  3243. if ((s->spcr[0] >> 1) & 1) /* RRDY */
  3244. s->spcr[0] |= 1 << 2; /* RFULL */
  3245. s->spcr[0] |= 1 << 1; /* RRDY */
  3246. qemu_irq_raise(s->rxdrq);
  3247. omap_mcbsp_intr_update(s);
  3248. }
  3249. static void omap_mcbsp_source_tick(void *opaque)
  3250. {
  3251. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3252. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  3253. if (!s->rx_rate)
  3254. return;
  3255. if (s->rx_req)
  3256. printf("%s: Rx FIFO overrun\n", __FUNCTION__);
  3257. s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
  3258. omap_mcbsp_rx_newdata(s);
  3259. qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
  3260. }
  3261. static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
  3262. {
  3263. if (!s->codec || !s->codec->rts)
  3264. omap_mcbsp_source_tick(s);
  3265. else if (s->codec->in.len) {
  3266. s->rx_req = s->codec->in.len;
  3267. omap_mcbsp_rx_newdata(s);
  3268. }
  3269. }
  3270. static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
  3271. {
  3272. qemu_del_timer(s->source_timer);
  3273. }
  3274. static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
  3275. {
  3276. s->spcr[0] &= ~(1 << 1); /* RRDY */
  3277. qemu_irq_lower(s->rxdrq);
  3278. omap_mcbsp_intr_update(s);
  3279. }
  3280. static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
  3281. {
  3282. s->spcr[1] |= 1 << 1; /* XRDY */
  3283. qemu_irq_raise(s->txdrq);
  3284. omap_mcbsp_intr_update(s);
  3285. }
  3286. static void omap_mcbsp_sink_tick(void *opaque)
  3287. {
  3288. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3289. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  3290. if (!s->tx_rate)
  3291. return;
  3292. if (s->tx_req)
  3293. printf("%s: Tx FIFO underrun\n", __FUNCTION__);
  3294. s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
  3295. omap_mcbsp_tx_newdata(s);
  3296. qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
  3297. }
  3298. static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
  3299. {
  3300. if (!s->codec || !s->codec->cts)
  3301. omap_mcbsp_sink_tick(s);
  3302. else if (s->codec->out.size) {
  3303. s->tx_req = s->codec->out.size;
  3304. omap_mcbsp_tx_newdata(s);
  3305. }
  3306. }
  3307. static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
  3308. {
  3309. s->spcr[1] &= ~(1 << 1); /* XRDY */
  3310. qemu_irq_lower(s->txdrq);
  3311. omap_mcbsp_intr_update(s);
  3312. if (s->codec && s->codec->cts)
  3313. s->codec->tx_swallow(s->codec->opaque);
  3314. }
  3315. static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
  3316. {
  3317. s->tx_req = 0;
  3318. omap_mcbsp_tx_done(s);
  3319. qemu_del_timer(s->sink_timer);
  3320. }
  3321. static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
  3322. {
  3323. int prev_rx_rate, prev_tx_rate;
  3324. int rx_rate = 0, tx_rate = 0;
  3325. int cpu_rate = 1500000; /* XXX */
  3326. /* TODO: check CLKSTP bit */
  3327. if (s->spcr[1] & (1 << 6)) { /* GRST */
  3328. if (s->spcr[0] & (1 << 0)) { /* RRST */
  3329. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  3330. (s->pcr & (1 << 8))) { /* CLKRM */
  3331. if (~s->pcr & (1 << 7)) /* SCLKME */
  3332. rx_rate = cpu_rate /
  3333. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  3334. } else
  3335. if (s->codec)
  3336. rx_rate = s->codec->rx_rate;
  3337. }
  3338. if (s->spcr[1] & (1 << 0)) { /* XRST */
  3339. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  3340. (s->pcr & (1 << 9))) { /* CLKXM */
  3341. if (~s->pcr & (1 << 7)) /* SCLKME */
  3342. tx_rate = cpu_rate /
  3343. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  3344. } else
  3345. if (s->codec)
  3346. tx_rate = s->codec->tx_rate;
  3347. }
  3348. }
  3349. prev_tx_rate = s->tx_rate;
  3350. prev_rx_rate = s->rx_rate;
  3351. s->tx_rate = tx_rate;
  3352. s->rx_rate = rx_rate;
  3353. if (s->codec)
  3354. s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
  3355. if (!prev_tx_rate && tx_rate)
  3356. omap_mcbsp_tx_start(s);
  3357. else if (s->tx_rate && !tx_rate)
  3358. omap_mcbsp_tx_stop(s);
  3359. if (!prev_rx_rate && rx_rate)
  3360. omap_mcbsp_rx_start(s);
  3361. else if (prev_tx_rate && !tx_rate)
  3362. omap_mcbsp_rx_stop(s);
  3363. }
  3364. static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
  3365. {
  3366. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3367. int offset = addr & OMAP_MPUI_REG_MASK;
  3368. uint16_t ret;
  3369. switch (offset) {
  3370. case 0x00: /* DRR2 */
  3371. if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
  3372. return 0x0000;
  3373. /* Fall through. */
  3374. case 0x02: /* DRR1 */
  3375. if (s->rx_req < 2) {
  3376. printf("%s: Rx FIFO underrun\n", __FUNCTION__);
  3377. omap_mcbsp_rx_done(s);
  3378. } else {
  3379. s->tx_req -= 2;
  3380. if (s->codec && s->codec->in.len >= 2) {
  3381. ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
  3382. ret |= s->codec->in.fifo[s->codec->in.start ++];
  3383. s->codec->in.len -= 2;
  3384. } else
  3385. ret = 0x0000;
  3386. if (!s->tx_req)
  3387. omap_mcbsp_rx_done(s);
  3388. return ret;
  3389. }
  3390. return 0x0000;
  3391. case 0x04: /* DXR2 */
  3392. case 0x06: /* DXR1 */
  3393. return 0x0000;
  3394. case 0x08: /* SPCR2 */
  3395. return s->spcr[1];
  3396. case 0x0a: /* SPCR1 */
  3397. return s->spcr[0];
  3398. case 0x0c: /* RCR2 */
  3399. return s->rcr[1];
  3400. case 0x0e: /* RCR1 */
  3401. return s->rcr[0];
  3402. case 0x10: /* XCR2 */
  3403. return s->xcr[1];
  3404. case 0x12: /* XCR1 */
  3405. return s->xcr[0];
  3406. case 0x14: /* SRGR2 */
  3407. return s->srgr[1];
  3408. case 0x16: /* SRGR1 */
  3409. return s->srgr[0];
  3410. case 0x18: /* MCR2 */
  3411. return s->mcr[1];
  3412. case 0x1a: /* MCR1 */
  3413. return s->mcr[0];
  3414. case 0x1c: /* RCERA */
  3415. return s->rcer[0];
  3416. case 0x1e: /* RCERB */
  3417. return s->rcer[1];
  3418. case 0x20: /* XCERA */
  3419. return s->xcer[0];
  3420. case 0x22: /* XCERB */
  3421. return s->xcer[1];
  3422. case 0x24: /* PCR0 */
  3423. return s->pcr;
  3424. case 0x26: /* RCERC */
  3425. return s->rcer[2];
  3426. case 0x28: /* RCERD */
  3427. return s->rcer[3];
  3428. case 0x2a: /* XCERC */
  3429. return s->xcer[2];
  3430. case 0x2c: /* XCERD */
  3431. return s->xcer[3];
  3432. case 0x2e: /* RCERE */
  3433. return s->rcer[4];
  3434. case 0x30: /* RCERF */
  3435. return s->rcer[5];
  3436. case 0x32: /* XCERE */
  3437. return s->xcer[4];
  3438. case 0x34: /* XCERF */
  3439. return s->xcer[5];
  3440. case 0x36: /* RCERG */
  3441. return s->rcer[6];
  3442. case 0x38: /* RCERH */
  3443. return s->rcer[7];
  3444. case 0x3a: /* XCERG */
  3445. return s->xcer[6];
  3446. case 0x3c: /* XCERH */
  3447. return s->xcer[7];
  3448. }
  3449. OMAP_BAD_REG(addr);
  3450. return 0;
  3451. }
  3452. static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
  3453. uint32_t value)
  3454. {
  3455. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3456. int offset = addr & OMAP_MPUI_REG_MASK;
  3457. switch (offset) {
  3458. case 0x00: /* DRR2 */
  3459. case 0x02: /* DRR1 */
  3460. OMAP_RO_REG(addr);
  3461. return;
  3462. case 0x04: /* DXR2 */
  3463. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  3464. return;
  3465. /* Fall through. */
  3466. case 0x06: /* DXR1 */
  3467. if (s->tx_req > 1) {
  3468. s->tx_req -= 2;
  3469. if (s->codec && s->codec->cts) {
  3470. s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
  3471. s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
  3472. }
  3473. if (s->tx_req < 2)
  3474. omap_mcbsp_tx_done(s);
  3475. } else
  3476. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  3477. return;
  3478. case 0x08: /* SPCR2 */
  3479. s->spcr[1] &= 0x0002;
  3480. s->spcr[1] |= 0x03f9 & value;
  3481. s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
  3482. if (~value & 1) /* XRST */
  3483. s->spcr[1] &= ~6;
  3484. omap_mcbsp_req_update(s);
  3485. return;
  3486. case 0x0a: /* SPCR1 */
  3487. s->spcr[0] &= 0x0006;
  3488. s->spcr[0] |= 0xf8f9 & value;
  3489. if (value & (1 << 15)) /* DLB */
  3490. printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
  3491. if (~value & 1) { /* RRST */
  3492. s->spcr[0] &= ~6;
  3493. s->rx_req = 0;
  3494. omap_mcbsp_rx_done(s);
  3495. }
  3496. omap_mcbsp_req_update(s);
  3497. return;
  3498. case 0x0c: /* RCR2 */
  3499. s->rcr[1] = value & 0xffff;
  3500. return;
  3501. case 0x0e: /* RCR1 */
  3502. s->rcr[0] = value & 0x7fe0;
  3503. return;
  3504. case 0x10: /* XCR2 */
  3505. s->xcr[1] = value & 0xffff;
  3506. return;
  3507. case 0x12: /* XCR1 */
  3508. s->xcr[0] = value & 0x7fe0;
  3509. return;
  3510. case 0x14: /* SRGR2 */
  3511. s->srgr[1] = value & 0xffff;
  3512. omap_mcbsp_req_update(s);
  3513. return;
  3514. case 0x16: /* SRGR1 */
  3515. s->srgr[0] = value & 0xffff;
  3516. omap_mcbsp_req_update(s);
  3517. return;
  3518. case 0x18: /* MCR2 */
  3519. s->mcr[1] = value & 0x03e3;
  3520. if (value & 3) /* XMCM */
  3521. printf("%s: Tx channel selection mode enable attempt\n",
  3522. __FUNCTION__);
  3523. return;
  3524. case 0x1a: /* MCR1 */
  3525. s->mcr[0] = value & 0x03e1;
  3526. if (value & 1) /* RMCM */
  3527. printf("%s: Rx channel selection mode enable attempt\n",
  3528. __FUNCTION__);
  3529. return;
  3530. case 0x1c: /* RCERA */
  3531. s->rcer[0] = value & 0xffff;
  3532. return;
  3533. case 0x1e: /* RCERB */
  3534. s->rcer[1] = value & 0xffff;
  3535. return;
  3536. case 0x20: /* XCERA */
  3537. s->xcer[0] = value & 0xffff;
  3538. return;
  3539. case 0x22: /* XCERB */
  3540. s->xcer[1] = value & 0xffff;
  3541. return;
  3542. case 0x24: /* PCR0 */
  3543. s->pcr = value & 0x7faf;
  3544. return;
  3545. case 0x26: /* RCERC */
  3546. s->rcer[2] = value & 0xffff;
  3547. return;
  3548. case 0x28: /* RCERD */
  3549. s->rcer[3] = value & 0xffff;
  3550. return;
  3551. case 0x2a: /* XCERC */
  3552. s->xcer[2] = value & 0xffff;
  3553. return;
  3554. case 0x2c: /* XCERD */
  3555. s->xcer[3] = value & 0xffff;
  3556. return;
  3557. case 0x2e: /* RCERE */
  3558. s->rcer[4] = value & 0xffff;
  3559. return;
  3560. case 0x30: /* RCERF */
  3561. s->rcer[5] = value & 0xffff;
  3562. return;
  3563. case 0x32: /* XCERE */
  3564. s->xcer[4] = value & 0xffff;
  3565. return;
  3566. case 0x34: /* XCERF */
  3567. s->xcer[5] = value & 0xffff;
  3568. return;
  3569. case 0x36: /* RCERG */
  3570. s->rcer[6] = value & 0xffff;
  3571. return;
  3572. case 0x38: /* RCERH */
  3573. s->rcer[7] = value & 0xffff;
  3574. return;
  3575. case 0x3a: /* XCERG */
  3576. s->xcer[6] = value & 0xffff;
  3577. return;
  3578. case 0x3c: /* XCERH */
  3579. s->xcer[7] = value & 0xffff;
  3580. return;
  3581. }
  3582. OMAP_BAD_REG(addr);
  3583. }
  3584. static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
  3585. uint32_t value)
  3586. {
  3587. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3588. int offset = addr & OMAP_MPUI_REG_MASK;
  3589. if (offset == 0x04) { /* DXR */
  3590. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  3591. return;
  3592. if (s->tx_req > 3) {
  3593. s->tx_req -= 4;
  3594. if (s->codec && s->codec->cts) {
  3595. s->codec->out.fifo[s->codec->out.len ++] =
  3596. (value >> 24) & 0xff;
  3597. s->codec->out.fifo[s->codec->out.len ++] =
  3598. (value >> 16) & 0xff;
  3599. s->codec->out.fifo[s->codec->out.len ++] =
  3600. (value >> 8) & 0xff;
  3601. s->codec->out.fifo[s->codec->out.len ++] =
  3602. (value >> 0) & 0xff;
  3603. }
  3604. if (s->tx_req < 4)
  3605. omap_mcbsp_tx_done(s);
  3606. } else
  3607. printf("%s: Tx FIFO overrun\n", __FUNCTION__);
  3608. return;
  3609. }
  3610. omap_badwidth_write16(opaque, addr, value);
  3611. }
  3612. static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
  3613. omap_badwidth_read16,
  3614. omap_mcbsp_read,
  3615. omap_badwidth_read16,
  3616. };
  3617. static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
  3618. omap_badwidth_write16,
  3619. omap_mcbsp_writeh,
  3620. omap_mcbsp_writew,
  3621. };
  3622. static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
  3623. {
  3624. memset(&s->spcr, 0, sizeof(s->spcr));
  3625. memset(&s->rcr, 0, sizeof(s->rcr));
  3626. memset(&s->xcr, 0, sizeof(s->xcr));
  3627. s->srgr[0] = 0x0001;
  3628. s->srgr[1] = 0x2000;
  3629. memset(&s->mcr, 0, sizeof(s->mcr));
  3630. memset(&s->pcr, 0, sizeof(s->pcr));
  3631. memset(&s->rcer, 0, sizeof(s->rcer));
  3632. memset(&s->xcer, 0, sizeof(s->xcer));
  3633. s->tx_req = 0;
  3634. s->rx_req = 0;
  3635. s->tx_rate = 0;
  3636. s->rx_rate = 0;
  3637. qemu_del_timer(s->source_timer);
  3638. qemu_del_timer(s->sink_timer);
  3639. }
  3640. struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
  3641. qemu_irq *irq, qemu_irq *dma, omap_clk clk)
  3642. {
  3643. int iomemtype;
  3644. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
  3645. qemu_mallocz(sizeof(struct omap_mcbsp_s));
  3646. s->txirq = irq[0];
  3647. s->rxirq = irq[1];
  3648. s->txdrq = dma[0];
  3649. s->rxdrq = dma[1];
  3650. s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
  3651. s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
  3652. omap_mcbsp_reset(s);
  3653. iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
  3654. omap_mcbsp_writefn, s);
  3655. cpu_register_physical_memory(base, 0x800, iomemtype);
  3656. return s;
  3657. }
  3658. static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
  3659. {
  3660. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3661. if (s->rx_rate) {
  3662. s->rx_req = s->codec->in.len;
  3663. omap_mcbsp_rx_newdata(s);
  3664. }
  3665. }
  3666. static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
  3667. {
  3668. struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
  3669. if (s->tx_rate) {
  3670. s->tx_req = s->codec->out.size;
  3671. omap_mcbsp_tx_newdata(s);
  3672. }
  3673. }
  3674. void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
  3675. {
  3676. s->codec = slave;
  3677. slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
  3678. slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
  3679. }
  3680. /* LED Pulse Generators */
  3681. struct omap_lpg_s {
  3682. QEMUTimer *tm;
  3683. uint8_t control;
  3684. uint8_t power;
  3685. int64_t on;
  3686. int64_t period;
  3687. int clk;
  3688. int cycle;
  3689. };
  3690. static void omap_lpg_tick(void *opaque)
  3691. {
  3692. struct omap_lpg_s *s = opaque;
  3693. if (s->cycle)
  3694. qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
  3695. else
  3696. qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
  3697. s->cycle = !s->cycle;
  3698. printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
  3699. }
  3700. static void omap_lpg_update(struct omap_lpg_s *s)
  3701. {
  3702. int64_t on, period = 1, ticks = 1000;
  3703. static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
  3704. if (~s->control & (1 << 6)) /* LPGRES */
  3705. on = 0;
  3706. else if (s->control & (1 << 7)) /* PERM_ON */
  3707. on = period;
  3708. else {
  3709. period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
  3710. 256 / 32);
  3711. on = (s->clk && s->power) ? muldiv64(ticks,
  3712. per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
  3713. }
  3714. qemu_del_timer(s->tm);
  3715. if (on == period && s->on < s->period)
  3716. printf("%s: LED is on\n", __FUNCTION__);
  3717. else if (on == 0 && s->on)
  3718. printf("%s: LED is off\n", __FUNCTION__);
  3719. else if (on && (on != s->on || period != s->period)) {
  3720. s->cycle = 0;
  3721. s->on = on;
  3722. s->period = period;
  3723. omap_lpg_tick(s);
  3724. return;
  3725. }
  3726. s->on = on;
  3727. s->period = period;
  3728. }
  3729. static void omap_lpg_reset(struct omap_lpg_s *s)
  3730. {
  3731. s->control = 0x00;
  3732. s->power = 0x00;
  3733. s->clk = 1;
  3734. omap_lpg_update(s);
  3735. }
  3736. static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
  3737. {
  3738. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3739. int offset = addr & OMAP_MPUI_REG_MASK;
  3740. switch (offset) {
  3741. case 0x00: /* LCR */
  3742. return s->control;
  3743. case 0x04: /* PMR */
  3744. return s->power;
  3745. }
  3746. OMAP_BAD_REG(addr);
  3747. return 0;
  3748. }
  3749. static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
  3750. uint32_t value)
  3751. {
  3752. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3753. int offset = addr & OMAP_MPUI_REG_MASK;
  3754. switch (offset) {
  3755. case 0x00: /* LCR */
  3756. if (~value & (1 << 6)) /* LPGRES */
  3757. omap_lpg_reset(s);
  3758. s->control = value & 0xff;
  3759. omap_lpg_update(s);
  3760. return;
  3761. case 0x04: /* PMR */
  3762. s->power = value & 0x01;
  3763. omap_lpg_update(s);
  3764. return;
  3765. default:
  3766. OMAP_BAD_REG(addr);
  3767. return;
  3768. }
  3769. }
  3770. static CPUReadMemoryFunc *omap_lpg_readfn[] = {
  3771. omap_lpg_read,
  3772. omap_badwidth_read8,
  3773. omap_badwidth_read8,
  3774. };
  3775. static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
  3776. omap_lpg_write,
  3777. omap_badwidth_write8,
  3778. omap_badwidth_write8,
  3779. };
  3780. static void omap_lpg_clk_update(void *opaque, int line, int on)
  3781. {
  3782. struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
  3783. s->clk = on;
  3784. omap_lpg_update(s);
  3785. }
  3786. struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
  3787. {
  3788. int iomemtype;
  3789. struct omap_lpg_s *s = (struct omap_lpg_s *)
  3790. qemu_mallocz(sizeof(struct omap_lpg_s));
  3791. s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
  3792. omap_lpg_reset(s);
  3793. iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
  3794. omap_lpg_writefn, s);
  3795. cpu_register_physical_memory(base, 0x800, iomemtype);
  3796. omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
  3797. return s;
  3798. }
  3799. /* MPUI Peripheral Bridge configuration */
  3800. static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
  3801. {
  3802. if (addr == OMAP_MPUI_BASE) /* CMR */
  3803. return 0xfe4d;
  3804. OMAP_BAD_REG(addr);
  3805. return 0;
  3806. }
  3807. static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
  3808. omap_badwidth_read16,
  3809. omap_mpui_io_read,
  3810. omap_badwidth_read16,
  3811. };
  3812. static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
  3813. omap_badwidth_write16,
  3814. omap_badwidth_write16,
  3815. omap_badwidth_write16,
  3816. };
  3817. static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
  3818. {
  3819. int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
  3820. omap_mpui_io_writefn, mpu);
  3821. cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
  3822. }
  3823. /* General chip reset */
  3824. static void omap1_mpu_reset(void *opaque)
  3825. {
  3826. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3827. omap_inth_reset(mpu->ih[0]);
  3828. omap_inth_reset(mpu->ih[1]);
  3829. omap_dma_reset(mpu->dma);
  3830. omap_mpu_timer_reset(mpu->timer[0]);
  3831. omap_mpu_timer_reset(mpu->timer[1]);
  3832. omap_mpu_timer_reset(mpu->timer[2]);
  3833. omap_wd_timer_reset(mpu->wdt);
  3834. omap_os_timer_reset(mpu->os_timer);
  3835. omap_lcdc_reset(mpu->lcd);
  3836. omap_ulpd_pm_reset(mpu);
  3837. omap_pin_cfg_reset(mpu);
  3838. omap_mpui_reset(mpu);
  3839. omap_tipb_bridge_reset(mpu->private_tipb);
  3840. omap_tipb_bridge_reset(mpu->public_tipb);
  3841. omap_dpll_reset(&mpu->dpll[0]);
  3842. omap_dpll_reset(&mpu->dpll[1]);
  3843. omap_dpll_reset(&mpu->dpll[2]);
  3844. omap_uart_reset(mpu->uart[0]);
  3845. omap_uart_reset(mpu->uart[1]);
  3846. omap_uart_reset(mpu->uart[2]);
  3847. omap_mmc_reset(mpu->mmc);
  3848. omap_mpuio_reset(mpu->mpuio);
  3849. omap_gpio_reset(mpu->gpio);
  3850. omap_uwire_reset(mpu->microwire);
  3851. omap_pwl_reset(mpu);
  3852. omap_pwt_reset(mpu);
  3853. omap_i2c_reset(mpu->i2c[0]);
  3854. omap_rtc_reset(mpu->rtc);
  3855. omap_mcbsp_reset(mpu->mcbsp1);
  3856. omap_mcbsp_reset(mpu->mcbsp2);
  3857. omap_mcbsp_reset(mpu->mcbsp3);
  3858. omap_lpg_reset(mpu->led[0]);
  3859. omap_lpg_reset(mpu->led[1]);
  3860. omap_clkm_reset(mpu);
  3861. cpu_reset(mpu->env);
  3862. }
  3863. static const struct omap_map_s {
  3864. target_phys_addr_t phys_dsp;
  3865. target_phys_addr_t phys_mpu;
  3866. uint32_t size;
  3867. const char *name;
  3868. } omap15xx_dsp_mm[] = {
  3869. /* Strobe 0 */
  3870. { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
  3871. { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
  3872. { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
  3873. { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
  3874. { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
  3875. { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
  3876. { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
  3877. { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
  3878. { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
  3879. { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
  3880. { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
  3881. { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
  3882. { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
  3883. { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
  3884. { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
  3885. { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
  3886. { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
  3887. /* Strobe 1 */
  3888. { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
  3889. { 0 }
  3890. };
  3891. static void omap_setup_dsp_mapping(const struct omap_map_s *map)
  3892. {
  3893. int io;
  3894. for (; map->phys_dsp; map ++) {
  3895. io = cpu_get_physical_page_desc(map->phys_mpu);
  3896. cpu_register_physical_memory(map->phys_dsp, map->size, io);
  3897. }
  3898. }
  3899. void omap_mpu_wakeup(void *opaque, int irq, int req)
  3900. {
  3901. struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
  3902. if (mpu->env->halted)
  3903. cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
  3904. }
  3905. static const struct dma_irq_map omap1_dma_irq_map[] = {
  3906. { 0, OMAP_INT_DMA_CH0_6 },
  3907. { 0, OMAP_INT_DMA_CH1_7 },
  3908. { 0, OMAP_INT_DMA_CH2_8 },
  3909. { 0, OMAP_INT_DMA_CH3 },
  3910. { 0, OMAP_INT_DMA_CH4 },
  3911. { 0, OMAP_INT_DMA_CH5 },
  3912. { 1, OMAP_INT_1610_DMA_CH6 },
  3913. { 1, OMAP_INT_1610_DMA_CH7 },
  3914. { 1, OMAP_INT_1610_DMA_CH8 },
  3915. { 1, OMAP_INT_1610_DMA_CH9 },
  3916. { 1, OMAP_INT_1610_DMA_CH10 },
  3917. { 1, OMAP_INT_1610_DMA_CH11 },
  3918. { 1, OMAP_INT_1610_DMA_CH12 },
  3919. { 1, OMAP_INT_1610_DMA_CH13 },
  3920. { 1, OMAP_INT_1610_DMA_CH14 },
  3921. { 1, OMAP_INT_1610_DMA_CH15 }
  3922. };
  3923. /* DMA ports for OMAP1 */
  3924. static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
  3925. target_phys_addr_t addr)
  3926. {
  3927. return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
  3928. }
  3929. static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
  3930. target_phys_addr_t addr)
  3931. {
  3932. return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
  3933. }
  3934. static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
  3935. target_phys_addr_t addr)
  3936. {
  3937. return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
  3938. }
  3939. static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
  3940. target_phys_addr_t addr)
  3941. {
  3942. return addr >= 0xfffb0000 && addr < 0xffff0000;
  3943. }
  3944. static int omap_validate_local_addr(struct omap_mpu_state_s *s,
  3945. target_phys_addr_t addr)
  3946. {
  3947. return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
  3948. }
  3949. static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
  3950. target_phys_addr_t addr)
  3951. {
  3952. return addr >= 0xe1010000 && addr < 0xe1020004;
  3953. }
  3954. struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
  3955. const char *core)
  3956. {
  3957. int i;
  3958. struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
  3959. qemu_mallocz(sizeof(struct omap_mpu_state_s));
  3960. ram_addr_t imif_base, emiff_base;
  3961. qemu_irq *cpu_irq;
  3962. qemu_irq dma_irqs[6];
  3963. int sdindex;
  3964. if (!core)
  3965. core = "ti925t";
  3966. /* Core */
  3967. s->mpu_model = omap310;
  3968. s->env = cpu_init(core);
  3969. if (!s->env) {
  3970. fprintf(stderr, "Unable to find CPU definition\n");
  3971. exit(1);
  3972. }
  3973. s->sdram_size = sdram_size;
  3974. s->sram_size = OMAP15XX_SRAM_SIZE;
  3975. s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
  3976. /* Clocks */
  3977. omap_clk_init(s);
  3978. /* Memory-mapped stuff */
  3979. cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
  3980. (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
  3981. cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
  3982. (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
  3983. omap_clkm_init(0xfffece00, 0xe1008000, s);
  3984. cpu_irq = arm_pic_init_cpu(s->env);
  3985. s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
  3986. cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
  3987. omap_findclk(s, "arminth_ck"));
  3988. s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
  3989. s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
  3990. omap_findclk(s, "arminth_ck"));
  3991. for (i = 0; i < 6; i ++)
  3992. dma_irqs[i] =
  3993. s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
  3994. s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
  3995. s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
  3996. s->port[emiff ].addr_valid = omap_validate_emiff_addr;
  3997. s->port[emifs ].addr_valid = omap_validate_emifs_addr;
  3998. s->port[imif ].addr_valid = omap_validate_imif_addr;
  3999. s->port[tipb ].addr_valid = omap_validate_tipb_addr;
  4000. s->port[local ].addr_valid = omap_validate_local_addr;
  4001. s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
  4002. /* Register SDRAM and SRAM DMA ports for fast transfers. */
  4003. soc_dma_port_add_mem_ram(s->dma,
  4004. emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
  4005. soc_dma_port_add_mem_ram(s->dma,
  4006. imif_base, OMAP_IMIF_BASE, s->sram_size);
  4007. s->timer[0] = omap_mpu_timer_init(0xfffec500,
  4008. s->irq[0][OMAP_INT_TIMER1],
  4009. omap_findclk(s, "mputim_ck"));
  4010. s->timer[1] = omap_mpu_timer_init(0xfffec600,
  4011. s->irq[0][OMAP_INT_TIMER2],
  4012. omap_findclk(s, "mputim_ck"));
  4013. s->timer[2] = omap_mpu_timer_init(0xfffec700,
  4014. s->irq[0][OMAP_INT_TIMER3],
  4015. omap_findclk(s, "mputim_ck"));
  4016. s->wdt = omap_wd_timer_init(0xfffec800,
  4017. s->irq[0][OMAP_INT_WD_TIMER],
  4018. omap_findclk(s, "armwdt_ck"));
  4019. s->os_timer = omap_os_timer_init(0xfffb9000,
  4020. s->irq[1][OMAP_INT_OS_TIMER],
  4021. omap_findclk(s, "clk32-kHz"));
  4022. s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
  4023. omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
  4024. omap_findclk(s, "lcd_ck"));
  4025. omap_ulpd_pm_init(0xfffe0800, s);
  4026. omap_pin_cfg_init(0xfffe1000, s);
  4027. omap_id_init(s);
  4028. omap_mpui_init(0xfffec900, s);
  4029. s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
  4030. s->irq[0][OMAP_INT_BRIDGE_PRIV],
  4031. omap_findclk(s, "tipb_ck"));
  4032. s->public_tipb = omap_tipb_bridge_init(0xfffed300,
  4033. s->irq[0][OMAP_INT_BRIDGE_PUB],
  4034. omap_findclk(s, "tipb_ck"));
  4035. omap_tcmi_init(0xfffecc00, s);
  4036. s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
  4037. omap_findclk(s, "uart1_ck"),
  4038. omap_findclk(s, "uart1_ck"),
  4039. s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
  4040. serial_hds[0]);
  4041. s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
  4042. omap_findclk(s, "uart2_ck"),
  4043. omap_findclk(s, "uart2_ck"),
  4044. s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
  4045. serial_hds[0] ? serial_hds[1] : 0);
  4046. s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
  4047. omap_findclk(s, "uart3_ck"),
  4048. omap_findclk(s, "uart3_ck"),
  4049. s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
  4050. serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
  4051. omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
  4052. omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
  4053. omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
  4054. sdindex = drive_get_index(IF_SD, 0, 0);
  4055. if (sdindex == -1) {
  4056. fprintf(stderr, "qemu: missing SecureDigital device\n");
  4057. exit(1);
  4058. }
  4059. s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
  4060. s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
  4061. omap_findclk(s, "mmc_ck"));
  4062. s->mpuio = omap_mpuio_init(0xfffb5000,
  4063. s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
  4064. s->wakeup, omap_findclk(s, "clk32-kHz"));
  4065. s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
  4066. omap_findclk(s, "arm_gpio_ck"));
  4067. s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
  4068. s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
  4069. omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
  4070. omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
  4071. s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
  4072. &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
  4073. s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
  4074. omap_findclk(s, "clk32-kHz"));
  4075. s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
  4076. &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
  4077. s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
  4078. &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
  4079. s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
  4080. &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
  4081. s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
  4082. s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
  4083. /* Register mappings not currenlty implemented:
  4084. * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
  4085. * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
  4086. * USB W2FC fffb4000 - fffb47ff
  4087. * Camera Interface fffb6800 - fffb6fff
  4088. * USB Host fffba000 - fffba7ff
  4089. * FAC fffba800 - fffbafff
  4090. * HDQ/1-Wire fffbc000 - fffbc7ff
  4091. * TIPB switches fffbc800 - fffbcfff
  4092. * Mailbox fffcf000 - fffcf7ff
  4093. * Local bus IF fffec100 - fffec1ff
  4094. * Local bus MMU fffec200 - fffec2ff
  4095. * DSP MMU fffed200 - fffed2ff
  4096. */
  4097. omap_setup_dsp_mapping(omap15xx_dsp_mm);
  4098. omap_setup_mpui_io(s);
  4099. qemu_register_reset(omap1_mpu_reset, s);
  4100. return s;
  4101. }