cuda.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767
  1. /*
  2. * QEMU PowerMac CUDA device support
  3. *
  4. * Copyright (c) 2004-2007 Fabrice Bellard
  5. * Copyright (c) 2007 Jocelyn Mayer
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a copy
  8. * of this software and associated documentation files (the "Software"), to deal
  9. * in the Software without restriction, including without limitation the rights
  10. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. * copies of the Software, and to permit persons to whom the Software is
  12. * furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice shall be included in
  15. * all copies or substantial portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23. * THE SOFTWARE.
  24. */
  25. #include "hw.h"
  26. #include "ppc_mac.h"
  27. #include "qemu-timer.h"
  28. #include "sysemu.h"
  29. /* XXX: implement all timer modes */
  30. /* debug CUDA */
  31. //#define DEBUG_CUDA
  32. /* debug CUDA packets */
  33. //#define DEBUG_CUDA_PACKET
  34. #ifdef DEBUG_CUDA
  35. #define CUDA_DPRINTF(fmt, args...) \
  36. do { printf("CUDA: " fmt , ##args); } while (0)
  37. #else
  38. #define CUDA_DPRINTF(fmt, args...)
  39. #endif
  40. /* Bits in B data register: all active low */
  41. #define TREQ 0x08 /* Transfer request (input) */
  42. #define TACK 0x10 /* Transfer acknowledge (output) */
  43. #define TIP 0x20 /* Transfer in progress (output) */
  44. /* Bits in ACR */
  45. #define SR_CTRL 0x1c /* Shift register control bits */
  46. #define SR_EXT 0x0c /* Shift on external clock */
  47. #define SR_OUT 0x10 /* Shift out if 1 */
  48. /* Bits in IFR and IER */
  49. #define IER_SET 0x80 /* set bits in IER */
  50. #define IER_CLR 0 /* clear bits in IER */
  51. #define SR_INT 0x04 /* Shift register full/empty */
  52. #define T1_INT 0x40 /* Timer 1 interrupt */
  53. #define T2_INT 0x20 /* Timer 2 interrupt */
  54. /* Bits in ACR */
  55. #define T1MODE 0xc0 /* Timer 1 mode */
  56. #define T1MODE_CONT 0x40 /* continuous interrupts */
  57. /* commands (1st byte) */
  58. #define ADB_PACKET 0
  59. #define CUDA_PACKET 1
  60. #define ERROR_PACKET 2
  61. #define TIMER_PACKET 3
  62. #define POWER_PACKET 4
  63. #define MACIIC_PACKET 5
  64. #define PMU_PACKET 6
  65. /* CUDA commands (2nd byte) */
  66. #define CUDA_WARM_START 0x0
  67. #define CUDA_AUTOPOLL 0x1
  68. #define CUDA_GET_6805_ADDR 0x2
  69. #define CUDA_GET_TIME 0x3
  70. #define CUDA_GET_PRAM 0x7
  71. #define CUDA_SET_6805_ADDR 0x8
  72. #define CUDA_SET_TIME 0x9
  73. #define CUDA_POWERDOWN 0xa
  74. #define CUDA_POWERUP_TIME 0xb
  75. #define CUDA_SET_PRAM 0xc
  76. #define CUDA_MS_RESET 0xd
  77. #define CUDA_SEND_DFAC 0xe
  78. #define CUDA_BATTERY_SWAP_SENSE 0x10
  79. #define CUDA_RESET_SYSTEM 0x11
  80. #define CUDA_SET_IPL 0x12
  81. #define CUDA_FILE_SERVER_FLAG 0x13
  82. #define CUDA_SET_AUTO_RATE 0x14
  83. #define CUDA_GET_AUTO_RATE 0x16
  84. #define CUDA_SET_DEVICE_LIST 0x19
  85. #define CUDA_GET_DEVICE_LIST 0x1a
  86. #define CUDA_SET_ONE_SECOND_MODE 0x1b
  87. #define CUDA_SET_POWER_MESSAGES 0x21
  88. #define CUDA_GET_SET_IIC 0x22
  89. #define CUDA_WAKEUP 0x23
  90. #define CUDA_TIMER_TICKLE 0x24
  91. #define CUDA_COMBINED_FORMAT_IIC 0x25
  92. #define CUDA_TIMER_FREQ (4700000 / 6)
  93. #define CUDA_ADB_POLL_FREQ 50
  94. /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
  95. #define RTC_OFFSET 2082844800
  96. typedef struct CUDATimer {
  97. int index;
  98. uint16_t latch;
  99. uint16_t counter_value; /* counter value at load time */
  100. int64_t load_time;
  101. int64_t next_irq_time;
  102. QEMUTimer *timer;
  103. } CUDATimer;
  104. typedef struct CUDAState {
  105. /* cuda registers */
  106. uint8_t b; /* B-side data */
  107. uint8_t a; /* A-side data */
  108. uint8_t dirb; /* B-side direction (1=output) */
  109. uint8_t dira; /* A-side direction (1=output) */
  110. uint8_t sr; /* Shift register */
  111. uint8_t acr; /* Auxiliary control register */
  112. uint8_t pcr; /* Peripheral control register */
  113. uint8_t ifr; /* Interrupt flag register */
  114. uint8_t ier; /* Interrupt enable register */
  115. uint8_t anh; /* A-side data, no handshake */
  116. CUDATimer timers[2];
  117. uint32_t tick_offset;
  118. uint8_t last_b; /* last value of B register */
  119. uint8_t last_acr; /* last value of B register */
  120. int data_in_size;
  121. int data_in_index;
  122. int data_out_index;
  123. qemu_irq irq;
  124. uint8_t autopoll;
  125. uint8_t data_in[128];
  126. uint8_t data_out[16];
  127. QEMUTimer *adb_poll_timer;
  128. } CUDAState;
  129. static CUDAState cuda_state;
  130. ADBBusState adb_bus;
  131. static void cuda_update(CUDAState *s);
  132. static void cuda_receive_packet_from_host(CUDAState *s,
  133. const uint8_t *data, int len);
  134. static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
  135. int64_t current_time);
  136. static void cuda_update_irq(CUDAState *s)
  137. {
  138. if (s->ifr & s->ier & (SR_INT | T1_INT)) {
  139. qemu_irq_raise(s->irq);
  140. } else {
  141. qemu_irq_lower(s->irq);
  142. }
  143. }
  144. static unsigned int get_counter(CUDATimer *s)
  145. {
  146. int64_t d;
  147. unsigned int counter;
  148. d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
  149. CUDA_TIMER_FREQ, ticks_per_sec);
  150. if (s->index == 0) {
  151. /* the timer goes down from latch to -1 (period of latch + 2) */
  152. if (d <= (s->counter_value + 1)) {
  153. counter = (s->counter_value - d) & 0xffff;
  154. } else {
  155. counter = (d - (s->counter_value + 1)) % (s->latch + 2);
  156. counter = (s->latch - counter) & 0xffff;
  157. }
  158. } else {
  159. counter = (s->counter_value - d) & 0xffff;
  160. }
  161. return counter;
  162. }
  163. static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
  164. {
  165. CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
  166. ti->load_time = qemu_get_clock(vm_clock);
  167. ti->counter_value = val;
  168. cuda_timer_update(s, ti, ti->load_time);
  169. }
  170. static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
  171. {
  172. int64_t d, next_time;
  173. unsigned int counter;
  174. /* current counter value */
  175. d = muldiv64(current_time - s->load_time,
  176. CUDA_TIMER_FREQ, ticks_per_sec);
  177. /* the timer goes down from latch to -1 (period of latch + 2) */
  178. if (d <= (s->counter_value + 1)) {
  179. counter = (s->counter_value - d) & 0xffff;
  180. } else {
  181. counter = (d - (s->counter_value + 1)) % (s->latch + 2);
  182. counter = (s->latch - counter) & 0xffff;
  183. }
  184. /* Note: we consider the irq is raised on 0 */
  185. if (counter == 0xffff) {
  186. next_time = d + s->latch + 1;
  187. } else if (counter == 0) {
  188. next_time = d + s->latch + 2;
  189. } else {
  190. next_time = d + counter;
  191. }
  192. CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
  193. s->latch, d, next_time - d);
  194. next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
  195. s->load_time;
  196. if (next_time <= current_time)
  197. next_time = current_time + 1;
  198. return next_time;
  199. }
  200. static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
  201. int64_t current_time)
  202. {
  203. if (!ti->timer)
  204. return;
  205. if ((s->acr & T1MODE) != T1MODE_CONT) {
  206. qemu_del_timer(ti->timer);
  207. } else {
  208. ti->next_irq_time = get_next_irq_time(ti, current_time);
  209. qemu_mod_timer(ti->timer, ti->next_irq_time);
  210. }
  211. }
  212. static void cuda_timer1(void *opaque)
  213. {
  214. CUDAState *s = opaque;
  215. CUDATimer *ti = &s->timers[0];
  216. cuda_timer_update(s, ti, ti->next_irq_time);
  217. s->ifr |= T1_INT;
  218. cuda_update_irq(s);
  219. }
  220. static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
  221. {
  222. CUDAState *s = opaque;
  223. uint32_t val;
  224. addr = (addr >> 9) & 0xf;
  225. switch(addr) {
  226. case 0:
  227. val = s->b;
  228. break;
  229. case 1:
  230. val = s->a;
  231. break;
  232. case 2:
  233. val = s->dirb;
  234. break;
  235. case 3:
  236. val = s->dira;
  237. break;
  238. case 4:
  239. val = get_counter(&s->timers[0]) & 0xff;
  240. s->ifr &= ~T1_INT;
  241. cuda_update_irq(s);
  242. break;
  243. case 5:
  244. val = get_counter(&s->timers[0]) >> 8;
  245. cuda_update_irq(s);
  246. break;
  247. case 6:
  248. val = s->timers[0].latch & 0xff;
  249. break;
  250. case 7:
  251. /* XXX: check this */
  252. val = (s->timers[0].latch >> 8) & 0xff;
  253. break;
  254. case 8:
  255. val = get_counter(&s->timers[1]) & 0xff;
  256. s->ifr &= ~T2_INT;
  257. break;
  258. case 9:
  259. val = get_counter(&s->timers[1]) >> 8;
  260. break;
  261. case 10:
  262. val = s->sr;
  263. s->ifr &= ~SR_INT;
  264. cuda_update_irq(s);
  265. break;
  266. case 11:
  267. val = s->acr;
  268. break;
  269. case 12:
  270. val = s->pcr;
  271. break;
  272. case 13:
  273. val = s->ifr;
  274. if (s->ifr & s->ier)
  275. val |= 0x80;
  276. break;
  277. case 14:
  278. val = s->ier | 0x80;
  279. break;
  280. default:
  281. case 15:
  282. val = s->anh;
  283. break;
  284. }
  285. if (addr != 13 || val != 0)
  286. CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
  287. return val;
  288. }
  289. static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
  290. {
  291. CUDAState *s = opaque;
  292. addr = (addr >> 9) & 0xf;
  293. CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
  294. switch(addr) {
  295. case 0:
  296. s->b = val;
  297. cuda_update(s);
  298. break;
  299. case 1:
  300. s->a = val;
  301. break;
  302. case 2:
  303. s->dirb = val;
  304. break;
  305. case 3:
  306. s->dira = val;
  307. break;
  308. case 4:
  309. s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
  310. cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
  311. break;
  312. case 5:
  313. s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
  314. s->ifr &= ~T1_INT;
  315. set_counter(s, &s->timers[0], s->timers[0].latch);
  316. break;
  317. case 6:
  318. s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
  319. cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
  320. break;
  321. case 7:
  322. s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
  323. s->ifr &= ~T1_INT;
  324. cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
  325. break;
  326. case 8:
  327. s->timers[1].latch = val;
  328. set_counter(s, &s->timers[1], val);
  329. break;
  330. case 9:
  331. set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
  332. break;
  333. case 10:
  334. s->sr = val;
  335. break;
  336. case 11:
  337. s->acr = val;
  338. cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
  339. cuda_update(s);
  340. break;
  341. case 12:
  342. s->pcr = val;
  343. break;
  344. case 13:
  345. /* reset bits */
  346. s->ifr &= ~val;
  347. cuda_update_irq(s);
  348. break;
  349. case 14:
  350. if (val & IER_SET) {
  351. /* set bits */
  352. s->ier |= val & 0x7f;
  353. } else {
  354. /* reset bits */
  355. s->ier &= ~val;
  356. }
  357. cuda_update_irq(s);
  358. break;
  359. default:
  360. case 15:
  361. s->anh = val;
  362. break;
  363. }
  364. }
  365. /* NOTE: TIP and TREQ are negated */
  366. static void cuda_update(CUDAState *s)
  367. {
  368. int packet_received, len;
  369. packet_received = 0;
  370. if (!(s->b & TIP)) {
  371. /* transfer requested from host */
  372. if (s->acr & SR_OUT) {
  373. /* data output */
  374. if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
  375. if (s->data_out_index < sizeof(s->data_out)) {
  376. CUDA_DPRINTF("send: %02x\n", s->sr);
  377. s->data_out[s->data_out_index++] = s->sr;
  378. s->ifr |= SR_INT;
  379. cuda_update_irq(s);
  380. }
  381. }
  382. } else {
  383. if (s->data_in_index < s->data_in_size) {
  384. /* data input */
  385. if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
  386. s->sr = s->data_in[s->data_in_index++];
  387. CUDA_DPRINTF("recv: %02x\n", s->sr);
  388. /* indicate end of transfer */
  389. if (s->data_in_index >= s->data_in_size) {
  390. s->b = (s->b | TREQ);
  391. }
  392. s->ifr |= SR_INT;
  393. cuda_update_irq(s);
  394. }
  395. }
  396. }
  397. } else {
  398. /* no transfer requested: handle sync case */
  399. if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
  400. /* update TREQ state each time TACK change state */
  401. if (s->b & TACK)
  402. s->b = (s->b | TREQ);
  403. else
  404. s->b = (s->b & ~TREQ);
  405. s->ifr |= SR_INT;
  406. cuda_update_irq(s);
  407. } else {
  408. if (!(s->last_b & TIP)) {
  409. /* handle end of host to cuda transfer */
  410. packet_received = (s->data_out_index > 0);
  411. /* always an IRQ at the end of transfer */
  412. s->ifr |= SR_INT;
  413. cuda_update_irq(s);
  414. }
  415. /* signal if there is data to read */
  416. if (s->data_in_index < s->data_in_size) {
  417. s->b = (s->b & ~TREQ);
  418. }
  419. }
  420. }
  421. s->last_acr = s->acr;
  422. s->last_b = s->b;
  423. /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
  424. recursively */
  425. if (packet_received) {
  426. len = s->data_out_index;
  427. s->data_out_index = 0;
  428. cuda_receive_packet_from_host(s, s->data_out, len);
  429. }
  430. }
  431. static void cuda_send_packet_to_host(CUDAState *s,
  432. const uint8_t *data, int len)
  433. {
  434. #ifdef DEBUG_CUDA_PACKET
  435. {
  436. int i;
  437. printf("cuda_send_packet_to_host:\n");
  438. for(i = 0; i < len; i++)
  439. printf(" %02x", data[i]);
  440. printf("\n");
  441. }
  442. #endif
  443. memcpy(s->data_in, data, len);
  444. s->data_in_size = len;
  445. s->data_in_index = 0;
  446. cuda_update(s);
  447. s->ifr |= SR_INT;
  448. cuda_update_irq(s);
  449. }
  450. static void cuda_adb_poll(void *opaque)
  451. {
  452. CUDAState *s = opaque;
  453. uint8_t obuf[ADB_MAX_OUT_LEN + 2];
  454. int olen;
  455. olen = adb_poll(&adb_bus, obuf + 2);
  456. if (olen > 0) {
  457. obuf[0] = ADB_PACKET;
  458. obuf[1] = 0x40; /* polled data */
  459. cuda_send_packet_to_host(s, obuf, olen + 2);
  460. }
  461. qemu_mod_timer(s->adb_poll_timer,
  462. qemu_get_clock(vm_clock) +
  463. (ticks_per_sec / CUDA_ADB_POLL_FREQ));
  464. }
  465. static void cuda_receive_packet(CUDAState *s,
  466. const uint8_t *data, int len)
  467. {
  468. uint8_t obuf[16];
  469. int autopoll;
  470. uint32_t ti;
  471. switch(data[0]) {
  472. case CUDA_AUTOPOLL:
  473. autopoll = (data[1] != 0);
  474. if (autopoll != s->autopoll) {
  475. s->autopoll = autopoll;
  476. if (autopoll) {
  477. qemu_mod_timer(s->adb_poll_timer,
  478. qemu_get_clock(vm_clock) +
  479. (ticks_per_sec / CUDA_ADB_POLL_FREQ));
  480. } else {
  481. qemu_del_timer(s->adb_poll_timer);
  482. }
  483. }
  484. obuf[0] = CUDA_PACKET;
  485. obuf[1] = data[1];
  486. cuda_send_packet_to_host(s, obuf, 2);
  487. break;
  488. case CUDA_SET_TIME:
  489. ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
  490. s->tick_offset = ti - (qemu_get_clock(vm_clock) / ticks_per_sec);
  491. obuf[0] = CUDA_PACKET;
  492. obuf[1] = 0;
  493. obuf[2] = 0;
  494. cuda_send_packet_to_host(s, obuf, 3);
  495. break;
  496. case CUDA_GET_TIME:
  497. ti = s->tick_offset + (qemu_get_clock(vm_clock) / ticks_per_sec);
  498. obuf[0] = CUDA_PACKET;
  499. obuf[1] = 0;
  500. obuf[2] = 0;
  501. obuf[3] = ti >> 24;
  502. obuf[4] = ti >> 16;
  503. obuf[5] = ti >> 8;
  504. obuf[6] = ti;
  505. cuda_send_packet_to_host(s, obuf, 7);
  506. break;
  507. case CUDA_FILE_SERVER_FLAG:
  508. case CUDA_SET_DEVICE_LIST:
  509. case CUDA_SET_AUTO_RATE:
  510. case CUDA_SET_POWER_MESSAGES:
  511. obuf[0] = CUDA_PACKET;
  512. obuf[1] = 0;
  513. cuda_send_packet_to_host(s, obuf, 2);
  514. break;
  515. case CUDA_POWERDOWN:
  516. obuf[0] = CUDA_PACKET;
  517. obuf[1] = 0;
  518. cuda_send_packet_to_host(s, obuf, 2);
  519. qemu_system_shutdown_request();
  520. break;
  521. case CUDA_RESET_SYSTEM:
  522. obuf[0] = CUDA_PACKET;
  523. obuf[1] = 0;
  524. cuda_send_packet_to_host(s, obuf, 2);
  525. qemu_system_reset_request();
  526. break;
  527. default:
  528. break;
  529. }
  530. }
  531. static void cuda_receive_packet_from_host(CUDAState *s,
  532. const uint8_t *data, int len)
  533. {
  534. #ifdef DEBUG_CUDA_PACKET
  535. {
  536. int i;
  537. printf("cuda_receive_packet_from_host:\n");
  538. for(i = 0; i < len; i++)
  539. printf(" %02x", data[i]);
  540. printf("\n");
  541. }
  542. #endif
  543. switch(data[0]) {
  544. case ADB_PACKET:
  545. {
  546. uint8_t obuf[ADB_MAX_OUT_LEN + 2];
  547. int olen;
  548. olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
  549. if (olen > 0) {
  550. obuf[0] = ADB_PACKET;
  551. obuf[1] = 0x00;
  552. } else {
  553. /* error */
  554. obuf[0] = ADB_PACKET;
  555. obuf[1] = -olen;
  556. olen = 0;
  557. }
  558. cuda_send_packet_to_host(s, obuf, olen + 2);
  559. }
  560. break;
  561. case CUDA_PACKET:
  562. cuda_receive_packet(s, data + 1, len - 1);
  563. break;
  564. }
  565. }
  566. static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
  567. {
  568. }
  569. static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
  570. {
  571. }
  572. static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
  573. {
  574. return 0;
  575. }
  576. static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
  577. {
  578. return 0;
  579. }
  580. static CPUWriteMemoryFunc *cuda_write[] = {
  581. &cuda_writeb,
  582. &cuda_writew,
  583. &cuda_writel,
  584. };
  585. static CPUReadMemoryFunc *cuda_read[] = {
  586. &cuda_readb,
  587. &cuda_readw,
  588. &cuda_readl,
  589. };
  590. static void cuda_save_timer(QEMUFile *f, CUDATimer *s)
  591. {
  592. qemu_put_be16s(f, &s->latch);
  593. qemu_put_be16s(f, &s->counter_value);
  594. qemu_put_sbe64s(f, &s->load_time);
  595. qemu_put_sbe64s(f, &s->next_irq_time);
  596. if (s->timer)
  597. qemu_put_timer(f, s->timer);
  598. }
  599. static void cuda_save(QEMUFile *f, void *opaque)
  600. {
  601. CUDAState *s = (CUDAState *)opaque;
  602. qemu_put_ubyte(f, s->b);
  603. qemu_put_ubyte(f, s->a);
  604. qemu_put_ubyte(f, s->dirb);
  605. qemu_put_ubyte(f, s->dira);
  606. qemu_put_ubyte(f, s->sr);
  607. qemu_put_ubyte(f, s->acr);
  608. qemu_put_ubyte(f, s->pcr);
  609. qemu_put_ubyte(f, s->ifr);
  610. qemu_put_ubyte(f, s->ier);
  611. qemu_put_ubyte(f, s->anh);
  612. qemu_put_sbe32s(f, &s->data_in_size);
  613. qemu_put_sbe32s(f, &s->data_in_index);
  614. qemu_put_sbe32s(f, &s->data_out_index);
  615. qemu_put_ubyte(f, s->autopoll);
  616. qemu_put_buffer(f, s->data_in, sizeof(s->data_in));
  617. qemu_put_buffer(f, s->data_out, sizeof(s->data_out));
  618. qemu_put_be32s(f, &s->tick_offset);
  619. cuda_save_timer(f, &s->timers[0]);
  620. cuda_save_timer(f, &s->timers[1]);
  621. }
  622. static void cuda_load_timer(QEMUFile *f, CUDATimer *s)
  623. {
  624. qemu_get_be16s(f, &s->latch);
  625. qemu_get_be16s(f, &s->counter_value);
  626. qemu_get_sbe64s(f, &s->load_time);
  627. qemu_get_sbe64s(f, &s->next_irq_time);
  628. if (s->timer)
  629. qemu_get_timer(f, s->timer);
  630. }
  631. static int cuda_load(QEMUFile *f, void *opaque, int version_id)
  632. {
  633. CUDAState *s = (CUDAState *)opaque;
  634. if (version_id != 1)
  635. return -EINVAL;
  636. s->b = qemu_get_ubyte(f);
  637. s->a = qemu_get_ubyte(f);
  638. s->dirb = qemu_get_ubyte(f);
  639. s->dira = qemu_get_ubyte(f);
  640. s->sr = qemu_get_ubyte(f);
  641. s->acr = qemu_get_ubyte(f);
  642. s->pcr = qemu_get_ubyte(f);
  643. s->ifr = qemu_get_ubyte(f);
  644. s->ier = qemu_get_ubyte(f);
  645. s->anh = qemu_get_ubyte(f);
  646. qemu_get_sbe32s(f, &s->data_in_size);
  647. qemu_get_sbe32s(f, &s->data_in_index);
  648. qemu_get_sbe32s(f, &s->data_out_index);
  649. s->autopoll = qemu_get_ubyte(f);
  650. qemu_get_buffer(f, s->data_in, sizeof(s->data_in));
  651. qemu_get_buffer(f, s->data_out, sizeof(s->data_out));
  652. qemu_get_be32s(f, &s->tick_offset);
  653. cuda_load_timer(f, &s->timers[0]);
  654. cuda_load_timer(f, &s->timers[1]);
  655. return 0;
  656. }
  657. static void cuda_reset(void *opaque)
  658. {
  659. CUDAState *s = opaque;
  660. s->b = 0;
  661. s->a = 0;
  662. s->dirb = 0;
  663. s->dira = 0;
  664. s->sr = 0;
  665. s->acr = 0;
  666. s->pcr = 0;
  667. s->ifr = 0;
  668. s->ier = 0;
  669. // s->ier = T1_INT | SR_INT;
  670. s->anh = 0;
  671. s->data_in_size = 0;
  672. s->data_in_index = 0;
  673. s->data_out_index = 0;
  674. s->autopoll = 0;
  675. s->timers[0].latch = 0xffff;
  676. set_counter(s, &s->timers[0], 0xffff);
  677. s->timers[1].latch = 0;
  678. set_counter(s, &s->timers[1], 0xffff);
  679. }
  680. void cuda_init (int *cuda_mem_index, qemu_irq irq)
  681. {
  682. struct tm tm;
  683. CUDAState *s = &cuda_state;
  684. s->irq = irq;
  685. s->timers[0].index = 0;
  686. s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
  687. s->timers[1].index = 1;
  688. qemu_get_timedate(&tm, 0);
  689. s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
  690. s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
  691. *cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
  692. register_savevm("cuda", -1, 1, cuda_save, cuda_load, s);
  693. qemu_register_reset(cuda_reset, s);
  694. cuda_reset(s);
  695. }