mcf5206.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. /*
  2. * Motorola ColdFire MCF5206 SoC embedded peripheral emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licenced under the GPL
  7. */
  8. #include "hw.h"
  9. #include "mcf.h"
  10. #include "qemu-timer.h"
  11. #include "sysemu.h"
  12. /* General purpose timer module. */
  13. typedef struct {
  14. uint16_t tmr;
  15. uint16_t trr;
  16. uint16_t tcr;
  17. uint16_t ter;
  18. ptimer_state *timer;
  19. qemu_irq irq;
  20. int irq_state;
  21. } m5206_timer_state;
  22. #define TMR_RST 0x01
  23. #define TMR_CLK 0x06
  24. #define TMR_FRR 0x08
  25. #define TMR_ORI 0x10
  26. #define TMR_OM 0x20
  27. #define TMR_CE 0xc0
  28. #define TER_CAP 0x01
  29. #define TER_REF 0x02
  30. static void m5206_timer_update(m5206_timer_state *s)
  31. {
  32. if ((s->tmr & TMR_ORI) != 0 && (s->ter & TER_REF))
  33. qemu_irq_raise(s->irq);
  34. else
  35. qemu_irq_lower(s->irq);
  36. }
  37. static void m5206_timer_reset(m5206_timer_state *s)
  38. {
  39. s->tmr = 0;
  40. s->trr = 0;
  41. }
  42. static void m5206_timer_recalibrate(m5206_timer_state *s)
  43. {
  44. int prescale;
  45. int mode;
  46. ptimer_stop(s->timer);
  47. if ((s->tmr & TMR_RST) == 0)
  48. return;
  49. prescale = (s->tmr >> 8) + 1;
  50. mode = (s->tmr >> 1) & 3;
  51. if (mode == 2)
  52. prescale *= 16;
  53. if (mode == 3 || mode == 0)
  54. cpu_abort(cpu_single_env,
  55. "m5206_timer: mode %d not implemented\n", mode);
  56. if ((s->tmr & TMR_FRR) == 0)
  57. cpu_abort(cpu_single_env,
  58. "m5206_timer: free running mode not implemented\n");
  59. /* Assume 66MHz system clock. */
  60. ptimer_set_freq(s->timer, 66000000 / prescale);
  61. ptimer_set_limit(s->timer, s->trr, 0);
  62. ptimer_run(s->timer, 0);
  63. }
  64. static void m5206_timer_trigger(void *opaque)
  65. {
  66. m5206_timer_state *s = (m5206_timer_state *)opaque;
  67. s->ter |= TER_REF;
  68. m5206_timer_update(s);
  69. }
  70. static uint32_t m5206_timer_read(m5206_timer_state *s, uint32_t addr)
  71. {
  72. switch (addr) {
  73. case 0:
  74. return s->tmr;
  75. case 4:
  76. return s->trr;
  77. case 8:
  78. return s->tcr;
  79. case 0xc:
  80. return s->trr - ptimer_get_count(s->timer);
  81. case 0x11:
  82. return s->ter;
  83. default:
  84. return 0;
  85. }
  86. }
  87. static void m5206_timer_write(m5206_timer_state *s, uint32_t addr, uint32_t val)
  88. {
  89. switch (addr) {
  90. case 0:
  91. if ((s->tmr & TMR_RST) != 0 && (val & TMR_RST) == 0) {
  92. m5206_timer_reset(s);
  93. }
  94. s->tmr = val;
  95. m5206_timer_recalibrate(s);
  96. break;
  97. case 4:
  98. s->trr = val;
  99. m5206_timer_recalibrate(s);
  100. break;
  101. case 8:
  102. s->tcr = val;
  103. break;
  104. case 0xc:
  105. ptimer_set_count(s->timer, val);
  106. break;
  107. case 0x11:
  108. s->ter &= ~val;
  109. break;
  110. default:
  111. break;
  112. }
  113. m5206_timer_update(s);
  114. }
  115. static m5206_timer_state *m5206_timer_init(qemu_irq irq)
  116. {
  117. m5206_timer_state *s;
  118. QEMUBH *bh;
  119. s = (m5206_timer_state *)qemu_mallocz(sizeof(m5206_timer_state));
  120. bh = qemu_bh_new(m5206_timer_trigger, s);
  121. s->timer = ptimer_init(bh);
  122. s->irq = irq;
  123. m5206_timer_reset(s);
  124. return s;
  125. }
  126. /* System Integration Module. */
  127. typedef struct {
  128. CPUState *env;
  129. m5206_timer_state *timer[2];
  130. void *uart[2];
  131. uint8_t scr;
  132. uint8_t icr[14];
  133. uint16_t imr; /* 1 == interrupt is masked. */
  134. uint16_t ipr;
  135. uint8_t rsr;
  136. uint8_t swivr;
  137. uint8_t par;
  138. /* Include the UART vector registers here. */
  139. uint8_t uivr[2];
  140. } m5206_mbar_state;
  141. /* Interrupt controller. */
  142. static int m5206_find_pending_irq(m5206_mbar_state *s)
  143. {
  144. int level;
  145. int vector;
  146. uint16_t active;
  147. int i;
  148. level = 0;
  149. vector = 0;
  150. active = s->ipr & ~s->imr;
  151. if (!active)
  152. return 0;
  153. for (i = 1; i < 14; i++) {
  154. if (active & (1 << i)) {
  155. if ((s->icr[i] & 0x1f) > level) {
  156. level = s->icr[i] & 0x1f;
  157. vector = i;
  158. }
  159. }
  160. }
  161. if (level < 4)
  162. vector = 0;
  163. return vector;
  164. }
  165. static void m5206_mbar_update(m5206_mbar_state *s)
  166. {
  167. int irq;
  168. int vector;
  169. int level;
  170. irq = m5206_find_pending_irq(s);
  171. if (irq) {
  172. int tmp;
  173. tmp = s->icr[irq];
  174. level = (tmp >> 2) & 7;
  175. if (tmp & 0x80) {
  176. /* Autovector. */
  177. vector = 24 + level;
  178. } else {
  179. switch (irq) {
  180. case 8: /* SWT */
  181. vector = s->swivr;
  182. break;
  183. case 12: /* UART1 */
  184. vector = s->uivr[0];
  185. break;
  186. case 13: /* UART2 */
  187. vector = s->uivr[1];
  188. break;
  189. default:
  190. /* Unknown vector. */
  191. fprintf(stderr, "Unhandled vector for IRQ %d\n", irq);
  192. vector = 0xf;
  193. break;
  194. }
  195. }
  196. } else {
  197. level = 0;
  198. vector = 0;
  199. }
  200. m68k_set_irq_level(s->env, level, vector);
  201. }
  202. static void m5206_mbar_set_irq(void *opaque, int irq, int level)
  203. {
  204. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  205. if (level) {
  206. s->ipr |= 1 << irq;
  207. } else {
  208. s->ipr &= ~(1 << irq);
  209. }
  210. m5206_mbar_update(s);
  211. }
  212. /* System Integration Module. */
  213. static void m5206_mbar_reset(m5206_mbar_state *s)
  214. {
  215. s->scr = 0xc0;
  216. s->icr[1] = 0x04;
  217. s->icr[2] = 0x08;
  218. s->icr[3] = 0x0c;
  219. s->icr[4] = 0x10;
  220. s->icr[5] = 0x14;
  221. s->icr[6] = 0x18;
  222. s->icr[7] = 0x1c;
  223. s->icr[8] = 0x1c;
  224. s->icr[9] = 0x80;
  225. s->icr[10] = 0x80;
  226. s->icr[11] = 0x80;
  227. s->icr[12] = 0x00;
  228. s->icr[13] = 0x00;
  229. s->imr = 0x3ffe;
  230. s->rsr = 0x80;
  231. s->swivr = 0x0f;
  232. s->par = 0;
  233. }
  234. static uint32_t m5206_mbar_read(m5206_mbar_state *s, uint32_t offset)
  235. {
  236. if (offset >= 0x100 && offset < 0x120) {
  237. return m5206_timer_read(s->timer[0], offset - 0x100);
  238. } else if (offset >= 0x120 && offset < 0x140) {
  239. return m5206_timer_read(s->timer[1], offset - 0x120);
  240. } else if (offset >= 0x140 && offset < 0x160) {
  241. return mcf_uart_read(s->uart[0], offset - 0x140);
  242. } else if (offset >= 0x180 && offset < 0x1a0) {
  243. return mcf_uart_read(s->uart[1], offset - 0x180);
  244. }
  245. switch (offset) {
  246. case 0x03: return s->scr;
  247. case 0x14 ... 0x20: return s->icr[offset - 0x13];
  248. case 0x36: return s->imr;
  249. case 0x3a: return s->ipr;
  250. case 0x40: return s->rsr;
  251. case 0x41: return 0;
  252. case 0x42: return s->swivr;
  253. case 0x50:
  254. /* DRAM mask register. */
  255. /* FIXME: currently hardcoded to 128Mb. */
  256. {
  257. uint32_t mask = ~0;
  258. while (mask > ram_size)
  259. mask >>= 1;
  260. return mask & 0x0ffe0000;
  261. }
  262. case 0x5c: return 1; /* DRAM bank 1 empty. */
  263. case 0xcb: return s->par;
  264. case 0x170: return s->uivr[0];
  265. case 0x1b0: return s->uivr[1];
  266. }
  267. cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset);
  268. return 0;
  269. }
  270. static void m5206_mbar_write(m5206_mbar_state *s, uint32_t offset,
  271. uint32_t value)
  272. {
  273. if (offset >= 0x100 && offset < 0x120) {
  274. m5206_timer_write(s->timer[0], offset - 0x100, value);
  275. return;
  276. } else if (offset >= 0x120 && offset < 0x140) {
  277. m5206_timer_write(s->timer[1], offset - 0x120, value);
  278. return;
  279. } else if (offset >= 0x140 && offset < 0x160) {
  280. mcf_uart_write(s->uart[0], offset - 0x140, value);
  281. return;
  282. } else if (offset >= 0x180 && offset < 0x1a0) {
  283. mcf_uart_write(s->uart[1], offset - 0x180, value);
  284. return;
  285. }
  286. switch (offset) {
  287. case 0x03:
  288. s->scr = value;
  289. break;
  290. case 0x14 ... 0x20:
  291. s->icr[offset - 0x13] = value;
  292. m5206_mbar_update(s);
  293. break;
  294. case 0x36:
  295. s->imr = value;
  296. m5206_mbar_update(s);
  297. break;
  298. case 0x40:
  299. s->rsr &= ~value;
  300. break;
  301. case 0x41:
  302. /* TODO: implement watchdog. */
  303. break;
  304. case 0x42:
  305. s->swivr = value;
  306. break;
  307. case 0xcb:
  308. s->par = value;
  309. break;
  310. case 0x170:
  311. s->uivr[0] = value;
  312. break;
  313. case 0x178: case 0x17c: case 0x1c8: case 0x1bc:
  314. /* Not implemented: UART Output port bits. */
  315. break;
  316. case 0x1b0:
  317. s->uivr[1] = value;
  318. break;
  319. default:
  320. cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset);
  321. break;
  322. }
  323. }
  324. /* Internal peripherals use a variety of register widths.
  325. This lookup table allows a single routine to handle all of them. */
  326. static const int m5206_mbar_width[] =
  327. {
  328. /* 000-040 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
  329. /* 040-080 */ 1, 2, 2, 2, 4, 1, 2, 4, 1, 2, 4, 2, 2, 4, 2, 2,
  330. /* 080-0c0 */ 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4,
  331. /* 0c0-100 */ 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  332. /* 100-140 */ 2, 2, 2, 2, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0,
  333. /* 140-180 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  334. /* 180-1c0 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  335. /* 1c0-200 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  336. };
  337. static uint32_t m5206_mbar_readw(void *opaque, target_phys_addr_t offset);
  338. static uint32_t m5206_mbar_readl(void *opaque, target_phys_addr_t offset);
  339. static uint32_t m5206_mbar_readb(void *opaque, target_phys_addr_t offset)
  340. {
  341. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  342. offset &= 0x3ff;
  343. if (offset > 0x200) {
  344. cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset);
  345. }
  346. if (m5206_mbar_width[offset >> 2] > 1) {
  347. uint16_t val;
  348. val = m5206_mbar_readw(opaque, offset & ~1);
  349. if ((offset & 1) == 0) {
  350. val >>= 8;
  351. }
  352. return val & 0xff;
  353. }
  354. return m5206_mbar_read(s, offset);
  355. }
  356. static uint32_t m5206_mbar_readw(void *opaque, target_phys_addr_t offset)
  357. {
  358. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  359. int width;
  360. offset &= 0x3ff;
  361. if (offset > 0x200) {
  362. cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset);
  363. }
  364. width = m5206_mbar_width[offset >> 2];
  365. if (width > 2) {
  366. uint32_t val;
  367. val = m5206_mbar_readl(opaque, offset & ~3);
  368. if ((offset & 3) == 0)
  369. val >>= 16;
  370. return val & 0xffff;
  371. } else if (width < 2) {
  372. uint16_t val;
  373. val = m5206_mbar_readb(opaque, offset) << 8;
  374. val |= m5206_mbar_readb(opaque, offset + 1);
  375. return val;
  376. }
  377. return m5206_mbar_read(s, offset);
  378. }
  379. static uint32_t m5206_mbar_readl(void *opaque, target_phys_addr_t offset)
  380. {
  381. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  382. int width;
  383. offset &= 0x3ff;
  384. if (offset > 0x200) {
  385. cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset);
  386. }
  387. width = m5206_mbar_width[offset >> 2];
  388. if (width < 4) {
  389. uint32_t val;
  390. val = m5206_mbar_readw(opaque, offset) << 16;
  391. val |= m5206_mbar_readw(opaque, offset + 2);
  392. return val;
  393. }
  394. return m5206_mbar_read(s, offset);
  395. }
  396. static void m5206_mbar_writew(void *opaque, target_phys_addr_t offset,
  397. uint32_t value);
  398. static void m5206_mbar_writel(void *opaque, target_phys_addr_t offset,
  399. uint32_t value);
  400. static void m5206_mbar_writeb(void *opaque, target_phys_addr_t offset,
  401. uint32_t value)
  402. {
  403. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  404. int width;
  405. offset &= 0x3ff;
  406. if (offset > 0x200) {
  407. cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset);
  408. }
  409. width = m5206_mbar_width[offset >> 2];
  410. if (width > 1) {
  411. uint32_t tmp;
  412. tmp = m5206_mbar_readw(opaque, offset & ~1);
  413. if (offset & 1) {
  414. tmp = (tmp & 0xff00) | value;
  415. } else {
  416. tmp = (tmp & 0x00ff) | (value << 8);
  417. }
  418. m5206_mbar_writew(opaque, offset & ~1, tmp);
  419. return;
  420. }
  421. m5206_mbar_write(s, offset, value);
  422. }
  423. static void m5206_mbar_writew(void *opaque, target_phys_addr_t offset,
  424. uint32_t value)
  425. {
  426. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  427. int width;
  428. offset &= 0x3ff;
  429. if (offset > 0x200) {
  430. cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset);
  431. }
  432. width = m5206_mbar_width[offset >> 2];
  433. if (width > 2) {
  434. uint32_t tmp;
  435. tmp = m5206_mbar_readl(opaque, offset & ~3);
  436. if (offset & 3) {
  437. tmp = (tmp & 0xffff0000) | value;
  438. } else {
  439. tmp = (tmp & 0x0000ffff) | (value << 16);
  440. }
  441. m5206_mbar_writel(opaque, offset & ~3, tmp);
  442. return;
  443. } else if (width < 2) {
  444. m5206_mbar_writeb(opaque, offset, value >> 8);
  445. m5206_mbar_writeb(opaque, offset + 1, value & 0xff);
  446. return;
  447. }
  448. m5206_mbar_write(s, offset, value);
  449. }
  450. static void m5206_mbar_writel(void *opaque, target_phys_addr_t offset,
  451. uint32_t value)
  452. {
  453. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  454. int width;
  455. offset &= 0x3ff;
  456. if (offset > 0x200) {
  457. cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset);
  458. }
  459. width = m5206_mbar_width[offset >> 2];
  460. if (width < 4) {
  461. m5206_mbar_writew(opaque, offset, value >> 16);
  462. m5206_mbar_writew(opaque, offset + 2, value & 0xffff);
  463. return;
  464. }
  465. m5206_mbar_write(s, offset, value);
  466. }
  467. static CPUReadMemoryFunc *m5206_mbar_readfn[] = {
  468. m5206_mbar_readb,
  469. m5206_mbar_readw,
  470. m5206_mbar_readl
  471. };
  472. static CPUWriteMemoryFunc *m5206_mbar_writefn[] = {
  473. m5206_mbar_writeb,
  474. m5206_mbar_writew,
  475. m5206_mbar_writel
  476. };
  477. qemu_irq *mcf5206_init(uint32_t base, CPUState *env)
  478. {
  479. m5206_mbar_state *s;
  480. qemu_irq *pic;
  481. int iomemtype;
  482. s = (m5206_mbar_state *)qemu_mallocz(sizeof(m5206_mbar_state));
  483. iomemtype = cpu_register_io_memory(0, m5206_mbar_readfn,
  484. m5206_mbar_writefn, s);
  485. cpu_register_physical_memory(base, 0x00001000, iomemtype);
  486. pic = qemu_allocate_irqs(m5206_mbar_set_irq, s, 14);
  487. s->timer[0] = m5206_timer_init(pic[9]);
  488. s->timer[1] = m5206_timer_init(pic[10]);
  489. s->uart[0] = mcf_uart_init(pic[12], serial_hds[0]);
  490. s->uart[1] = mcf_uart_init(pic[13], serial_hds[1]);
  491. s->env = env;
  492. m5206_mbar_reset(s);
  493. return pic;
  494. }