mcf_uart.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /*
  2. * ColdFire UART emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licenced under the GPL
  7. */
  8. #include "hw.h"
  9. #include "mcf.h"
  10. #include "qemu-char.h"
  11. typedef struct {
  12. uint8_t mr[2];
  13. uint8_t sr;
  14. uint8_t isr;
  15. uint8_t imr;
  16. uint8_t bg1;
  17. uint8_t bg2;
  18. uint8_t fifo[4];
  19. uint8_t tb;
  20. int current_mr;
  21. int fifo_len;
  22. int tx_enabled;
  23. int rx_enabled;
  24. qemu_irq irq;
  25. CharDriverState *chr;
  26. } mcf_uart_state;
  27. /* UART Status Register bits. */
  28. #define MCF_UART_RxRDY 0x01
  29. #define MCF_UART_FFULL 0x02
  30. #define MCF_UART_TxRDY 0x04
  31. #define MCF_UART_TxEMP 0x08
  32. #define MCF_UART_OE 0x10
  33. #define MCF_UART_PE 0x20
  34. #define MCF_UART_FE 0x40
  35. #define MCF_UART_RB 0x80
  36. /* Interrupt flags. */
  37. #define MCF_UART_TxINT 0x01
  38. #define MCF_UART_RxINT 0x02
  39. #define MCF_UART_DBINT 0x04
  40. #define MCF_UART_COSINT 0x80
  41. /* UMR1 flags. */
  42. #define MCF_UART_BC0 0x01
  43. #define MCF_UART_BC1 0x02
  44. #define MCF_UART_PT 0x04
  45. #define MCF_UART_PM0 0x08
  46. #define MCF_UART_PM1 0x10
  47. #define MCF_UART_ERR 0x20
  48. #define MCF_UART_RxIRQ 0x40
  49. #define MCF_UART_RxRTS 0x80
  50. static void mcf_uart_update(mcf_uart_state *s)
  51. {
  52. s->isr &= ~(MCF_UART_TxINT | MCF_UART_RxINT);
  53. if (s->sr & MCF_UART_TxRDY)
  54. s->isr |= MCF_UART_TxINT;
  55. if ((s->sr & ((s->mr[0] & MCF_UART_RxIRQ)
  56. ? MCF_UART_FFULL : MCF_UART_RxRDY)) != 0)
  57. s->isr |= MCF_UART_RxINT;
  58. qemu_set_irq(s->irq, (s->isr & s->imr) != 0);
  59. }
  60. uint32_t mcf_uart_read(void *opaque, target_phys_addr_t addr)
  61. {
  62. mcf_uart_state *s = (mcf_uart_state *)opaque;
  63. switch (addr & 0x3f) {
  64. case 0x00:
  65. return s->mr[s->current_mr];
  66. case 0x04:
  67. return s->sr;
  68. case 0x0c:
  69. {
  70. uint8_t val;
  71. int i;
  72. if (s->fifo_len == 0)
  73. return 0;
  74. val = s->fifo[0];
  75. s->fifo_len--;
  76. for (i = 0; i < s->fifo_len; i++)
  77. s->fifo[i] = s->fifo[i + 1];
  78. s->sr &= ~MCF_UART_FFULL;
  79. if (s->fifo_len == 0)
  80. s->sr &= ~MCF_UART_RxRDY;
  81. mcf_uart_update(s);
  82. qemu_chr_accept_input(s->chr);
  83. return val;
  84. }
  85. case 0x10:
  86. /* TODO: Implement IPCR. */
  87. return 0;
  88. case 0x14:
  89. return s->isr;
  90. case 0x18:
  91. return s->bg1;
  92. case 0x1c:
  93. return s->bg2;
  94. default:
  95. return 0;
  96. }
  97. }
  98. /* Update TxRDY flag and set data if present and enabled. */
  99. static void mcf_uart_do_tx(mcf_uart_state *s)
  100. {
  101. if (s->tx_enabled && (s->sr & MCF_UART_TxEMP) == 0) {
  102. if (s->chr)
  103. qemu_chr_write(s->chr, (unsigned char *)&s->tb, 1);
  104. s->sr |= MCF_UART_TxEMP;
  105. }
  106. if (s->tx_enabled) {
  107. s->sr |= MCF_UART_TxRDY;
  108. } else {
  109. s->sr &= ~MCF_UART_TxRDY;
  110. }
  111. }
  112. static void mcf_do_command(mcf_uart_state *s, uint8_t cmd)
  113. {
  114. /* Misc command. */
  115. switch ((cmd >> 4) & 3) {
  116. case 0: /* No-op. */
  117. break;
  118. case 1: /* Reset mode register pointer. */
  119. s->current_mr = 0;
  120. break;
  121. case 2: /* Reset receiver. */
  122. s->rx_enabled = 0;
  123. s->fifo_len = 0;
  124. s->sr &= ~(MCF_UART_RxRDY | MCF_UART_FFULL);
  125. break;
  126. case 3: /* Reset transmitter. */
  127. s->tx_enabled = 0;
  128. s->sr |= MCF_UART_TxEMP;
  129. s->sr &= ~MCF_UART_TxRDY;
  130. break;
  131. case 4: /* Reset error status. */
  132. break;
  133. case 5: /* Reset break-change interrupt. */
  134. s->isr &= ~MCF_UART_DBINT;
  135. break;
  136. case 6: /* Start break. */
  137. case 7: /* Stop break. */
  138. break;
  139. }
  140. /* Transmitter command. */
  141. switch ((cmd >> 2) & 3) {
  142. case 0: /* No-op. */
  143. break;
  144. case 1: /* Enable. */
  145. s->tx_enabled = 1;
  146. mcf_uart_do_tx(s);
  147. break;
  148. case 2: /* Disable. */
  149. s->tx_enabled = 0;
  150. mcf_uart_do_tx(s);
  151. break;
  152. case 3: /* Reserved. */
  153. fprintf(stderr, "mcf_uart: Bad TX command\n");
  154. break;
  155. }
  156. /* Receiver command. */
  157. switch (cmd & 3) {
  158. case 0: /* No-op. */
  159. break;
  160. case 1: /* Enable. */
  161. s->rx_enabled = 1;
  162. break;
  163. case 2:
  164. s->rx_enabled = 0;
  165. break;
  166. case 3: /* Reserved. */
  167. fprintf(stderr, "mcf_uart: Bad RX command\n");
  168. break;
  169. }
  170. }
  171. void mcf_uart_write(void *opaque, target_phys_addr_t addr, uint32_t val)
  172. {
  173. mcf_uart_state *s = (mcf_uart_state *)opaque;
  174. switch (addr & 0x3f) {
  175. case 0x00:
  176. s->mr[s->current_mr] = val;
  177. s->current_mr = 1;
  178. break;
  179. case 0x04:
  180. /* CSR is ignored. */
  181. break;
  182. case 0x08: /* Command Register. */
  183. mcf_do_command(s, val);
  184. break;
  185. case 0x0c: /* Transmit Buffer. */
  186. s->sr &= ~MCF_UART_TxEMP;
  187. s->tb = val;
  188. mcf_uart_do_tx(s);
  189. break;
  190. case 0x10:
  191. /* ACR is ignored. */
  192. break;
  193. case 0x14:
  194. s->imr = val;
  195. break;
  196. default:
  197. break;
  198. }
  199. mcf_uart_update(s);
  200. }
  201. static void mcf_uart_reset(mcf_uart_state *s)
  202. {
  203. s->fifo_len = 0;
  204. s->mr[0] = 0;
  205. s->mr[1] = 0;
  206. s->sr = MCF_UART_TxEMP;
  207. s->tx_enabled = 0;
  208. s->rx_enabled = 0;
  209. s->isr = 0;
  210. s->imr = 0;
  211. }
  212. static void mcf_uart_push_byte(mcf_uart_state *s, uint8_t data)
  213. {
  214. /* Break events overwrite the last byte if the fifo is full. */
  215. if (s->fifo_len == 4)
  216. s->fifo_len--;
  217. s->fifo[s->fifo_len] = data;
  218. s->fifo_len++;
  219. s->sr |= MCF_UART_RxRDY;
  220. if (s->fifo_len == 4)
  221. s->sr |= MCF_UART_FFULL;
  222. mcf_uart_update(s);
  223. }
  224. static void mcf_uart_event(void *opaque, int event)
  225. {
  226. mcf_uart_state *s = (mcf_uart_state *)opaque;
  227. switch (event) {
  228. case CHR_EVENT_BREAK:
  229. s->isr |= MCF_UART_DBINT;
  230. mcf_uart_push_byte(s, 0);
  231. break;
  232. default:
  233. break;
  234. }
  235. }
  236. static int mcf_uart_can_receive(void *opaque)
  237. {
  238. mcf_uart_state *s = (mcf_uart_state *)opaque;
  239. return s->rx_enabled && (s->sr & MCF_UART_FFULL) == 0;
  240. }
  241. static void mcf_uart_receive(void *opaque, const uint8_t *buf, int size)
  242. {
  243. mcf_uart_state *s = (mcf_uart_state *)opaque;
  244. mcf_uart_push_byte(s, buf[0]);
  245. }
  246. void *mcf_uart_init(qemu_irq irq, CharDriverState *chr)
  247. {
  248. mcf_uart_state *s;
  249. s = qemu_mallocz(sizeof(mcf_uart_state));
  250. s->chr = chr;
  251. s->irq = irq;
  252. if (chr) {
  253. qemu_chr_add_handlers(chr, mcf_uart_can_receive, mcf_uart_receive,
  254. mcf_uart_event, s);
  255. }
  256. mcf_uart_reset(s);
  257. return s;
  258. }
  259. static CPUReadMemoryFunc *mcf_uart_readfn[] = {
  260. mcf_uart_read,
  261. mcf_uart_read,
  262. mcf_uart_read
  263. };
  264. static CPUWriteMemoryFunc *mcf_uart_writefn[] = {
  265. mcf_uart_write,
  266. mcf_uart_write,
  267. mcf_uart_write
  268. };
  269. void mcf_uart_mm_init(target_phys_addr_t base, qemu_irq irq,
  270. CharDriverState *chr)
  271. {
  272. mcf_uart_state *s;
  273. int iomemtype;
  274. s = mcf_uart_init(irq, chr);
  275. iomemtype = cpu_register_io_memory(0, mcf_uart_readfn,
  276. mcf_uart_writefn, s);
  277. cpu_register_physical_memory(base, 0x40, iomemtype);
  278. }