2
0

arm_timer.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. /*
  2. * ARM PrimeCell Timer modules.
  3. *
  4. * Copyright (c) 2005-2006 CodeSourcery.
  5. * Written by Paul Brook
  6. *
  7. * This code is licenced under the GPL.
  8. */
  9. #include "hw.h"
  10. #include "qemu-timer.h"
  11. #include "primecell.h"
  12. /* Common timer implementation. */
  13. #define TIMER_CTRL_ONESHOT (1 << 0)
  14. #define TIMER_CTRL_32BIT (1 << 1)
  15. #define TIMER_CTRL_DIV1 (0 << 2)
  16. #define TIMER_CTRL_DIV16 (1 << 2)
  17. #define TIMER_CTRL_DIV256 (2 << 2)
  18. #define TIMER_CTRL_IE (1 << 5)
  19. #define TIMER_CTRL_PERIODIC (1 << 6)
  20. #define TIMER_CTRL_ENABLE (1 << 7)
  21. typedef struct {
  22. ptimer_state *timer;
  23. uint32_t control;
  24. uint32_t limit;
  25. int freq;
  26. int int_level;
  27. qemu_irq irq;
  28. } arm_timer_state;
  29. /* Check all active timers, and schedule the next timer interrupt. */
  30. static void arm_timer_update(arm_timer_state *s)
  31. {
  32. /* Update interrupts. */
  33. if (s->int_level && (s->control & TIMER_CTRL_IE)) {
  34. qemu_irq_raise(s->irq);
  35. } else {
  36. qemu_irq_lower(s->irq);
  37. }
  38. }
  39. static uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
  40. {
  41. arm_timer_state *s = (arm_timer_state *)opaque;
  42. switch (offset >> 2) {
  43. case 0: /* TimerLoad */
  44. case 6: /* TimerBGLoad */
  45. return s->limit;
  46. case 1: /* TimerValue */
  47. return ptimer_get_count(s->timer);
  48. case 2: /* TimerControl */
  49. return s->control;
  50. case 4: /* TimerRIS */
  51. return s->int_level;
  52. case 5: /* TimerMIS */
  53. if ((s->control & TIMER_CTRL_IE) == 0)
  54. return 0;
  55. return s->int_level;
  56. default:
  57. cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n",
  58. (int)offset);
  59. return 0;
  60. }
  61. }
  62. /* Reset the timer limit after settings have changed. */
  63. static void arm_timer_recalibrate(arm_timer_state *s, int reload)
  64. {
  65. uint32_t limit;
  66. if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
  67. /* Free running. */
  68. if (s->control & TIMER_CTRL_32BIT)
  69. limit = 0xffffffff;
  70. else
  71. limit = 0xffff;
  72. } else {
  73. /* Periodic. */
  74. limit = s->limit;
  75. }
  76. ptimer_set_limit(s->timer, limit, reload);
  77. }
  78. static void arm_timer_write(void *opaque, target_phys_addr_t offset,
  79. uint32_t value)
  80. {
  81. arm_timer_state *s = (arm_timer_state *)opaque;
  82. int freq;
  83. switch (offset >> 2) {
  84. case 0: /* TimerLoad */
  85. s->limit = value;
  86. arm_timer_recalibrate(s, 1);
  87. break;
  88. case 1: /* TimerValue */
  89. /* ??? Linux seems to want to write to this readonly register.
  90. Ignore it. */
  91. break;
  92. case 2: /* TimerControl */
  93. if (s->control & TIMER_CTRL_ENABLE) {
  94. /* Pause the timer if it is running. This may cause some
  95. inaccuracy dure to rounding, but avoids a whole lot of other
  96. messyness. */
  97. ptimer_stop(s->timer);
  98. }
  99. s->control = value;
  100. freq = s->freq;
  101. /* ??? Need to recalculate expiry time after changing divisor. */
  102. switch ((value >> 2) & 3) {
  103. case 1: freq >>= 4; break;
  104. case 2: freq >>= 8; break;
  105. }
  106. arm_timer_recalibrate(s, 0);
  107. ptimer_set_freq(s->timer, freq);
  108. if (s->control & TIMER_CTRL_ENABLE) {
  109. /* Restart the timer if still enabled. */
  110. ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
  111. }
  112. break;
  113. case 3: /* TimerIntClr */
  114. s->int_level = 0;
  115. break;
  116. case 6: /* TimerBGLoad */
  117. s->limit = value;
  118. arm_timer_recalibrate(s, 0);
  119. break;
  120. default:
  121. cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n",
  122. (int)offset);
  123. }
  124. arm_timer_update(s);
  125. }
  126. static void arm_timer_tick(void *opaque)
  127. {
  128. arm_timer_state *s = (arm_timer_state *)opaque;
  129. s->int_level = 1;
  130. arm_timer_update(s);
  131. }
  132. static void arm_timer_save(QEMUFile *f, void *opaque)
  133. {
  134. arm_timer_state *s = (arm_timer_state *)opaque;
  135. qemu_put_be32(f, s->control);
  136. qemu_put_be32(f, s->limit);
  137. qemu_put_be32(f, s->int_level);
  138. qemu_put_ptimer(f, s->timer);
  139. }
  140. static int arm_timer_load(QEMUFile *f, void *opaque, int version_id)
  141. {
  142. arm_timer_state *s = (arm_timer_state *)opaque;
  143. if (version_id != 1)
  144. return -EINVAL;
  145. s->control = qemu_get_be32(f);
  146. s->limit = qemu_get_be32(f);
  147. s->int_level = qemu_get_be32(f);
  148. qemu_get_ptimer(f, s->timer);
  149. return 0;
  150. }
  151. static void *arm_timer_init(uint32_t freq, qemu_irq irq)
  152. {
  153. arm_timer_state *s;
  154. QEMUBH *bh;
  155. s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
  156. s->irq = irq;
  157. s->freq = freq;
  158. s->control = TIMER_CTRL_IE;
  159. bh = qemu_bh_new(arm_timer_tick, s);
  160. s->timer = ptimer_init(bh);
  161. register_savevm("arm_timer", -1, 1, arm_timer_save, arm_timer_load, s);
  162. return s;
  163. }
  164. /* ARM PrimeCell SP804 dual timer module.
  165. Docs for this device don't seem to be publicly available. This
  166. implementation is based on guesswork, the linux kernel sources and the
  167. Integrator/CP timer modules. */
  168. typedef struct {
  169. void *timer[2];
  170. int level[2];
  171. qemu_irq irq;
  172. } sp804_state;
  173. /* Merge the IRQs from the two component devices. */
  174. static void sp804_set_irq(void *opaque, int irq, int level)
  175. {
  176. sp804_state *s = (sp804_state *)opaque;
  177. s->level[irq] = level;
  178. qemu_set_irq(s->irq, s->level[0] || s->level[1]);
  179. }
  180. static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
  181. {
  182. sp804_state *s = (sp804_state *)opaque;
  183. /* ??? Don't know the PrimeCell ID for this device. */
  184. if (offset < 0x20) {
  185. return arm_timer_read(s->timer[0], offset);
  186. } else {
  187. return arm_timer_read(s->timer[1], offset - 0x20);
  188. }
  189. }
  190. static void sp804_write(void *opaque, target_phys_addr_t offset,
  191. uint32_t value)
  192. {
  193. sp804_state *s = (sp804_state *)opaque;
  194. if (offset < 0x20) {
  195. arm_timer_write(s->timer[0], offset, value);
  196. } else {
  197. arm_timer_write(s->timer[1], offset - 0x20, value);
  198. }
  199. }
  200. static CPUReadMemoryFunc *sp804_readfn[] = {
  201. sp804_read,
  202. sp804_read,
  203. sp804_read
  204. };
  205. static CPUWriteMemoryFunc *sp804_writefn[] = {
  206. sp804_write,
  207. sp804_write,
  208. sp804_write
  209. };
  210. static void sp804_save(QEMUFile *f, void *opaque)
  211. {
  212. sp804_state *s = (sp804_state *)opaque;
  213. qemu_put_be32(f, s->level[0]);
  214. qemu_put_be32(f, s->level[1]);
  215. }
  216. static int sp804_load(QEMUFile *f, void *opaque, int version_id)
  217. {
  218. sp804_state *s = (sp804_state *)opaque;
  219. if (version_id != 1)
  220. return -EINVAL;
  221. s->level[0] = qemu_get_be32(f);
  222. s->level[1] = qemu_get_be32(f);
  223. return 0;
  224. }
  225. void sp804_init(uint32_t base, qemu_irq irq)
  226. {
  227. int iomemtype;
  228. sp804_state *s;
  229. qemu_irq *qi;
  230. s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
  231. qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
  232. s->irq = irq;
  233. /* ??? The timers are actually configurable between 32kHz and 1MHz, but
  234. we don't implement that. */
  235. s->timer[0] = arm_timer_init(1000000, qi[0]);
  236. s->timer[1] = arm_timer_init(1000000, qi[1]);
  237. iomemtype = cpu_register_io_memory(0, sp804_readfn,
  238. sp804_writefn, s);
  239. cpu_register_physical_memory(base, 0x00001000, iomemtype);
  240. register_savevm("sp804", -1, 1, sp804_save, sp804_load, s);
  241. }
  242. /* Integrator/CP timer module. */
  243. typedef struct {
  244. void *timer[3];
  245. } icp_pit_state;
  246. static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
  247. {
  248. icp_pit_state *s = (icp_pit_state *)opaque;
  249. int n;
  250. /* ??? Don't know the PrimeCell ID for this device. */
  251. n = offset >> 8;
  252. if (n > 3)
  253. cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
  254. return arm_timer_read(s->timer[n], offset & 0xff);
  255. }
  256. static void icp_pit_write(void *opaque, target_phys_addr_t offset,
  257. uint32_t value)
  258. {
  259. icp_pit_state *s = (icp_pit_state *)opaque;
  260. int n;
  261. n = offset >> 8;
  262. if (n > 3)
  263. cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
  264. arm_timer_write(s->timer[n], offset & 0xff, value);
  265. }
  266. static CPUReadMemoryFunc *icp_pit_readfn[] = {
  267. icp_pit_read,
  268. icp_pit_read,
  269. icp_pit_read
  270. };
  271. static CPUWriteMemoryFunc *icp_pit_writefn[] = {
  272. icp_pit_write,
  273. icp_pit_write,
  274. icp_pit_write
  275. };
  276. void icp_pit_init(uint32_t base, qemu_irq *pic, int irq)
  277. {
  278. int iomemtype;
  279. icp_pit_state *s;
  280. s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
  281. /* Timer 0 runs at the system clock speed (40MHz). */
  282. s->timer[0] = arm_timer_init(40000000, pic[irq]);
  283. /* The other two timers run at 1MHz. */
  284. s->timer[1] = arm_timer_init(1000000, pic[irq + 1]);
  285. s->timer[2] = arm_timer_init(1000000, pic[irq + 2]);
  286. iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
  287. icp_pit_writefn, s);
  288. cpu_register_physical_memory(base, 0x00001000, iomemtype);
  289. /* This device has no state to save/restore. The component timers will
  290. save themselves. */
  291. }