ne2000.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839
  1. /*
  2. * QEMU NE2000 emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw.h"
  25. #include "pci.h"
  26. #include "pc.h"
  27. #include "net.h"
  28. /* debug NE2000 card */
  29. //#define DEBUG_NE2000
  30. #define MAX_ETH_FRAME_SIZE 1514
  31. #define E8390_CMD 0x00 /* The command register (for all pages) */
  32. /* Page 0 register offsets. */
  33. #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
  34. #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
  35. #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
  36. #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
  37. #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
  38. #define EN0_TSR 0x04 /* Transmit status reg RD */
  39. #define EN0_TPSR 0x04 /* Transmit starting page WR */
  40. #define EN0_NCR 0x05 /* Number of collision reg RD */
  41. #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
  42. #define EN0_FIFO 0x06 /* FIFO RD */
  43. #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
  44. #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
  45. #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
  46. #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
  47. #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
  48. #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
  49. #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
  50. #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
  51. #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
  52. #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
  53. #define EN0_RSR 0x0c /* rx status reg RD */
  54. #define EN0_RXCR 0x0c /* RX configuration reg WR */
  55. #define EN0_TXCR 0x0d /* TX configuration reg WR */
  56. #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
  57. #define EN0_DCFG 0x0e /* Data configuration reg WR */
  58. #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
  59. #define EN0_IMR 0x0f /* Interrupt mask reg WR */
  60. #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
  61. #define EN1_PHYS 0x11
  62. #define EN1_CURPAG 0x17
  63. #define EN1_MULT 0x18
  64. #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
  65. #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
  66. #define EN3_CONFIG0 0x33
  67. #define EN3_CONFIG1 0x34
  68. #define EN3_CONFIG2 0x35
  69. #define EN3_CONFIG3 0x36
  70. /* Register accessed at EN_CMD, the 8390 base addr. */
  71. #define E8390_STOP 0x01 /* Stop and reset the chip */
  72. #define E8390_START 0x02 /* Start the chip, clear reset */
  73. #define E8390_TRANS 0x04 /* Transmit a frame */
  74. #define E8390_RREAD 0x08 /* Remote read */
  75. #define E8390_RWRITE 0x10 /* Remote write */
  76. #define E8390_NODMA 0x20 /* Remote DMA */
  77. #define E8390_PAGE0 0x00 /* Select page chip registers */
  78. #define E8390_PAGE1 0x40 /* using the two high-order bits */
  79. #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
  80. /* Bits in EN0_ISR - Interrupt status register */
  81. #define ENISR_RX 0x01 /* Receiver, no error */
  82. #define ENISR_TX 0x02 /* Transmitter, no error */
  83. #define ENISR_RX_ERR 0x04 /* Receiver, with error */
  84. #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
  85. #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
  86. #define ENISR_COUNTERS 0x20 /* Counters need emptying */
  87. #define ENISR_RDC 0x40 /* remote dma complete */
  88. #define ENISR_RESET 0x80 /* Reset completed */
  89. #define ENISR_ALL 0x3f /* Interrupts we will enable */
  90. /* Bits in received packet status byte and EN0_RSR*/
  91. #define ENRSR_RXOK 0x01 /* Received a good packet */
  92. #define ENRSR_CRC 0x02 /* CRC error */
  93. #define ENRSR_FAE 0x04 /* frame alignment error */
  94. #define ENRSR_FO 0x08 /* FIFO overrun */
  95. #define ENRSR_MPA 0x10 /* missed pkt */
  96. #define ENRSR_PHY 0x20 /* physical/multicast address */
  97. #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
  98. #define ENRSR_DEF 0x80 /* deferring */
  99. /* Transmitted packet status, EN0_TSR. */
  100. #define ENTSR_PTX 0x01 /* Packet transmitted without error */
  101. #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
  102. #define ENTSR_COL 0x04 /* The transmit collided at least once. */
  103. #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
  104. #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
  105. #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
  106. #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
  107. #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
  108. #define NE2000_PMEM_SIZE (32*1024)
  109. #define NE2000_PMEM_START (16*1024)
  110. #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
  111. #define NE2000_MEM_SIZE NE2000_PMEM_END
  112. typedef struct NE2000State {
  113. uint8_t cmd;
  114. uint32_t start;
  115. uint32_t stop;
  116. uint8_t boundary;
  117. uint8_t tsr;
  118. uint8_t tpsr;
  119. uint16_t tcnt;
  120. uint16_t rcnt;
  121. uint32_t rsar;
  122. uint8_t rsr;
  123. uint8_t rxcr;
  124. uint8_t isr;
  125. uint8_t dcfg;
  126. uint8_t imr;
  127. uint8_t phys[6]; /* mac address */
  128. uint8_t curpag;
  129. uint8_t mult[8]; /* multicast mask array */
  130. qemu_irq irq;
  131. int isa_io_base;
  132. PCIDevice *pci_dev;
  133. VLANClientState *vc;
  134. uint8_t macaddr[6];
  135. uint8_t mem[NE2000_MEM_SIZE];
  136. } NE2000State;
  137. static void ne2000_reset(NE2000State *s)
  138. {
  139. int i;
  140. s->isr = ENISR_RESET;
  141. memcpy(s->mem, s->macaddr, 6);
  142. s->mem[14] = 0x57;
  143. s->mem[15] = 0x57;
  144. /* duplicate prom data */
  145. for(i = 15;i >= 0; i--) {
  146. s->mem[2 * i] = s->mem[i];
  147. s->mem[2 * i + 1] = s->mem[i];
  148. }
  149. }
  150. static void ne2000_update_irq(NE2000State *s)
  151. {
  152. int isr;
  153. isr = (s->isr & s->imr) & 0x7f;
  154. #if defined(DEBUG_NE2000)
  155. printf("NE2000: Set IRQ to %d (%02x %02x)\n",
  156. isr ? 1 : 0, s->isr, s->imr);
  157. #endif
  158. qemu_set_irq(s->irq, (isr != 0));
  159. }
  160. #define POLYNOMIAL 0x04c11db6
  161. /* From FreeBSD */
  162. /* XXX: optimize */
  163. static int compute_mcast_idx(const uint8_t *ep)
  164. {
  165. uint32_t crc;
  166. int carry, i, j;
  167. uint8_t b;
  168. crc = 0xffffffff;
  169. for (i = 0; i < 6; i++) {
  170. b = *ep++;
  171. for (j = 0; j < 8; j++) {
  172. carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
  173. crc <<= 1;
  174. b >>= 1;
  175. if (carry)
  176. crc = ((crc ^ POLYNOMIAL) | carry);
  177. }
  178. }
  179. return (crc >> 26);
  180. }
  181. static int ne2000_buffer_full(NE2000State *s)
  182. {
  183. int avail, index, boundary;
  184. index = s->curpag << 8;
  185. boundary = s->boundary << 8;
  186. if (index < boundary)
  187. avail = boundary - index;
  188. else
  189. avail = (s->stop - s->start) - (index - boundary);
  190. if (avail < (MAX_ETH_FRAME_SIZE + 4))
  191. return 1;
  192. return 0;
  193. }
  194. static int ne2000_can_receive(void *opaque)
  195. {
  196. NE2000State *s = opaque;
  197. if (s->cmd & E8390_STOP)
  198. return 1;
  199. return !ne2000_buffer_full(s);
  200. }
  201. #define MIN_BUF_SIZE 60
  202. static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
  203. {
  204. NE2000State *s = opaque;
  205. uint8_t *p;
  206. unsigned int total_len, next, avail, len, index, mcast_idx;
  207. uint8_t buf1[60];
  208. static const uint8_t broadcast_macaddr[6] =
  209. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  210. #if defined(DEBUG_NE2000)
  211. printf("NE2000: received len=%d\n", size);
  212. #endif
  213. if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
  214. return;
  215. /* XXX: check this */
  216. if (s->rxcr & 0x10) {
  217. /* promiscuous: receive all */
  218. } else {
  219. if (!memcmp(buf, broadcast_macaddr, 6)) {
  220. /* broadcast address */
  221. if (!(s->rxcr & 0x04))
  222. return;
  223. } else if (buf[0] & 0x01) {
  224. /* multicast */
  225. if (!(s->rxcr & 0x08))
  226. return;
  227. mcast_idx = compute_mcast_idx(buf);
  228. if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
  229. return;
  230. } else if (s->mem[0] == buf[0] &&
  231. s->mem[2] == buf[1] &&
  232. s->mem[4] == buf[2] &&
  233. s->mem[6] == buf[3] &&
  234. s->mem[8] == buf[4] &&
  235. s->mem[10] == buf[5]) {
  236. /* match */
  237. } else {
  238. return;
  239. }
  240. }
  241. /* if too small buffer, then expand it */
  242. if (size < MIN_BUF_SIZE) {
  243. memcpy(buf1, buf, size);
  244. memset(buf1 + size, 0, MIN_BUF_SIZE - size);
  245. buf = buf1;
  246. size = MIN_BUF_SIZE;
  247. }
  248. index = s->curpag << 8;
  249. /* 4 bytes for header */
  250. total_len = size + 4;
  251. /* address for next packet (4 bytes for CRC) */
  252. next = index + ((total_len + 4 + 255) & ~0xff);
  253. if (next >= s->stop)
  254. next -= (s->stop - s->start);
  255. /* prepare packet header */
  256. p = s->mem + index;
  257. s->rsr = ENRSR_RXOK; /* receive status */
  258. /* XXX: check this */
  259. if (buf[0] & 0x01)
  260. s->rsr |= ENRSR_PHY;
  261. p[0] = s->rsr;
  262. p[1] = next >> 8;
  263. p[2] = total_len;
  264. p[3] = total_len >> 8;
  265. index += 4;
  266. /* write packet data */
  267. while (size > 0) {
  268. if (index <= s->stop)
  269. avail = s->stop - index;
  270. else
  271. avail = 0;
  272. len = size;
  273. if (len > avail)
  274. len = avail;
  275. memcpy(s->mem + index, buf, len);
  276. buf += len;
  277. index += len;
  278. if (index == s->stop)
  279. index = s->start;
  280. size -= len;
  281. }
  282. s->curpag = next >> 8;
  283. /* now we can signal we have received something */
  284. s->isr |= ENISR_RX;
  285. ne2000_update_irq(s);
  286. }
  287. static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  288. {
  289. NE2000State *s = opaque;
  290. int offset, page, index;
  291. addr &= 0xf;
  292. #ifdef DEBUG_NE2000
  293. printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
  294. #endif
  295. if (addr == E8390_CMD) {
  296. /* control register */
  297. s->cmd = val;
  298. if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
  299. s->isr &= ~ENISR_RESET;
  300. /* test specific case: zero length transfer */
  301. if ((val & (E8390_RREAD | E8390_RWRITE)) &&
  302. s->rcnt == 0) {
  303. s->isr |= ENISR_RDC;
  304. ne2000_update_irq(s);
  305. }
  306. if (val & E8390_TRANS) {
  307. index = (s->tpsr << 8);
  308. /* XXX: next 2 lines are a hack to make netware 3.11 work */
  309. if (index >= NE2000_PMEM_END)
  310. index -= NE2000_PMEM_SIZE;
  311. /* fail safe: check range on the transmitted length */
  312. if (index + s->tcnt <= NE2000_PMEM_END) {
  313. qemu_send_packet(s->vc, s->mem + index, s->tcnt);
  314. }
  315. /* signal end of transfer */
  316. s->tsr = ENTSR_PTX;
  317. s->isr |= ENISR_TX;
  318. s->cmd &= ~E8390_TRANS;
  319. ne2000_update_irq(s);
  320. }
  321. }
  322. } else {
  323. page = s->cmd >> 6;
  324. offset = addr | (page << 4);
  325. switch(offset) {
  326. case EN0_STARTPG:
  327. s->start = val << 8;
  328. break;
  329. case EN0_STOPPG:
  330. s->stop = val << 8;
  331. break;
  332. case EN0_BOUNDARY:
  333. s->boundary = val;
  334. break;
  335. case EN0_IMR:
  336. s->imr = val;
  337. ne2000_update_irq(s);
  338. break;
  339. case EN0_TPSR:
  340. s->tpsr = val;
  341. break;
  342. case EN0_TCNTLO:
  343. s->tcnt = (s->tcnt & 0xff00) | val;
  344. break;
  345. case EN0_TCNTHI:
  346. s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
  347. break;
  348. case EN0_RSARLO:
  349. s->rsar = (s->rsar & 0xff00) | val;
  350. break;
  351. case EN0_RSARHI:
  352. s->rsar = (s->rsar & 0x00ff) | (val << 8);
  353. break;
  354. case EN0_RCNTLO:
  355. s->rcnt = (s->rcnt & 0xff00) | val;
  356. break;
  357. case EN0_RCNTHI:
  358. s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
  359. break;
  360. case EN0_RXCR:
  361. s->rxcr = val;
  362. break;
  363. case EN0_DCFG:
  364. s->dcfg = val;
  365. break;
  366. case EN0_ISR:
  367. s->isr &= ~(val & 0x7f);
  368. ne2000_update_irq(s);
  369. break;
  370. case EN1_PHYS ... EN1_PHYS + 5:
  371. s->phys[offset - EN1_PHYS] = val;
  372. break;
  373. case EN1_CURPAG:
  374. s->curpag = val;
  375. break;
  376. case EN1_MULT ... EN1_MULT + 7:
  377. s->mult[offset - EN1_MULT] = val;
  378. break;
  379. }
  380. }
  381. }
  382. static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
  383. {
  384. NE2000State *s = opaque;
  385. int offset, page, ret;
  386. addr &= 0xf;
  387. if (addr == E8390_CMD) {
  388. ret = s->cmd;
  389. } else {
  390. page = s->cmd >> 6;
  391. offset = addr | (page << 4);
  392. switch(offset) {
  393. case EN0_TSR:
  394. ret = s->tsr;
  395. break;
  396. case EN0_BOUNDARY:
  397. ret = s->boundary;
  398. break;
  399. case EN0_ISR:
  400. ret = s->isr;
  401. break;
  402. case EN0_RSARLO:
  403. ret = s->rsar & 0x00ff;
  404. break;
  405. case EN0_RSARHI:
  406. ret = s->rsar >> 8;
  407. break;
  408. case EN1_PHYS ... EN1_PHYS + 5:
  409. ret = s->phys[offset - EN1_PHYS];
  410. break;
  411. case EN1_CURPAG:
  412. ret = s->curpag;
  413. break;
  414. case EN1_MULT ... EN1_MULT + 7:
  415. ret = s->mult[offset - EN1_MULT];
  416. break;
  417. case EN0_RSR:
  418. ret = s->rsr;
  419. break;
  420. case EN2_STARTPG:
  421. ret = s->start >> 8;
  422. break;
  423. case EN2_STOPPG:
  424. ret = s->stop >> 8;
  425. break;
  426. case EN0_RTL8029ID0:
  427. ret = 0x50;
  428. break;
  429. case EN0_RTL8029ID1:
  430. ret = 0x43;
  431. break;
  432. case EN3_CONFIG0:
  433. ret = 0; /* 10baseT media */
  434. break;
  435. case EN3_CONFIG2:
  436. ret = 0x40; /* 10baseT active */
  437. break;
  438. case EN3_CONFIG3:
  439. ret = 0x40; /* Full duplex */
  440. break;
  441. default:
  442. ret = 0x00;
  443. break;
  444. }
  445. }
  446. #ifdef DEBUG_NE2000
  447. printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
  448. #endif
  449. return ret;
  450. }
  451. static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
  452. uint32_t val)
  453. {
  454. if (addr < 32 ||
  455. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  456. s->mem[addr] = val;
  457. }
  458. }
  459. static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
  460. uint32_t val)
  461. {
  462. addr &= ~1; /* XXX: check exact behaviour if not even */
  463. if (addr < 32 ||
  464. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  465. *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
  466. }
  467. }
  468. static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
  469. uint32_t val)
  470. {
  471. addr &= ~1; /* XXX: check exact behaviour if not even */
  472. if (addr < 32 ||
  473. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  474. cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
  475. }
  476. }
  477. static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
  478. {
  479. if (addr < 32 ||
  480. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  481. return s->mem[addr];
  482. } else {
  483. return 0xff;
  484. }
  485. }
  486. static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
  487. {
  488. addr &= ~1; /* XXX: check exact behaviour if not even */
  489. if (addr < 32 ||
  490. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  491. return le16_to_cpu(*(uint16_t *)(s->mem + addr));
  492. } else {
  493. return 0xffff;
  494. }
  495. }
  496. static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
  497. {
  498. addr &= ~1; /* XXX: check exact behaviour if not even */
  499. if (addr < 32 ||
  500. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  501. return le32_to_cpupu((uint32_t *)(s->mem + addr));
  502. } else {
  503. return 0xffffffff;
  504. }
  505. }
  506. static inline void ne2000_dma_update(NE2000State *s, int len)
  507. {
  508. s->rsar += len;
  509. /* wrap */
  510. /* XXX: check what to do if rsar > stop */
  511. if (s->rsar == s->stop)
  512. s->rsar = s->start;
  513. if (s->rcnt <= len) {
  514. s->rcnt = 0;
  515. /* signal end of transfer */
  516. s->isr |= ENISR_RDC;
  517. ne2000_update_irq(s);
  518. } else {
  519. s->rcnt -= len;
  520. }
  521. }
  522. static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  523. {
  524. NE2000State *s = opaque;
  525. #ifdef DEBUG_NE2000
  526. printf("NE2000: asic write val=0x%04x\n", val);
  527. #endif
  528. if (s->rcnt == 0)
  529. return;
  530. if (s->dcfg & 0x01) {
  531. /* 16 bit access */
  532. ne2000_mem_writew(s, s->rsar, val);
  533. ne2000_dma_update(s, 2);
  534. } else {
  535. /* 8 bit access */
  536. ne2000_mem_writeb(s, s->rsar, val);
  537. ne2000_dma_update(s, 1);
  538. }
  539. }
  540. static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
  541. {
  542. NE2000State *s = opaque;
  543. int ret;
  544. if (s->dcfg & 0x01) {
  545. /* 16 bit access */
  546. ret = ne2000_mem_readw(s, s->rsar);
  547. ne2000_dma_update(s, 2);
  548. } else {
  549. /* 8 bit access */
  550. ret = ne2000_mem_readb(s, s->rsar);
  551. ne2000_dma_update(s, 1);
  552. }
  553. #ifdef DEBUG_NE2000
  554. printf("NE2000: asic read val=0x%04x\n", ret);
  555. #endif
  556. return ret;
  557. }
  558. static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
  559. {
  560. NE2000State *s = opaque;
  561. #ifdef DEBUG_NE2000
  562. printf("NE2000: asic writel val=0x%04x\n", val);
  563. #endif
  564. if (s->rcnt == 0)
  565. return;
  566. /* 32 bit access */
  567. ne2000_mem_writel(s, s->rsar, val);
  568. ne2000_dma_update(s, 4);
  569. }
  570. static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
  571. {
  572. NE2000State *s = opaque;
  573. int ret;
  574. /* 32 bit access */
  575. ret = ne2000_mem_readl(s, s->rsar);
  576. ne2000_dma_update(s, 4);
  577. #ifdef DEBUG_NE2000
  578. printf("NE2000: asic readl val=0x%04x\n", ret);
  579. #endif
  580. return ret;
  581. }
  582. static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  583. {
  584. /* nothing to do (end of reset pulse) */
  585. }
  586. static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
  587. {
  588. NE2000State *s = opaque;
  589. ne2000_reset(s);
  590. return 0;
  591. }
  592. static void ne2000_save(QEMUFile* f,void* opaque)
  593. {
  594. NE2000State* s=(NE2000State*)opaque;
  595. uint32_t tmp;
  596. if (s->pci_dev)
  597. pci_device_save(s->pci_dev, f);
  598. qemu_put_8s(f, &s->rxcr);
  599. qemu_put_8s(f, &s->cmd);
  600. qemu_put_be32s(f, &s->start);
  601. qemu_put_be32s(f, &s->stop);
  602. qemu_put_8s(f, &s->boundary);
  603. qemu_put_8s(f, &s->tsr);
  604. qemu_put_8s(f, &s->tpsr);
  605. qemu_put_be16s(f, &s->tcnt);
  606. qemu_put_be16s(f, &s->rcnt);
  607. qemu_put_be32s(f, &s->rsar);
  608. qemu_put_8s(f, &s->rsr);
  609. qemu_put_8s(f, &s->isr);
  610. qemu_put_8s(f, &s->dcfg);
  611. qemu_put_8s(f, &s->imr);
  612. qemu_put_buffer(f, s->phys, 6);
  613. qemu_put_8s(f, &s->curpag);
  614. qemu_put_buffer(f, s->mult, 8);
  615. tmp = 0;
  616. qemu_put_be32s(f, &tmp); /* ignored, was irq */
  617. qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
  618. }
  619. static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
  620. {
  621. NE2000State* s=(NE2000State*)opaque;
  622. int ret;
  623. uint32_t tmp;
  624. if (version_id > 3)
  625. return -EINVAL;
  626. if (s->pci_dev && version_id >= 3) {
  627. ret = pci_device_load(s->pci_dev, f);
  628. if (ret < 0)
  629. return ret;
  630. }
  631. if (version_id >= 2) {
  632. qemu_get_8s(f, &s->rxcr);
  633. } else {
  634. s->rxcr = 0x0c;
  635. }
  636. qemu_get_8s(f, &s->cmd);
  637. qemu_get_be32s(f, &s->start);
  638. qemu_get_be32s(f, &s->stop);
  639. qemu_get_8s(f, &s->boundary);
  640. qemu_get_8s(f, &s->tsr);
  641. qemu_get_8s(f, &s->tpsr);
  642. qemu_get_be16s(f, &s->tcnt);
  643. qemu_get_be16s(f, &s->rcnt);
  644. qemu_get_be32s(f, &s->rsar);
  645. qemu_get_8s(f, &s->rsr);
  646. qemu_get_8s(f, &s->isr);
  647. qemu_get_8s(f, &s->dcfg);
  648. qemu_get_8s(f, &s->imr);
  649. qemu_get_buffer(f, s->phys, 6);
  650. qemu_get_8s(f, &s->curpag);
  651. qemu_get_buffer(f, s->mult, 8);
  652. qemu_get_be32s(f, &tmp); /* ignored */
  653. qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
  654. return 0;
  655. }
  656. static void isa_ne2000_cleanup(VLANClientState *vc)
  657. {
  658. NE2000State *s = vc->opaque;
  659. unregister_savevm("ne2000", s);
  660. isa_unassign_ioport(s->isa_io_base, 16);
  661. isa_unassign_ioport(s->isa_io_base + 0x10, 2);
  662. isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
  663. qemu_free(s);
  664. }
  665. void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
  666. {
  667. NE2000State *s;
  668. qemu_check_nic_model(nd, "ne2k_isa");
  669. s = qemu_mallocz(sizeof(NE2000State));
  670. register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
  671. register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
  672. register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
  673. register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
  674. register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
  675. register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
  676. register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
  677. register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
  678. s->isa_io_base = base;
  679. s->irq = irq;
  680. memcpy(s->macaddr, nd->macaddr, 6);
  681. ne2000_reset(s);
  682. s->vc = nd->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
  683. ne2000_receive, ne2000_can_receive,
  684. isa_ne2000_cleanup, s);
  685. qemu_format_nic_info_str(s->vc, s->macaddr);
  686. register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
  687. }
  688. /***********************************************************/
  689. /* PCI NE2000 definitions */
  690. typedef struct PCINE2000State {
  691. PCIDevice dev;
  692. NE2000State ne2000;
  693. } PCINE2000State;
  694. static void ne2000_map(PCIDevice *pci_dev, int region_num,
  695. uint32_t addr, uint32_t size, int type)
  696. {
  697. PCINE2000State *d = (PCINE2000State *)pci_dev;
  698. NE2000State *s = &d->ne2000;
  699. register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
  700. register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
  701. register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
  702. register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
  703. register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
  704. register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
  705. register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
  706. register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
  707. register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
  708. register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
  709. }
  710. static void ne2000_cleanup(VLANClientState *vc)
  711. {
  712. NE2000State *s = vc->opaque;
  713. unregister_savevm("ne2000", s);
  714. }
  715. PCIDevice *pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
  716. {
  717. PCINE2000State *d;
  718. NE2000State *s;
  719. uint8_t *pci_conf;
  720. d = (PCINE2000State *)pci_register_device(bus,
  721. "NE2000", sizeof(PCINE2000State),
  722. devfn,
  723. NULL, NULL);
  724. if (!d)
  725. return NULL;
  726. pci_conf = d->dev.config;
  727. pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
  728. pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_RTL8029);
  729. pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
  730. pci_conf[0x0e] = 0x00; // header_type
  731. pci_conf[0x3d] = 1; // interrupt pin 0
  732. pci_register_io_region(&d->dev, 0, 0x100,
  733. PCI_ADDRESS_SPACE_IO, ne2000_map);
  734. s = &d->ne2000;
  735. s->irq = d->dev.irq[0];
  736. s->pci_dev = (PCIDevice *)d;
  737. memcpy(s->macaddr, nd->macaddr, 6);
  738. ne2000_reset(s);
  739. s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
  740. ne2000_receive, ne2000_can_receive,
  741. ne2000_cleanup, s);
  742. qemu_format_nic_info_str(s->vc, s->macaddr);
  743. register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
  744. return (PCIDevice *)d;
  745. }