eccmemctl.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. /*
  2. * QEMU Sparc Sun4m ECC memory controller emulation
  3. *
  4. * Copyright (c) 2007 Robert Reif
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw.h"
  25. #include "sun4m.h"
  26. #include "sysemu.h"
  27. //#define DEBUG_ECC
  28. #ifdef DEBUG_ECC
  29. #define DPRINTF(fmt, args...) \
  30. do { printf("ECC: " fmt , ##args); } while (0)
  31. #else
  32. #define DPRINTF(fmt, args...)
  33. #endif
  34. /* There are 3 versions of this chip used in SMP sun4m systems:
  35. * MCC (version 0, implementation 0) SS-600MP
  36. * EMC (version 0, implementation 1) SS-10
  37. * SMC (version 0, implementation 2) SS-10SX and SS-20
  38. */
  39. #define ECC_MCC 0x00000000
  40. #define ECC_EMC 0x10000000
  41. #define ECC_SMC 0x20000000
  42. /* Register indexes */
  43. #define ECC_MER 0 /* Memory Enable Register */
  44. #define ECC_MDR 1 /* Memory Delay Register */
  45. #define ECC_MFSR 2 /* Memory Fault Status Register */
  46. #define ECC_VCR 3 /* Video Configuration Register */
  47. #define ECC_MFAR0 4 /* Memory Fault Address Register 0 */
  48. #define ECC_MFAR1 5 /* Memory Fault Address Register 1 */
  49. #define ECC_DR 6 /* Diagnostic Register */
  50. #define ECC_ECR0 7 /* Event Count Register 0 */
  51. #define ECC_ECR1 8 /* Event Count Register 1 */
  52. /* ECC fault control register */
  53. #define ECC_MER_EE 0x00000001 /* Enable ECC checking */
  54. #define ECC_MER_EI 0x00000002 /* Enable Interrupts on
  55. correctable errors */
  56. #define ECC_MER_MRR0 0x00000004 /* SIMM 0 */
  57. #define ECC_MER_MRR1 0x00000008 /* SIMM 1 */
  58. #define ECC_MER_MRR2 0x00000010 /* SIMM 2 */
  59. #define ECC_MER_MRR3 0x00000020 /* SIMM 3 */
  60. #define ECC_MER_MRR4 0x00000040 /* SIMM 4 */
  61. #define ECC_MER_MRR5 0x00000080 /* SIMM 5 */
  62. #define ECC_MER_MRR6 0x00000100 /* SIMM 6 */
  63. #define ECC_MER_MRR7 0x00000200 /* SIMM 7 */
  64. #define ECC_MER_REU 0x00000100 /* Memory Refresh Enable (600MP) */
  65. #define ECC_MER_MRR 0x000003fc /* MRR mask */
  66. #define ECC_MER_A 0x00000400 /* Memory controller addr map select */
  67. #define ECC_MER_DCI 0x00000800 /* Disables Coherent Invalidate ACK */
  68. #define ECC_MER_VER 0x0f000000 /* Version */
  69. #define ECC_MER_IMPL 0xf0000000 /* Implementation */
  70. #define ECC_MER_MASK_0 0x00000103 /* Version 0 (MCC) mask */
  71. #define ECC_MER_MASK_1 0x00000bff /* Version 1 (EMC) mask */
  72. #define ECC_MER_MASK_2 0x00000bff /* Version 2 (SMC) mask */
  73. /* ECC memory delay register */
  74. #define ECC_MDR_RRI 0x000003ff /* Refresh Request Interval */
  75. #define ECC_MDR_MI 0x00001c00 /* MIH Delay */
  76. #define ECC_MDR_CI 0x0000e000 /* Coherent Invalidate Delay */
  77. #define ECC_MDR_MDL 0x001f0000 /* MBus Master arbitration delay */
  78. #define ECC_MDR_MDH 0x03e00000 /* MBus Master arbitration delay */
  79. #define ECC_MDR_GAD 0x7c000000 /* Graphics Arbitration Delay */
  80. #define ECC_MDR_RSC 0x80000000 /* Refresh load control */
  81. #define ECC_MDR_MASK 0x7fffffff
  82. /* ECC fault status register */
  83. #define ECC_MFSR_CE 0x00000001 /* Correctable error */
  84. #define ECC_MFSR_BS 0x00000002 /* C2 graphics bad slot access */
  85. #define ECC_MFSR_TO 0x00000004 /* Timeout on write */
  86. #define ECC_MFSR_UE 0x00000008 /* Uncorrectable error */
  87. #define ECC_MFSR_DW 0x000000f0 /* Index of double word in block */
  88. #define ECC_MFSR_SYND 0x0000ff00 /* Syndrome for correctable error */
  89. #define ECC_MFSR_ME 0x00010000 /* Multiple errors */
  90. #define ECC_MFSR_C2ERR 0x00020000 /* C2 graphics error */
  91. /* ECC fault address register 0 */
  92. #define ECC_MFAR0_PADDR 0x0000000f /* PA[32-35] */
  93. #define ECC_MFAR0_TYPE 0x000000f0 /* Transaction type */
  94. #define ECC_MFAR0_SIZE 0x00000700 /* Transaction size */
  95. #define ECC_MFAR0_CACHE 0x00000800 /* Mapped cacheable */
  96. #define ECC_MFAR0_LOCK 0x00001000 /* Error occurred in atomic cycle */
  97. #define ECC_MFAR0_BMODE 0x00002000 /* Boot mode */
  98. #define ECC_MFAR0_VADDR 0x003fc000 /* VA[12-19] (superset bits) */
  99. #define ECC_MFAR0_S 0x08000000 /* Supervisor mode */
  100. #define ECC_MFARO_MID 0xf0000000 /* Module ID */
  101. /* ECC diagnostic register */
  102. #define ECC_DR_CBX 0x00000001
  103. #define ECC_DR_CB0 0x00000002
  104. #define ECC_DR_CB1 0x00000004
  105. #define ECC_DR_CB2 0x00000008
  106. #define ECC_DR_CB4 0x00000010
  107. #define ECC_DR_CB8 0x00000020
  108. #define ECC_DR_CB16 0x00000040
  109. #define ECC_DR_CB32 0x00000080
  110. #define ECC_DR_DMODE 0x00000c00
  111. #define ECC_NREGS 9
  112. #define ECC_SIZE (ECC_NREGS * sizeof(uint32_t))
  113. #define ECC_DIAG_SIZE 4
  114. #define ECC_DIAG_MASK (ECC_DIAG_SIZE - 1)
  115. typedef struct ECCState {
  116. qemu_irq irq;
  117. uint32_t regs[ECC_NREGS];
  118. uint8_t diag[ECC_DIAG_SIZE];
  119. uint32_t version;
  120. } ECCState;
  121. static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
  122. {
  123. ECCState *s = opaque;
  124. switch (addr >> 2) {
  125. case ECC_MER:
  126. if (s->version == ECC_MCC)
  127. s->regs[ECC_MER] = (val & ECC_MER_MASK_0);
  128. else if (s->version == ECC_EMC)
  129. s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_1);
  130. else if (s->version == ECC_SMC)
  131. s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_2);
  132. DPRINTF("Write memory enable %08x\n", val);
  133. break;
  134. case ECC_MDR:
  135. s->regs[ECC_MDR] = val & ECC_MDR_MASK;
  136. DPRINTF("Write memory delay %08x\n", val);
  137. break;
  138. case ECC_MFSR:
  139. s->regs[ECC_MFSR] = val;
  140. qemu_irq_lower(s->irq);
  141. DPRINTF("Write memory fault status %08x\n", val);
  142. break;
  143. case ECC_VCR:
  144. s->regs[ECC_VCR] = val;
  145. DPRINTF("Write slot configuration %08x\n", val);
  146. break;
  147. case ECC_DR:
  148. s->regs[ECC_DR] = val;
  149. DPRINTF("Write diagnostic %08x\n", val);
  150. break;
  151. case ECC_ECR0:
  152. s->regs[ECC_ECR0] = val;
  153. DPRINTF("Write event count 1 %08x\n", val);
  154. break;
  155. case ECC_ECR1:
  156. s->regs[ECC_ECR0] = val;
  157. DPRINTF("Write event count 2 %08x\n", val);
  158. break;
  159. }
  160. }
  161. static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
  162. {
  163. ECCState *s = opaque;
  164. uint32_t ret = 0;
  165. switch (addr >> 2) {
  166. case ECC_MER:
  167. ret = s->regs[ECC_MER];
  168. DPRINTF("Read memory enable %08x\n", ret);
  169. break;
  170. case ECC_MDR:
  171. ret = s->regs[ECC_MDR];
  172. DPRINTF("Read memory delay %08x\n", ret);
  173. break;
  174. case ECC_MFSR:
  175. ret = s->regs[ECC_MFSR];
  176. DPRINTF("Read memory fault status %08x\n", ret);
  177. break;
  178. case ECC_VCR:
  179. ret = s->regs[ECC_VCR];
  180. DPRINTF("Read slot configuration %08x\n", ret);
  181. break;
  182. case ECC_MFAR0:
  183. ret = s->regs[ECC_MFAR0];
  184. DPRINTF("Read memory fault address 0 %08x\n", ret);
  185. break;
  186. case ECC_MFAR1:
  187. ret = s->regs[ECC_MFAR1];
  188. DPRINTF("Read memory fault address 1 %08x\n", ret);
  189. break;
  190. case ECC_DR:
  191. ret = s->regs[ECC_DR];
  192. DPRINTF("Read diagnostic %08x\n", ret);
  193. break;
  194. case ECC_ECR0:
  195. ret = s->regs[ECC_ECR0];
  196. DPRINTF("Read event count 1 %08x\n", ret);
  197. break;
  198. case ECC_ECR1:
  199. ret = s->regs[ECC_ECR0];
  200. DPRINTF("Read event count 2 %08x\n", ret);
  201. break;
  202. }
  203. return ret;
  204. }
  205. static CPUReadMemoryFunc *ecc_mem_read[3] = {
  206. NULL,
  207. NULL,
  208. ecc_mem_readl,
  209. };
  210. static CPUWriteMemoryFunc *ecc_mem_write[3] = {
  211. NULL,
  212. NULL,
  213. ecc_mem_writel,
  214. };
  215. static void ecc_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
  216. uint32_t val)
  217. {
  218. ECCState *s = opaque;
  219. DPRINTF("Write diagnostic[%d] = %02x\n", (int)addr, val);
  220. s->diag[addr & ECC_DIAG_MASK] = val;
  221. }
  222. static uint32_t ecc_diag_mem_readb(void *opaque, target_phys_addr_t addr)
  223. {
  224. ECCState *s = opaque;
  225. uint32_t ret = s->diag[(int)addr];
  226. DPRINTF("Read diagnostic[%d] = %02x\n", (int)addr, ret);
  227. return ret;
  228. }
  229. static CPUReadMemoryFunc *ecc_diag_mem_read[3] = {
  230. ecc_diag_mem_readb,
  231. NULL,
  232. NULL,
  233. };
  234. static CPUWriteMemoryFunc *ecc_diag_mem_write[3] = {
  235. ecc_diag_mem_writeb,
  236. NULL,
  237. NULL,
  238. };
  239. static int ecc_load(QEMUFile *f, void *opaque, int version_id)
  240. {
  241. ECCState *s = opaque;
  242. int i;
  243. if (version_id != 3)
  244. return -EINVAL;
  245. for (i = 0; i < ECC_NREGS; i++)
  246. qemu_get_be32s(f, &s->regs[i]);
  247. for (i = 0; i < ECC_DIAG_SIZE; i++)
  248. qemu_get_8s(f, &s->diag[i]);
  249. qemu_get_be32s(f, &s->version);
  250. return 0;
  251. }
  252. static void ecc_save(QEMUFile *f, void *opaque)
  253. {
  254. ECCState *s = opaque;
  255. int i;
  256. for (i = 0; i < ECC_NREGS; i++)
  257. qemu_put_be32s(f, &s->regs[i]);
  258. for (i = 0; i < ECC_DIAG_SIZE; i++)
  259. qemu_put_8s(f, &s->diag[i]);
  260. qemu_put_be32s(f, &s->version);
  261. }
  262. static void ecc_reset(void *opaque)
  263. {
  264. ECCState *s = opaque;
  265. if (s->version == ECC_MCC)
  266. s->regs[ECC_MER] &= ECC_MER_REU;
  267. else
  268. s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL | ECC_MER_MRR |
  269. ECC_MER_DCI);
  270. s->regs[ECC_MDR] = 0x20;
  271. s->regs[ECC_MFSR] = 0;
  272. s->regs[ECC_VCR] = 0;
  273. s->regs[ECC_MFAR0] = 0x07c00000;
  274. s->regs[ECC_MFAR1] = 0;
  275. s->regs[ECC_DR] = 0;
  276. s->regs[ECC_ECR0] = 0;
  277. s->regs[ECC_ECR1] = 0;
  278. }
  279. void * ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
  280. {
  281. int ecc_io_memory;
  282. ECCState *s;
  283. s = qemu_mallocz(sizeof(ECCState));
  284. s->version = version;
  285. s->regs[0] = version;
  286. s->irq = irq;
  287. ecc_io_memory = cpu_register_io_memory(0, ecc_mem_read, ecc_mem_write, s);
  288. cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory);
  289. if (version == ECC_MCC) { // SS-600MP only
  290. ecc_io_memory = cpu_register_io_memory(0, ecc_diag_mem_read,
  291. ecc_diag_mem_write, s);
  292. cpu_register_physical_memory(base + 0x1000, ECC_DIAG_SIZE,
  293. ecc_io_memory);
  294. }
  295. register_savevm("ECC", base, 3, ecc_save, ecc_load, s);
  296. qemu_register_reset(ecc_reset, s);
  297. ecc_reset(s);
  298. return s;
  299. }