2
0

nand.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658
  1. /*
  2. * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
  3. * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
  4. * Samsung Electronic.
  5. *
  6. * Copyright (c) 2006 Openedhand Ltd.
  7. * Written by Andrzej Zaborowski <balrog@zabor.org>
  8. *
  9. * This code is licensed under the GNU GPL v2.
  10. */
  11. #ifndef NAND_IO
  12. # include "hw.h"
  13. # include "flash.h"
  14. # include "block.h"
  15. /* FIXME: Pass block device as an argument. */
  16. # include "sysemu.h"
  17. # define NAND_CMD_READ0 0x00
  18. # define NAND_CMD_READ1 0x01
  19. # define NAND_CMD_READ2 0x50
  20. # define NAND_CMD_LPREAD2 0x30
  21. # define NAND_CMD_NOSERIALREAD2 0x35
  22. # define NAND_CMD_RANDOMREAD1 0x05
  23. # define NAND_CMD_RANDOMREAD2 0xe0
  24. # define NAND_CMD_READID 0x90
  25. # define NAND_CMD_RESET 0xff
  26. # define NAND_CMD_PAGEPROGRAM1 0x80
  27. # define NAND_CMD_PAGEPROGRAM2 0x10
  28. # define NAND_CMD_CACHEPROGRAM2 0x15
  29. # define NAND_CMD_BLOCKERASE1 0x60
  30. # define NAND_CMD_BLOCKERASE2 0xd0
  31. # define NAND_CMD_READSTATUS 0x70
  32. # define NAND_CMD_COPYBACKPRG1 0x85
  33. # define NAND_IOSTATUS_ERROR (1 << 0)
  34. # define NAND_IOSTATUS_PLANE0 (1 << 1)
  35. # define NAND_IOSTATUS_PLANE1 (1 << 2)
  36. # define NAND_IOSTATUS_PLANE2 (1 << 3)
  37. # define NAND_IOSTATUS_PLANE3 (1 << 4)
  38. # define NAND_IOSTATUS_BUSY (1 << 6)
  39. # define NAND_IOSTATUS_UNPROTCT (1 << 7)
  40. # define MAX_PAGE 0x800
  41. # define MAX_OOB 0x40
  42. struct nand_flash_s {
  43. uint8_t manf_id, chip_id;
  44. int size, pages;
  45. int page_shift, oob_shift, erase_shift, addr_shift;
  46. uint8_t *storage;
  47. BlockDriverState *bdrv;
  48. int mem_oob;
  49. int cle, ale, ce, wp, gnd;
  50. uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  51. uint8_t *ioaddr;
  52. int iolen;
  53. uint32_t cmd, addr;
  54. int addrlen;
  55. int status;
  56. int offset;
  57. void (*blk_write)(struct nand_flash_s *s);
  58. void (*blk_erase)(struct nand_flash_s *s);
  59. void (*blk_load)(struct nand_flash_s *s, uint32_t addr, int offset);
  60. };
  61. # define NAND_NO_AUTOINCR 0x00000001
  62. # define NAND_BUSWIDTH_16 0x00000002
  63. # define NAND_NO_PADDING 0x00000004
  64. # define NAND_CACHEPRG 0x00000008
  65. # define NAND_COPYBACK 0x00000010
  66. # define NAND_IS_AND 0x00000020
  67. # define NAND_4PAGE_ARRAY 0x00000040
  68. # define NAND_NO_READRDY 0x00000100
  69. # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
  70. # define NAND_IO
  71. # define PAGE(addr) ((addr) >> ADDR_SHIFT)
  72. # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
  73. # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
  74. # define OOB_SHIFT (PAGE_SHIFT - 5)
  75. # define OOB_SIZE (1 << OOB_SHIFT)
  76. # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
  77. # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
  78. # define PAGE_SIZE 256
  79. # define PAGE_SHIFT 8
  80. # define PAGE_SECTORS 1
  81. # define ADDR_SHIFT 8
  82. # include "nand.c"
  83. # define PAGE_SIZE 512
  84. # define PAGE_SHIFT 9
  85. # define PAGE_SECTORS 1
  86. # define ADDR_SHIFT 8
  87. # include "nand.c"
  88. # define PAGE_SIZE 2048
  89. # define PAGE_SHIFT 11
  90. # define PAGE_SECTORS 4
  91. # define ADDR_SHIFT 16
  92. # include "nand.c"
  93. /* Information based on Linux drivers/mtd/nand/nand_ids.c */
  94. static const struct nand_info_s {
  95. int size;
  96. int width;
  97. int page_shift;
  98. int erase_shift;
  99. uint32_t options;
  100. } nand_flash_ids[0x100] = {
  101. [0 ... 0xff] = { 0 },
  102. [0x6e] = { 1, 8, 8, 4, 0 },
  103. [0x64] = { 2, 8, 8, 4, 0 },
  104. [0x6b] = { 4, 8, 9, 4, 0 },
  105. [0xe8] = { 1, 8, 8, 4, 0 },
  106. [0xec] = { 1, 8, 8, 4, 0 },
  107. [0xea] = { 2, 8, 8, 4, 0 },
  108. [0xd5] = { 4, 8, 9, 4, 0 },
  109. [0xe3] = { 4, 8, 9, 4, 0 },
  110. [0xe5] = { 4, 8, 9, 4, 0 },
  111. [0xd6] = { 8, 8, 9, 4, 0 },
  112. [0x39] = { 8, 8, 9, 4, 0 },
  113. [0xe6] = { 8, 8, 9, 4, 0 },
  114. [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
  115. [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
  116. [0x33] = { 16, 8, 9, 5, 0 },
  117. [0x73] = { 16, 8, 9, 5, 0 },
  118. [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  119. [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
  120. [0x35] = { 32, 8, 9, 5, 0 },
  121. [0x75] = { 32, 8, 9, 5, 0 },
  122. [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  123. [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
  124. [0x36] = { 64, 8, 9, 5, 0 },
  125. [0x76] = { 64, 8, 9, 5, 0 },
  126. [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  127. [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
  128. [0x78] = { 128, 8, 9, 5, 0 },
  129. [0x39] = { 128, 8, 9, 5, 0 },
  130. [0x79] = { 128, 8, 9, 5, 0 },
  131. [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  132. [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  133. [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  134. [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
  135. [0x71] = { 256, 8, 9, 5, 0 },
  136. /*
  137. * These are the new chips with large page size. The pagesize and the
  138. * erasesize is determined from the extended id bytes
  139. */
  140. # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
  141. # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
  142. /* 512 Megabit */
  143. [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
  144. [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
  145. [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  146. [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
  147. /* 1 Gigabit */
  148. [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
  149. [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
  150. [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  151. [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
  152. /* 2 Gigabit */
  153. [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
  154. [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
  155. [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
  156. [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
  157. /* 4 Gigabit */
  158. [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
  159. [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
  160. [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  161. [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
  162. /* 8 Gigabit */
  163. [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
  164. [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
  165. [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  166. [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
  167. /* 16 Gigabit */
  168. [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
  169. [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
  170. [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  171. [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
  172. };
  173. static void nand_reset(struct nand_flash_s *s)
  174. {
  175. s->cmd = NAND_CMD_READ0;
  176. s->addr = 0;
  177. s->addrlen = 0;
  178. s->iolen = 0;
  179. s->offset = 0;
  180. s->status &= NAND_IOSTATUS_UNPROTCT;
  181. }
  182. static void nand_command(struct nand_flash_s *s)
  183. {
  184. switch (s->cmd) {
  185. case NAND_CMD_READ0:
  186. s->iolen = 0;
  187. break;
  188. case NAND_CMD_READID:
  189. s->io[0] = s->manf_id;
  190. s->io[1] = s->chip_id;
  191. s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */
  192. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
  193. s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
  194. else
  195. s->io[3] = 0xc0; /* Multi-plane */
  196. s->ioaddr = s->io;
  197. s->iolen = 4;
  198. break;
  199. case NAND_CMD_RANDOMREAD2:
  200. case NAND_CMD_NOSERIALREAD2:
  201. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
  202. break;
  203. s->blk_load(s, s->addr, s->addr & ((1 << s->addr_shift) - 1));
  204. break;
  205. case NAND_CMD_RESET:
  206. nand_reset(s);
  207. break;
  208. case NAND_CMD_PAGEPROGRAM1:
  209. s->ioaddr = s->io;
  210. s->iolen = 0;
  211. break;
  212. case NAND_CMD_PAGEPROGRAM2:
  213. if (s->wp) {
  214. s->blk_write(s);
  215. }
  216. break;
  217. case NAND_CMD_BLOCKERASE1:
  218. break;
  219. case NAND_CMD_BLOCKERASE2:
  220. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
  221. s->addr <<= 16;
  222. else
  223. s->addr <<= 8;
  224. if (s->wp) {
  225. s->blk_erase(s);
  226. }
  227. break;
  228. case NAND_CMD_READSTATUS:
  229. s->io[0] = s->status;
  230. s->ioaddr = s->io;
  231. s->iolen = 1;
  232. break;
  233. default:
  234. printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
  235. }
  236. }
  237. static void nand_save(QEMUFile *f, void *opaque)
  238. {
  239. struct nand_flash_s *s = (struct nand_flash_s *) opaque;
  240. qemu_put_byte(f, s->cle);
  241. qemu_put_byte(f, s->ale);
  242. qemu_put_byte(f, s->ce);
  243. qemu_put_byte(f, s->wp);
  244. qemu_put_byte(f, s->gnd);
  245. qemu_put_buffer(f, s->io, sizeof(s->io));
  246. qemu_put_be32(f, s->ioaddr - s->io);
  247. qemu_put_be32(f, s->iolen);
  248. qemu_put_be32s(f, &s->cmd);
  249. qemu_put_be32s(f, &s->addr);
  250. qemu_put_be32(f, s->addrlen);
  251. qemu_put_be32(f, s->status);
  252. qemu_put_be32(f, s->offset);
  253. /* XXX: do we want to save s->storage too? */
  254. }
  255. static int nand_load(QEMUFile *f, void *opaque, int version_id)
  256. {
  257. struct nand_flash_s *s = (struct nand_flash_s *) opaque;
  258. s->cle = qemu_get_byte(f);
  259. s->ale = qemu_get_byte(f);
  260. s->ce = qemu_get_byte(f);
  261. s->wp = qemu_get_byte(f);
  262. s->gnd = qemu_get_byte(f);
  263. qemu_get_buffer(f, s->io, sizeof(s->io));
  264. s->ioaddr = s->io + qemu_get_be32(f);
  265. s->iolen = qemu_get_be32(f);
  266. if (s->ioaddr >= s->io + sizeof(s->io) || s->ioaddr < s->io)
  267. return -EINVAL;
  268. qemu_get_be32s(f, &s->cmd);
  269. qemu_get_be32s(f, &s->addr);
  270. s->addrlen = qemu_get_be32(f);
  271. s->status = qemu_get_be32(f);
  272. s->offset = qemu_get_be32(f);
  273. return 0;
  274. }
  275. /*
  276. * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
  277. * outputs are R/B and eight I/O pins.
  278. *
  279. * CE, WP and R/B are active low.
  280. */
  281. void nand_setpins(struct nand_flash_s *s,
  282. int cle, int ale, int ce, int wp, int gnd)
  283. {
  284. s->cle = cle;
  285. s->ale = ale;
  286. s->ce = ce;
  287. s->wp = wp;
  288. s->gnd = gnd;
  289. if (wp)
  290. s->status |= NAND_IOSTATUS_UNPROTCT;
  291. else
  292. s->status &= ~NAND_IOSTATUS_UNPROTCT;
  293. }
  294. void nand_getpins(struct nand_flash_s *s, int *rb)
  295. {
  296. *rb = 1;
  297. }
  298. void nand_setio(struct nand_flash_s *s, uint8_t value)
  299. {
  300. if (!s->ce && s->cle) {
  301. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  302. if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
  303. return;
  304. if (value == NAND_CMD_RANDOMREAD1) {
  305. s->addr &= ~((1 << s->addr_shift) - 1);
  306. s->addrlen = 0;
  307. return;
  308. }
  309. }
  310. if (value == NAND_CMD_READ0)
  311. s->offset = 0;
  312. else if (value == NAND_CMD_READ1) {
  313. s->offset = 0x100;
  314. value = NAND_CMD_READ0;
  315. }
  316. else if (value == NAND_CMD_READ2) {
  317. s->offset = 1 << s->page_shift;
  318. value = NAND_CMD_READ0;
  319. }
  320. s->cmd = value;
  321. if (s->cmd == NAND_CMD_READSTATUS ||
  322. s->cmd == NAND_CMD_PAGEPROGRAM2 ||
  323. s->cmd == NAND_CMD_BLOCKERASE1 ||
  324. s->cmd == NAND_CMD_BLOCKERASE2 ||
  325. s->cmd == NAND_CMD_NOSERIALREAD2 ||
  326. s->cmd == NAND_CMD_RANDOMREAD2 ||
  327. s->cmd == NAND_CMD_RESET)
  328. nand_command(s);
  329. if (s->cmd != NAND_CMD_RANDOMREAD2) {
  330. s->addrlen = 0;
  331. s->addr = 0;
  332. }
  333. }
  334. if (s->ale) {
  335. s->addr |= value << (s->addrlen * 8);
  336. s->addrlen ++;
  337. if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
  338. nand_command(s);
  339. if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  340. s->addrlen == 3 && (
  341. s->cmd == NAND_CMD_READ0 ||
  342. s->cmd == NAND_CMD_PAGEPROGRAM1))
  343. nand_command(s);
  344. if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
  345. s->addrlen == 4 && (
  346. s->cmd == NAND_CMD_READ0 ||
  347. s->cmd == NAND_CMD_PAGEPROGRAM1))
  348. nand_command(s);
  349. }
  350. if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
  351. if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
  352. s->io[s->iolen ++] = value;
  353. } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
  354. if ((s->addr & ((1 << s->addr_shift) - 1)) <
  355. (1 << s->page_shift) + (1 << s->oob_shift)) {
  356. s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
  357. s->addr ++;
  358. }
  359. }
  360. }
  361. uint8_t nand_getio(struct nand_flash_s *s)
  362. {
  363. int offset;
  364. /* Allow sequential reading */
  365. if (!s->iolen && s->cmd == NAND_CMD_READ0) {
  366. offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
  367. s->offset = 0;
  368. s->blk_load(s, s->addr, offset);
  369. if (s->gnd)
  370. s->iolen = (1 << s->page_shift) - offset;
  371. else
  372. s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
  373. }
  374. if (s->ce || s->iolen <= 0)
  375. return 0;
  376. s->iolen --;
  377. return *(s->ioaddr ++);
  378. }
  379. struct nand_flash_s *nand_init(int manf_id, int chip_id)
  380. {
  381. int pagesize;
  382. struct nand_flash_s *s;
  383. int index;
  384. if (nand_flash_ids[chip_id].size == 0) {
  385. cpu_abort(cpu_single_env, "%s: Unsupported NAND chip ID.\n",
  386. __FUNCTION__);
  387. }
  388. s = (struct nand_flash_s *) qemu_mallocz(sizeof(struct nand_flash_s));
  389. index = drive_get_index(IF_MTD, 0, 0);
  390. if (index != -1)
  391. s->bdrv = drives_table[index].bdrv;
  392. s->manf_id = manf_id;
  393. s->chip_id = chip_id;
  394. s->size = nand_flash_ids[s->chip_id].size << 20;
  395. if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
  396. s->page_shift = 11;
  397. s->erase_shift = 6;
  398. } else {
  399. s->page_shift = nand_flash_ids[s->chip_id].page_shift;
  400. s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
  401. }
  402. switch (1 << s->page_shift) {
  403. case 256:
  404. nand_init_256(s);
  405. break;
  406. case 512:
  407. nand_init_512(s);
  408. break;
  409. case 2048:
  410. nand_init_2048(s);
  411. break;
  412. default:
  413. cpu_abort(cpu_single_env, "%s: Unsupported NAND block size.\n",
  414. __FUNCTION__);
  415. }
  416. pagesize = 1 << s->oob_shift;
  417. s->mem_oob = 1;
  418. if (s->bdrv && bdrv_getlength(s->bdrv) >=
  419. (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
  420. pagesize = 0;
  421. s->mem_oob = 0;
  422. }
  423. if (!s->bdrv)
  424. pagesize += 1 << s->page_shift;
  425. if (pagesize)
  426. s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
  427. 0xff, s->pages * pagesize);
  428. /* Give s->ioaddr a sane value in case we save state before it
  429. is used. */
  430. s->ioaddr = s->io;
  431. register_savevm("nand", -1, 0, nand_save, nand_load, s);
  432. return s;
  433. }
  434. void nand_done(struct nand_flash_s *s)
  435. {
  436. if (s->bdrv) {
  437. bdrv_close(s->bdrv);
  438. bdrv_delete(s->bdrv);
  439. }
  440. if (!s->bdrv || s->mem_oob)
  441. free(s->storage);
  442. free(s);
  443. }
  444. #else
  445. /* Program a single page */
  446. static void glue(nand_blk_write_, PAGE_SIZE)(struct nand_flash_s *s)
  447. {
  448. uint32_t off, page, sector, soff;
  449. uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
  450. if (PAGE(s->addr) >= s->pages)
  451. return;
  452. if (!s->bdrv) {
  453. memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
  454. s->offset, s->io, s->iolen);
  455. } else if (s->mem_oob) {
  456. sector = SECTOR(s->addr);
  457. off = (s->addr & PAGE_MASK) + s->offset;
  458. soff = SECTOR_OFFSET(s->addr);
  459. if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
  460. printf("%s: read error in sector %i\n", __FUNCTION__, sector);
  461. return;
  462. }
  463. memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
  464. if (off + s->iolen > PAGE_SIZE) {
  465. page = PAGE(s->addr);
  466. memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
  467. MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
  468. }
  469. if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
  470. printf("%s: write error in sector %i\n", __FUNCTION__, sector);
  471. } else {
  472. off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
  473. sector = off >> 9;
  474. soff = off & 0x1ff;
  475. if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
  476. printf("%s: read error in sector %i\n", __FUNCTION__, sector);
  477. return;
  478. }
  479. memcpy(iobuf + soff, s->io, s->iolen);
  480. if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
  481. printf("%s: write error in sector %i\n", __FUNCTION__, sector);
  482. }
  483. s->offset = 0;
  484. }
  485. /* Erase a single block */
  486. static void glue(nand_blk_erase_, PAGE_SIZE)(struct nand_flash_s *s)
  487. {
  488. uint32_t i, page, addr;
  489. uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
  490. addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
  491. if (PAGE(addr) >= s->pages)
  492. return;
  493. if (!s->bdrv) {
  494. memset(s->storage + PAGE_START(addr),
  495. 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
  496. } else if (s->mem_oob) {
  497. memset(s->storage + (PAGE(addr) << OOB_SHIFT),
  498. 0xff, OOB_SIZE << s->erase_shift);
  499. i = SECTOR(addr);
  500. page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
  501. for (; i < page; i ++)
  502. if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
  503. printf("%s: write error in sector %i\n", __FUNCTION__, i);
  504. } else {
  505. addr = PAGE_START(addr);
  506. page = addr >> 9;
  507. if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
  508. printf("%s: read error in sector %i\n", __FUNCTION__, page);
  509. memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
  510. if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
  511. printf("%s: write error in sector %i\n", __FUNCTION__, page);
  512. memset(iobuf, 0xff, 0x200);
  513. i = (addr & ~0x1ff) + 0x200;
  514. for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
  515. i < addr; i += 0x200)
  516. if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
  517. printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
  518. page = i >> 9;
  519. if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
  520. printf("%s: read error in sector %i\n", __FUNCTION__, page);
  521. memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
  522. if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
  523. printf("%s: write error in sector %i\n", __FUNCTION__, page);
  524. }
  525. }
  526. static void glue(nand_blk_load_, PAGE_SIZE)(struct nand_flash_s *s,
  527. uint32_t addr, int offset)
  528. {
  529. if (PAGE(addr) >= s->pages)
  530. return;
  531. if (s->bdrv) {
  532. if (s->mem_oob) {
  533. if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
  534. printf("%s: read error in sector %i\n",
  535. __FUNCTION__, SECTOR(addr));
  536. memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
  537. s->storage + (PAGE(s->addr) << OOB_SHIFT),
  538. OOB_SIZE);
  539. s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
  540. } else {
  541. if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
  542. s->io, (PAGE_SECTORS + 2)) == -1)
  543. printf("%s: read error in sector %i\n",
  544. __FUNCTION__, PAGE_START(addr) >> 9);
  545. s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
  546. }
  547. } else {
  548. memcpy(s->io, s->storage + PAGE_START(s->addr) +
  549. offset, PAGE_SIZE + OOB_SIZE - offset);
  550. s->ioaddr = s->io;
  551. }
  552. s->addr &= PAGE_SIZE - 1;
  553. s->addr += PAGE_SIZE;
  554. }
  555. static void glue(nand_init_, PAGE_SIZE)(struct nand_flash_s *s)
  556. {
  557. s->oob_shift = PAGE_SHIFT - 5;
  558. s->pages = s->size >> PAGE_SHIFT;
  559. s->addr_shift = ADDR_SHIFT;
  560. s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
  561. s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
  562. s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
  563. }
  564. # undef PAGE_SIZE
  565. # undef PAGE_SHIFT
  566. # undef PAGE_SECTORS
  567. # undef ADDR_SHIFT
  568. #endif /* NAND_IO */