gdbstub.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318
  1. /*
  2. * gdb server stub
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #include "qemu-common.h"
  22. #ifdef CONFIG_USER_ONLY
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include <stdarg.h>
  26. #include <string.h>
  27. #include <errno.h>
  28. #include <unistd.h>
  29. #include <fcntl.h>
  30. #include "qemu.h"
  31. #else
  32. #include "qemu-char.h"
  33. #include "sysemu.h"
  34. #include "gdbstub.h"
  35. #endif
  36. #define MAX_PACKET_LENGTH 4096
  37. #include "qemu_socket.h"
  38. enum {
  39. GDB_SIGNAL_0 = 0,
  40. GDB_SIGNAL_INT = 2,
  41. GDB_SIGNAL_TRAP = 5,
  42. GDB_SIGNAL_UNKNOWN = 143
  43. };
  44. #ifdef CONFIG_USER_ONLY
  45. /* Map target signal numbers to GDB protocol signal numbers and vice
  46. * versa. For user emulation's currently supported systems, we can
  47. * assume most signals are defined.
  48. */
  49. static int gdb_signal_table[] = {
  50. 0,
  51. TARGET_SIGHUP,
  52. TARGET_SIGINT,
  53. TARGET_SIGQUIT,
  54. TARGET_SIGILL,
  55. TARGET_SIGTRAP,
  56. TARGET_SIGABRT,
  57. -1, /* SIGEMT */
  58. TARGET_SIGFPE,
  59. TARGET_SIGKILL,
  60. TARGET_SIGBUS,
  61. TARGET_SIGSEGV,
  62. TARGET_SIGSYS,
  63. TARGET_SIGPIPE,
  64. TARGET_SIGALRM,
  65. TARGET_SIGTERM,
  66. TARGET_SIGURG,
  67. TARGET_SIGSTOP,
  68. TARGET_SIGTSTP,
  69. TARGET_SIGCONT,
  70. TARGET_SIGCHLD,
  71. TARGET_SIGTTIN,
  72. TARGET_SIGTTOU,
  73. TARGET_SIGIO,
  74. TARGET_SIGXCPU,
  75. TARGET_SIGXFSZ,
  76. TARGET_SIGVTALRM,
  77. TARGET_SIGPROF,
  78. TARGET_SIGWINCH,
  79. -1, /* SIGLOST */
  80. TARGET_SIGUSR1,
  81. TARGET_SIGUSR2,
  82. #ifdef TARGET_SIGPWR
  83. TARGET_SIGPWR,
  84. #else
  85. -1,
  86. #endif
  87. -1, /* SIGPOLL */
  88. -1,
  89. -1,
  90. -1,
  91. -1,
  92. -1,
  93. -1,
  94. -1,
  95. -1,
  96. -1,
  97. -1,
  98. -1,
  99. #ifdef __SIGRTMIN
  100. __SIGRTMIN + 1,
  101. __SIGRTMIN + 2,
  102. __SIGRTMIN + 3,
  103. __SIGRTMIN + 4,
  104. __SIGRTMIN + 5,
  105. __SIGRTMIN + 6,
  106. __SIGRTMIN + 7,
  107. __SIGRTMIN + 8,
  108. __SIGRTMIN + 9,
  109. __SIGRTMIN + 10,
  110. __SIGRTMIN + 11,
  111. __SIGRTMIN + 12,
  112. __SIGRTMIN + 13,
  113. __SIGRTMIN + 14,
  114. __SIGRTMIN + 15,
  115. __SIGRTMIN + 16,
  116. __SIGRTMIN + 17,
  117. __SIGRTMIN + 18,
  118. __SIGRTMIN + 19,
  119. __SIGRTMIN + 20,
  120. __SIGRTMIN + 21,
  121. __SIGRTMIN + 22,
  122. __SIGRTMIN + 23,
  123. __SIGRTMIN + 24,
  124. __SIGRTMIN + 25,
  125. __SIGRTMIN + 26,
  126. __SIGRTMIN + 27,
  127. __SIGRTMIN + 28,
  128. __SIGRTMIN + 29,
  129. __SIGRTMIN + 30,
  130. __SIGRTMIN + 31,
  131. -1, /* SIGCANCEL */
  132. __SIGRTMIN,
  133. __SIGRTMIN + 32,
  134. __SIGRTMIN + 33,
  135. __SIGRTMIN + 34,
  136. __SIGRTMIN + 35,
  137. __SIGRTMIN + 36,
  138. __SIGRTMIN + 37,
  139. __SIGRTMIN + 38,
  140. __SIGRTMIN + 39,
  141. __SIGRTMIN + 40,
  142. __SIGRTMIN + 41,
  143. __SIGRTMIN + 42,
  144. __SIGRTMIN + 43,
  145. __SIGRTMIN + 44,
  146. __SIGRTMIN + 45,
  147. __SIGRTMIN + 46,
  148. __SIGRTMIN + 47,
  149. __SIGRTMIN + 48,
  150. __SIGRTMIN + 49,
  151. __SIGRTMIN + 50,
  152. __SIGRTMIN + 51,
  153. __SIGRTMIN + 52,
  154. __SIGRTMIN + 53,
  155. __SIGRTMIN + 54,
  156. __SIGRTMIN + 55,
  157. __SIGRTMIN + 56,
  158. __SIGRTMIN + 57,
  159. __SIGRTMIN + 58,
  160. __SIGRTMIN + 59,
  161. __SIGRTMIN + 60,
  162. __SIGRTMIN + 61,
  163. __SIGRTMIN + 62,
  164. __SIGRTMIN + 63,
  165. __SIGRTMIN + 64,
  166. __SIGRTMIN + 65,
  167. __SIGRTMIN + 66,
  168. __SIGRTMIN + 67,
  169. __SIGRTMIN + 68,
  170. __SIGRTMIN + 69,
  171. __SIGRTMIN + 70,
  172. __SIGRTMIN + 71,
  173. __SIGRTMIN + 72,
  174. __SIGRTMIN + 73,
  175. __SIGRTMIN + 74,
  176. __SIGRTMIN + 75,
  177. __SIGRTMIN + 76,
  178. __SIGRTMIN + 77,
  179. __SIGRTMIN + 78,
  180. __SIGRTMIN + 79,
  181. __SIGRTMIN + 80,
  182. __SIGRTMIN + 81,
  183. __SIGRTMIN + 82,
  184. __SIGRTMIN + 83,
  185. __SIGRTMIN + 84,
  186. __SIGRTMIN + 85,
  187. __SIGRTMIN + 86,
  188. __SIGRTMIN + 87,
  189. __SIGRTMIN + 88,
  190. __SIGRTMIN + 89,
  191. __SIGRTMIN + 90,
  192. __SIGRTMIN + 91,
  193. __SIGRTMIN + 92,
  194. __SIGRTMIN + 93,
  195. __SIGRTMIN + 94,
  196. __SIGRTMIN + 95,
  197. -1, /* SIGINFO */
  198. -1, /* UNKNOWN */
  199. -1, /* DEFAULT */
  200. -1,
  201. -1,
  202. -1,
  203. -1,
  204. -1,
  205. -1
  206. #endif
  207. };
  208. #else
  209. /* In system mode we only need SIGINT and SIGTRAP; other signals
  210. are not yet supported. */
  211. enum {
  212. TARGET_SIGINT = 2,
  213. TARGET_SIGTRAP = 5
  214. };
  215. static int gdb_signal_table[] = {
  216. -1,
  217. -1,
  218. TARGET_SIGINT,
  219. -1,
  220. -1,
  221. TARGET_SIGTRAP
  222. };
  223. #endif
  224. #ifdef CONFIG_USER_ONLY
  225. static int target_signal_to_gdb (int sig)
  226. {
  227. int i;
  228. for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
  229. if (gdb_signal_table[i] == sig)
  230. return i;
  231. return GDB_SIGNAL_UNKNOWN;
  232. }
  233. #endif
  234. static int gdb_signal_to_target (int sig)
  235. {
  236. if (sig < ARRAY_SIZE (gdb_signal_table))
  237. return gdb_signal_table[sig];
  238. else
  239. return -1;
  240. }
  241. //#define DEBUG_GDB
  242. typedef struct GDBRegisterState {
  243. int base_reg;
  244. int num_regs;
  245. gdb_reg_cb get_reg;
  246. gdb_reg_cb set_reg;
  247. const char *xml;
  248. struct GDBRegisterState *next;
  249. } GDBRegisterState;
  250. enum RSState {
  251. RS_IDLE,
  252. RS_GETLINE,
  253. RS_CHKSUM1,
  254. RS_CHKSUM2,
  255. RS_SYSCALL,
  256. };
  257. typedef struct GDBState {
  258. CPUState *c_cpu; /* current CPU for step/continue ops */
  259. CPUState *g_cpu; /* current CPU for other ops */
  260. CPUState *query_cpu; /* for q{f|s}ThreadInfo */
  261. enum RSState state; /* parsing state */
  262. char line_buf[MAX_PACKET_LENGTH];
  263. int line_buf_index;
  264. int line_csum;
  265. uint8_t last_packet[MAX_PACKET_LENGTH + 4];
  266. int last_packet_len;
  267. int signal;
  268. #ifdef CONFIG_USER_ONLY
  269. int fd;
  270. int running_state;
  271. #else
  272. CharDriverState *chr;
  273. #endif
  274. } GDBState;
  275. /* By default use no IRQs and no timers while single stepping so as to
  276. * make single stepping like an ICE HW step.
  277. */
  278. static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
  279. static GDBState *gdbserver_state;
  280. /* This is an ugly hack to cope with both new and old gdb.
  281. If gdb sends qXfer:features:read then assume we're talking to a newish
  282. gdb that understands target descriptions. */
  283. static int gdb_has_xml;
  284. #ifdef CONFIG_USER_ONLY
  285. /* XXX: This is not thread safe. Do we care? */
  286. static int gdbserver_fd = -1;
  287. static int get_char(GDBState *s)
  288. {
  289. uint8_t ch;
  290. int ret;
  291. for(;;) {
  292. ret = recv(s->fd, &ch, 1, 0);
  293. if (ret < 0) {
  294. if (errno == ECONNRESET)
  295. s->fd = -1;
  296. if (errno != EINTR && errno != EAGAIN)
  297. return -1;
  298. } else if (ret == 0) {
  299. close(s->fd);
  300. s->fd = -1;
  301. return -1;
  302. } else {
  303. break;
  304. }
  305. }
  306. return ch;
  307. }
  308. #endif
  309. static gdb_syscall_complete_cb gdb_current_syscall_cb;
  310. enum {
  311. GDB_SYS_UNKNOWN,
  312. GDB_SYS_ENABLED,
  313. GDB_SYS_DISABLED,
  314. } gdb_syscall_mode;
  315. /* If gdb is connected when the first semihosting syscall occurs then use
  316. remote gdb syscalls. Otherwise use native file IO. */
  317. int use_gdb_syscalls(void)
  318. {
  319. if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
  320. gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
  321. : GDB_SYS_DISABLED);
  322. }
  323. return gdb_syscall_mode == GDB_SYS_ENABLED;
  324. }
  325. /* Resume execution. */
  326. static inline void gdb_continue(GDBState *s)
  327. {
  328. #ifdef CONFIG_USER_ONLY
  329. s->running_state = 1;
  330. #else
  331. vm_start();
  332. #endif
  333. }
  334. static void put_buffer(GDBState *s, const uint8_t *buf, int len)
  335. {
  336. #ifdef CONFIG_USER_ONLY
  337. int ret;
  338. while (len > 0) {
  339. ret = send(s->fd, buf, len, 0);
  340. if (ret < 0) {
  341. if (errno != EINTR && errno != EAGAIN)
  342. return;
  343. } else {
  344. buf += ret;
  345. len -= ret;
  346. }
  347. }
  348. #else
  349. qemu_chr_write(s->chr, buf, len);
  350. #endif
  351. }
  352. static inline int fromhex(int v)
  353. {
  354. if (v >= '0' && v <= '9')
  355. return v - '0';
  356. else if (v >= 'A' && v <= 'F')
  357. return v - 'A' + 10;
  358. else if (v >= 'a' && v <= 'f')
  359. return v - 'a' + 10;
  360. else
  361. return 0;
  362. }
  363. static inline int tohex(int v)
  364. {
  365. if (v < 10)
  366. return v + '0';
  367. else
  368. return v - 10 + 'a';
  369. }
  370. static void memtohex(char *buf, const uint8_t *mem, int len)
  371. {
  372. int i, c;
  373. char *q;
  374. q = buf;
  375. for(i = 0; i < len; i++) {
  376. c = mem[i];
  377. *q++ = tohex(c >> 4);
  378. *q++ = tohex(c & 0xf);
  379. }
  380. *q = '\0';
  381. }
  382. static void hextomem(uint8_t *mem, const char *buf, int len)
  383. {
  384. int i;
  385. for(i = 0; i < len; i++) {
  386. mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
  387. buf += 2;
  388. }
  389. }
  390. /* return -1 if error, 0 if OK */
  391. static int put_packet_binary(GDBState *s, const char *buf, int len)
  392. {
  393. int csum, i;
  394. uint8_t *p;
  395. for(;;) {
  396. p = s->last_packet;
  397. *(p++) = '$';
  398. memcpy(p, buf, len);
  399. p += len;
  400. csum = 0;
  401. for(i = 0; i < len; i++) {
  402. csum += buf[i];
  403. }
  404. *(p++) = '#';
  405. *(p++) = tohex((csum >> 4) & 0xf);
  406. *(p++) = tohex((csum) & 0xf);
  407. s->last_packet_len = p - s->last_packet;
  408. put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
  409. #ifdef CONFIG_USER_ONLY
  410. i = get_char(s);
  411. if (i < 0)
  412. return -1;
  413. if (i == '+')
  414. break;
  415. #else
  416. break;
  417. #endif
  418. }
  419. return 0;
  420. }
  421. /* return -1 if error, 0 if OK */
  422. static int put_packet(GDBState *s, const char *buf)
  423. {
  424. #ifdef DEBUG_GDB
  425. printf("reply='%s'\n", buf);
  426. #endif
  427. return put_packet_binary(s, buf, strlen(buf));
  428. }
  429. /* The GDB remote protocol transfers values in target byte order. This means
  430. we can use the raw memory access routines to access the value buffer.
  431. Conveniently, these also handle the case where the buffer is mis-aligned.
  432. */
  433. #define GET_REG8(val) do { \
  434. stb_p(mem_buf, val); \
  435. return 1; \
  436. } while(0)
  437. #define GET_REG16(val) do { \
  438. stw_p(mem_buf, val); \
  439. return 2; \
  440. } while(0)
  441. #define GET_REG32(val) do { \
  442. stl_p(mem_buf, val); \
  443. return 4; \
  444. } while(0)
  445. #define GET_REG64(val) do { \
  446. stq_p(mem_buf, val); \
  447. return 8; \
  448. } while(0)
  449. #if TARGET_LONG_BITS == 64
  450. #define GET_REGL(val) GET_REG64(val)
  451. #define ldtul_p(addr) ldq_p(addr)
  452. #else
  453. #define GET_REGL(val) GET_REG32(val)
  454. #define ldtul_p(addr) ldl_p(addr)
  455. #endif
  456. #if defined(TARGET_I386)
  457. #ifdef TARGET_X86_64
  458. static const int gpr_map[16] = {
  459. R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
  460. 8, 9, 10, 11, 12, 13, 14, 15
  461. };
  462. #else
  463. static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  464. #endif
  465. #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
  466. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  467. {
  468. if (n < CPU_NB_REGS) {
  469. GET_REGL(env->regs[gpr_map[n]]);
  470. } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
  471. /* FIXME: byteswap float values. */
  472. #ifdef USE_X86LDOUBLE
  473. memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
  474. #else
  475. memset(mem_buf, 0, 10);
  476. #endif
  477. return 10;
  478. } else if (n >= CPU_NB_REGS + 24) {
  479. n -= CPU_NB_REGS + 24;
  480. if (n < CPU_NB_REGS) {
  481. stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
  482. stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
  483. return 16;
  484. } else if (n == CPU_NB_REGS) {
  485. GET_REG32(env->mxcsr);
  486. }
  487. } else {
  488. n -= CPU_NB_REGS;
  489. switch (n) {
  490. case 0: GET_REGL(env->eip);
  491. case 1: GET_REG32(env->eflags);
  492. case 2: GET_REG32(env->segs[R_CS].selector);
  493. case 3: GET_REG32(env->segs[R_SS].selector);
  494. case 4: GET_REG32(env->segs[R_DS].selector);
  495. case 5: GET_REG32(env->segs[R_ES].selector);
  496. case 6: GET_REG32(env->segs[R_FS].selector);
  497. case 7: GET_REG32(env->segs[R_GS].selector);
  498. /* 8...15 x87 regs. */
  499. case 16: GET_REG32(env->fpuc);
  500. case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
  501. case 18: GET_REG32(0); /* ftag */
  502. case 19: GET_REG32(0); /* fiseg */
  503. case 20: GET_REG32(0); /* fioff */
  504. case 21: GET_REG32(0); /* foseg */
  505. case 22: GET_REG32(0); /* fooff */
  506. case 23: GET_REG32(0); /* fop */
  507. /* 24+ xmm regs. */
  508. }
  509. }
  510. return 0;
  511. }
  512. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
  513. {
  514. uint32_t tmp;
  515. if (i < CPU_NB_REGS) {
  516. env->regs[gpr_map[i]] = ldtul_p(mem_buf);
  517. return sizeof(target_ulong);
  518. } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
  519. i -= CPU_NB_REGS + 8;
  520. #ifdef USE_X86LDOUBLE
  521. memcpy(&env->fpregs[i], mem_buf, 10);
  522. #endif
  523. return 10;
  524. } else if (i >= CPU_NB_REGS + 24) {
  525. i -= CPU_NB_REGS + 24;
  526. if (i < CPU_NB_REGS) {
  527. env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
  528. env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
  529. return 16;
  530. } else if (i == CPU_NB_REGS) {
  531. env->mxcsr = ldl_p(mem_buf);
  532. return 4;
  533. }
  534. } else {
  535. i -= CPU_NB_REGS;
  536. switch (i) {
  537. case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
  538. case 1: env->eflags = ldl_p(mem_buf); return 4;
  539. #if defined(CONFIG_USER_ONLY)
  540. #define LOAD_SEG(index, sreg)\
  541. tmp = ldl_p(mem_buf);\
  542. if (tmp != env->segs[sreg].selector)\
  543. cpu_x86_load_seg(env, sreg, tmp);
  544. #else
  545. /* FIXME: Honor segment registers. Needs to avoid raising an exception
  546. when the selector is invalid. */
  547. #define LOAD_SEG(index, sreg) do {} while(0)
  548. #endif
  549. case 2: LOAD_SEG(10, R_CS); return 4;
  550. case 3: LOAD_SEG(11, R_SS); return 4;
  551. case 4: LOAD_SEG(12, R_DS); return 4;
  552. case 5: LOAD_SEG(13, R_ES); return 4;
  553. case 6: LOAD_SEG(14, R_FS); return 4;
  554. case 7: LOAD_SEG(15, R_GS); return 4;
  555. /* 8...15 x87 regs. */
  556. case 16: env->fpuc = ldl_p(mem_buf); return 4;
  557. case 17:
  558. tmp = ldl_p(mem_buf);
  559. env->fpstt = (tmp >> 11) & 7;
  560. env->fpus = tmp & ~0x3800;
  561. return 4;
  562. case 18: /* ftag */ return 4;
  563. case 19: /* fiseg */ return 4;
  564. case 20: /* fioff */ return 4;
  565. case 21: /* foseg */ return 4;
  566. case 22: /* fooff */ return 4;
  567. case 23: /* fop */ return 4;
  568. /* 24+ xmm regs. */
  569. }
  570. }
  571. /* Unrecognised register. */
  572. return 0;
  573. }
  574. #elif defined (TARGET_PPC)
  575. /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
  576. expects whatever the target description contains. Due to a
  577. historical mishap the FP registers appear in between core integer
  578. regs and PC, MSR, CR, and so forth. We hack round this by giving the
  579. FP regs zero size when talking to a newer gdb. */
  580. #define NUM_CORE_REGS 71
  581. #if defined (TARGET_PPC64)
  582. #define GDB_CORE_XML "power64-core.xml"
  583. #else
  584. #define GDB_CORE_XML "power-core.xml"
  585. #endif
  586. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  587. {
  588. if (n < 32) {
  589. /* gprs */
  590. GET_REGL(env->gpr[n]);
  591. } else if (n < 64) {
  592. /* fprs */
  593. if (gdb_has_xml)
  594. return 0;
  595. stfq_p(mem_buf, env->fpr[n-32]);
  596. return 8;
  597. } else {
  598. switch (n) {
  599. case 64: GET_REGL(env->nip);
  600. case 65: GET_REGL(env->msr);
  601. case 66:
  602. {
  603. uint32_t cr = 0;
  604. int i;
  605. for (i = 0; i < 8; i++)
  606. cr |= env->crf[i] << (32 - ((i + 1) * 4));
  607. GET_REG32(cr);
  608. }
  609. case 67: GET_REGL(env->lr);
  610. case 68: GET_REGL(env->ctr);
  611. case 69: GET_REGL(env->xer);
  612. case 70:
  613. {
  614. if (gdb_has_xml)
  615. return 0;
  616. GET_REG32(0); /* fpscr */
  617. }
  618. }
  619. }
  620. return 0;
  621. }
  622. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  623. {
  624. if (n < 32) {
  625. /* gprs */
  626. env->gpr[n] = ldtul_p(mem_buf);
  627. return sizeof(target_ulong);
  628. } else if (n < 64) {
  629. /* fprs */
  630. if (gdb_has_xml)
  631. return 0;
  632. env->fpr[n-32] = ldfq_p(mem_buf);
  633. return 8;
  634. } else {
  635. switch (n) {
  636. case 64:
  637. env->nip = ldtul_p(mem_buf);
  638. return sizeof(target_ulong);
  639. case 65:
  640. ppc_store_msr(env, ldtul_p(mem_buf));
  641. return sizeof(target_ulong);
  642. case 66:
  643. {
  644. uint32_t cr = ldl_p(mem_buf);
  645. int i;
  646. for (i = 0; i < 8; i++)
  647. env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
  648. return 4;
  649. }
  650. case 67:
  651. env->lr = ldtul_p(mem_buf);
  652. return sizeof(target_ulong);
  653. case 68:
  654. env->ctr = ldtul_p(mem_buf);
  655. return sizeof(target_ulong);
  656. case 69:
  657. env->xer = ldtul_p(mem_buf);
  658. return sizeof(target_ulong);
  659. case 70:
  660. /* fpscr */
  661. if (gdb_has_xml)
  662. return 0;
  663. return 4;
  664. }
  665. }
  666. return 0;
  667. }
  668. #elif defined (TARGET_SPARC)
  669. #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
  670. #define NUM_CORE_REGS 86
  671. #else
  672. #define NUM_CORE_REGS 72
  673. #endif
  674. #ifdef TARGET_ABI32
  675. #define GET_REGA(val) GET_REG32(val)
  676. #else
  677. #define GET_REGA(val) GET_REGL(val)
  678. #endif
  679. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  680. {
  681. if (n < 8) {
  682. /* g0..g7 */
  683. GET_REGA(env->gregs[n]);
  684. }
  685. if (n < 32) {
  686. /* register window */
  687. GET_REGA(env->regwptr[n - 8]);
  688. }
  689. #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
  690. if (n < 64) {
  691. /* fprs */
  692. GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
  693. }
  694. /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
  695. switch (n) {
  696. case 64: GET_REGA(env->y);
  697. case 65: GET_REGA(GET_PSR(env));
  698. case 66: GET_REGA(env->wim);
  699. case 67: GET_REGA(env->tbr);
  700. case 68: GET_REGA(env->pc);
  701. case 69: GET_REGA(env->npc);
  702. case 70: GET_REGA(env->fsr);
  703. case 71: GET_REGA(0); /* csr */
  704. default: GET_REGA(0);
  705. }
  706. #else
  707. if (n < 64) {
  708. /* f0-f31 */
  709. GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
  710. }
  711. if (n < 80) {
  712. /* f32-f62 (double width, even numbers only) */
  713. uint64_t val;
  714. val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
  715. val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
  716. GET_REG64(val);
  717. }
  718. switch (n) {
  719. case 80: GET_REGL(env->pc);
  720. case 81: GET_REGL(env->npc);
  721. case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
  722. ((env->asi & 0xff) << 24) |
  723. ((env->pstate & 0xfff) << 8) |
  724. GET_CWP64(env));
  725. case 83: GET_REGL(env->fsr);
  726. case 84: GET_REGL(env->fprs);
  727. case 85: GET_REGL(env->y);
  728. }
  729. #endif
  730. return 0;
  731. }
  732. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  733. {
  734. #if defined(TARGET_ABI32)
  735. abi_ulong tmp;
  736. tmp = ldl_p(mem_buf);
  737. #else
  738. target_ulong tmp;
  739. tmp = ldtul_p(mem_buf);
  740. #endif
  741. if (n < 8) {
  742. /* g0..g7 */
  743. env->gregs[n] = tmp;
  744. } else if (n < 32) {
  745. /* register window */
  746. env->regwptr[n - 8] = tmp;
  747. }
  748. #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
  749. else if (n < 64) {
  750. /* fprs */
  751. *((uint32_t *)&env->fpr[n - 32]) = tmp;
  752. } else {
  753. /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
  754. switch (n) {
  755. case 64: env->y = tmp; break;
  756. case 65: PUT_PSR(env, tmp); break;
  757. case 66: env->wim = tmp; break;
  758. case 67: env->tbr = tmp; break;
  759. case 68: env->pc = tmp; break;
  760. case 69: env->npc = tmp; break;
  761. case 70: env->fsr = tmp; break;
  762. default: return 0;
  763. }
  764. }
  765. return 4;
  766. #else
  767. else if (n < 64) {
  768. /* f0-f31 */
  769. env->fpr[n] = ldfl_p(mem_buf);
  770. return 4;
  771. } else if (n < 80) {
  772. /* f32-f62 (double width, even numbers only) */
  773. *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
  774. *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
  775. } else {
  776. switch (n) {
  777. case 80: env->pc = tmp; break;
  778. case 81: env->npc = tmp; break;
  779. case 82:
  780. PUT_CCR(env, tmp >> 32);
  781. env->asi = (tmp >> 24) & 0xff;
  782. env->pstate = (tmp >> 8) & 0xfff;
  783. PUT_CWP64(env, tmp & 0xff);
  784. break;
  785. case 83: env->fsr = tmp; break;
  786. case 84: env->fprs = tmp; break;
  787. case 85: env->y = tmp; break;
  788. default: return 0;
  789. }
  790. }
  791. return 8;
  792. #endif
  793. }
  794. #elif defined (TARGET_ARM)
  795. /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
  796. whatever the target description contains. Due to a historical mishap
  797. the FPA registers appear in between core integer regs and the CPSR.
  798. We hack round this by giving the FPA regs zero size when talking to a
  799. newer gdb. */
  800. #define NUM_CORE_REGS 26
  801. #define GDB_CORE_XML "arm-core.xml"
  802. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  803. {
  804. if (n < 16) {
  805. /* Core integer register. */
  806. GET_REG32(env->regs[n]);
  807. }
  808. if (n < 24) {
  809. /* FPA registers. */
  810. if (gdb_has_xml)
  811. return 0;
  812. memset(mem_buf, 0, 12);
  813. return 12;
  814. }
  815. switch (n) {
  816. case 24:
  817. /* FPA status register. */
  818. if (gdb_has_xml)
  819. return 0;
  820. GET_REG32(0);
  821. case 25:
  822. /* CPSR */
  823. GET_REG32(cpsr_read(env));
  824. }
  825. /* Unknown register. */
  826. return 0;
  827. }
  828. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  829. {
  830. uint32_t tmp;
  831. tmp = ldl_p(mem_buf);
  832. /* Mask out low bit of PC to workaround gdb bugs. This will probably
  833. cause problems if we ever implement the Jazelle DBX extensions. */
  834. if (n == 15)
  835. tmp &= ~1;
  836. if (n < 16) {
  837. /* Core integer register. */
  838. env->regs[n] = tmp;
  839. return 4;
  840. }
  841. if (n < 24) { /* 16-23 */
  842. /* FPA registers (ignored). */
  843. if (gdb_has_xml)
  844. return 0;
  845. return 12;
  846. }
  847. switch (n) {
  848. case 24:
  849. /* FPA status register (ignored). */
  850. if (gdb_has_xml)
  851. return 0;
  852. return 4;
  853. case 25:
  854. /* CPSR */
  855. cpsr_write (env, tmp, 0xffffffff);
  856. return 4;
  857. }
  858. /* Unknown register. */
  859. return 0;
  860. }
  861. #elif defined (TARGET_M68K)
  862. #define NUM_CORE_REGS 18
  863. #define GDB_CORE_XML "cf-core.xml"
  864. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  865. {
  866. if (n < 8) {
  867. /* D0-D7 */
  868. GET_REG32(env->dregs[n]);
  869. } else if (n < 16) {
  870. /* A0-A7 */
  871. GET_REG32(env->aregs[n - 8]);
  872. } else {
  873. switch (n) {
  874. case 16: GET_REG32(env->sr);
  875. case 17: GET_REG32(env->pc);
  876. }
  877. }
  878. /* FP registers not included here because they vary between
  879. ColdFire and m68k. Use XML bits for these. */
  880. return 0;
  881. }
  882. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  883. {
  884. uint32_t tmp;
  885. tmp = ldl_p(mem_buf);
  886. if (n < 8) {
  887. /* D0-D7 */
  888. env->dregs[n] = tmp;
  889. } else if (n < 8) {
  890. /* A0-A7 */
  891. env->aregs[n - 8] = tmp;
  892. } else {
  893. switch (n) {
  894. case 16: env->sr = tmp; break;
  895. case 17: env->pc = tmp; break;
  896. default: return 0;
  897. }
  898. }
  899. return 4;
  900. }
  901. #elif defined (TARGET_MIPS)
  902. #define NUM_CORE_REGS 73
  903. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  904. {
  905. if (n < 32) {
  906. GET_REGL(env->active_tc.gpr[n]);
  907. }
  908. if (env->CP0_Config1 & (1 << CP0C1_FP)) {
  909. if (n >= 38 && n < 70) {
  910. if (env->CP0_Status & (1 << CP0St_FR))
  911. GET_REGL(env->active_fpu.fpr[n - 38].d);
  912. else
  913. GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
  914. }
  915. switch (n) {
  916. case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
  917. case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
  918. }
  919. }
  920. switch (n) {
  921. case 32: GET_REGL((int32_t)env->CP0_Status);
  922. case 33: GET_REGL(env->active_tc.LO[0]);
  923. case 34: GET_REGL(env->active_tc.HI[0]);
  924. case 35: GET_REGL(env->CP0_BadVAddr);
  925. case 36: GET_REGL((int32_t)env->CP0_Cause);
  926. case 37: GET_REGL(env->active_tc.PC);
  927. case 72: GET_REGL(0); /* fp */
  928. case 89: GET_REGL((int32_t)env->CP0_PRid);
  929. }
  930. if (n >= 73 && n <= 88) {
  931. /* 16 embedded regs. */
  932. GET_REGL(0);
  933. }
  934. return 0;
  935. }
  936. /* convert MIPS rounding mode in FCR31 to IEEE library */
  937. static unsigned int ieee_rm[] =
  938. {
  939. float_round_nearest_even,
  940. float_round_to_zero,
  941. float_round_up,
  942. float_round_down
  943. };
  944. #define RESTORE_ROUNDING_MODE \
  945. set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
  946. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  947. {
  948. target_ulong tmp;
  949. tmp = ldtul_p(mem_buf);
  950. if (n < 32) {
  951. env->active_tc.gpr[n] = tmp;
  952. return sizeof(target_ulong);
  953. }
  954. if (env->CP0_Config1 & (1 << CP0C1_FP)
  955. && n >= 38 && n < 73) {
  956. if (n < 70) {
  957. if (env->CP0_Status & (1 << CP0St_FR))
  958. env->active_fpu.fpr[n - 38].d = tmp;
  959. else
  960. env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
  961. }
  962. switch (n) {
  963. case 70:
  964. env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
  965. /* set rounding mode */
  966. RESTORE_ROUNDING_MODE;
  967. #ifndef CONFIG_SOFTFLOAT
  968. /* no floating point exception for native float */
  969. SET_FP_ENABLE(env->active_fpu.fcr31, 0);
  970. #endif
  971. break;
  972. case 71: env->active_fpu.fcr0 = tmp; break;
  973. }
  974. return sizeof(target_ulong);
  975. }
  976. switch (n) {
  977. case 32: env->CP0_Status = tmp; break;
  978. case 33: env->active_tc.LO[0] = tmp; break;
  979. case 34: env->active_tc.HI[0] = tmp; break;
  980. case 35: env->CP0_BadVAddr = tmp; break;
  981. case 36: env->CP0_Cause = tmp; break;
  982. case 37: env->active_tc.PC = tmp; break;
  983. case 72: /* fp, ignored */ break;
  984. default:
  985. if (n > 89)
  986. return 0;
  987. /* Other registers are readonly. Ignore writes. */
  988. break;
  989. }
  990. return sizeof(target_ulong);
  991. }
  992. #elif defined (TARGET_SH4)
  993. /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
  994. /* FIXME: We should use XML for this. */
  995. #define NUM_CORE_REGS 59
  996. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  997. {
  998. if (n < 8) {
  999. if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
  1000. GET_REGL(env->gregs[n + 16]);
  1001. } else {
  1002. GET_REGL(env->gregs[n]);
  1003. }
  1004. } else if (n < 16) {
  1005. GET_REGL(env->gregs[n - 8]);
  1006. } else if (n >= 25 && n < 41) {
  1007. GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
  1008. } else if (n >= 43 && n < 51) {
  1009. GET_REGL(env->gregs[n - 43]);
  1010. } else if (n >= 51 && n < 59) {
  1011. GET_REGL(env->gregs[n - (51 - 16)]);
  1012. }
  1013. switch (n) {
  1014. case 16: GET_REGL(env->pc);
  1015. case 17: GET_REGL(env->pr);
  1016. case 18: GET_REGL(env->gbr);
  1017. case 19: GET_REGL(env->vbr);
  1018. case 20: GET_REGL(env->mach);
  1019. case 21: GET_REGL(env->macl);
  1020. case 22: GET_REGL(env->sr);
  1021. case 23: GET_REGL(env->fpul);
  1022. case 24: GET_REGL(env->fpscr);
  1023. case 41: GET_REGL(env->ssr);
  1024. case 42: GET_REGL(env->spc);
  1025. }
  1026. return 0;
  1027. }
  1028. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  1029. {
  1030. uint32_t tmp;
  1031. tmp = ldl_p(mem_buf);
  1032. if (n < 8) {
  1033. if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
  1034. env->gregs[n + 16] = tmp;
  1035. } else {
  1036. env->gregs[n] = tmp;
  1037. }
  1038. return 4;
  1039. } else if (n < 16) {
  1040. env->gregs[n - 8] = tmp;
  1041. return 4;
  1042. } else if (n >= 25 && n < 41) {
  1043. env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
  1044. } else if (n >= 43 && n < 51) {
  1045. env->gregs[n - 43] = tmp;
  1046. return 4;
  1047. } else if (n >= 51 && n < 59) {
  1048. env->gregs[n - (51 - 16)] = tmp;
  1049. return 4;
  1050. }
  1051. switch (n) {
  1052. case 16: env->pc = tmp;
  1053. case 17: env->pr = tmp;
  1054. case 18: env->gbr = tmp;
  1055. case 19: env->vbr = tmp;
  1056. case 20: env->mach = tmp;
  1057. case 21: env->macl = tmp;
  1058. case 22: env->sr = tmp;
  1059. case 23: env->fpul = tmp;
  1060. case 24: env->fpscr = tmp;
  1061. case 41: env->ssr = tmp;
  1062. case 42: env->spc = tmp;
  1063. default: return 0;
  1064. }
  1065. return 4;
  1066. }
  1067. #elif defined (TARGET_CRIS)
  1068. #define NUM_CORE_REGS 49
  1069. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  1070. {
  1071. uint8_t srs;
  1072. srs = env->pregs[PR_SRS];
  1073. if (n < 16) {
  1074. GET_REG32(env->regs[n]);
  1075. }
  1076. if (n >= 21 && n < 32) {
  1077. GET_REG32(env->pregs[n - 16]);
  1078. }
  1079. if (n >= 33 && n < 49) {
  1080. GET_REG32(env->sregs[srs][n - 33]);
  1081. }
  1082. switch (n) {
  1083. case 16: GET_REG8(env->pregs[0]);
  1084. case 17: GET_REG8(env->pregs[1]);
  1085. case 18: GET_REG32(env->pregs[2]);
  1086. case 19: GET_REG8(srs);
  1087. case 20: GET_REG16(env->pregs[4]);
  1088. case 32: GET_REG32(env->pc);
  1089. }
  1090. return 0;
  1091. }
  1092. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  1093. {
  1094. uint32_t tmp;
  1095. if (n > 49)
  1096. return 0;
  1097. tmp = ldl_p(mem_buf);
  1098. if (n < 16) {
  1099. env->regs[n] = tmp;
  1100. }
  1101. if (n >= 21 && n < 32) {
  1102. env->pregs[n - 16] = tmp;
  1103. }
  1104. /* FIXME: Should support function regs be writable? */
  1105. switch (n) {
  1106. case 16: return 1;
  1107. case 17: return 1;
  1108. case 18: env->pregs[PR_PID] = tmp; break;
  1109. case 19: return 1;
  1110. case 20: return 2;
  1111. case 32: env->pc = tmp; break;
  1112. }
  1113. return 4;
  1114. }
  1115. #elif defined (TARGET_ALPHA)
  1116. #define NUM_CORE_REGS 65
  1117. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  1118. {
  1119. if (n < 31) {
  1120. GET_REGL(env->ir[n]);
  1121. }
  1122. else if (n == 31) {
  1123. GET_REGL(0);
  1124. }
  1125. else if (n<63) {
  1126. uint64_t val;
  1127. val=*((uint64_t *)&env->fir[n-32]);
  1128. GET_REGL(val);
  1129. }
  1130. else if (n==63) {
  1131. GET_REGL(env->fpcr);
  1132. }
  1133. else if (n==64) {
  1134. GET_REGL(env->pc);
  1135. }
  1136. else {
  1137. GET_REGL(0);
  1138. }
  1139. return 0;
  1140. }
  1141. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  1142. {
  1143. target_ulong tmp;
  1144. tmp = ldtul_p(mem_buf);
  1145. if (n < 31) {
  1146. env->ir[n] = tmp;
  1147. }
  1148. if (n > 31 && n < 63) {
  1149. env->fir[n - 32] = ldfl_p(mem_buf);
  1150. }
  1151. if (n == 64 ) {
  1152. env->pc=tmp;
  1153. }
  1154. return 8;
  1155. }
  1156. #else
  1157. #define NUM_CORE_REGS 0
  1158. static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
  1159. {
  1160. return 0;
  1161. }
  1162. static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
  1163. {
  1164. return 0;
  1165. }
  1166. #endif
  1167. static int num_g_regs = NUM_CORE_REGS;
  1168. #ifdef GDB_CORE_XML
  1169. /* Encode data using the encoding for 'x' packets. */
  1170. static int memtox(char *buf, const char *mem, int len)
  1171. {
  1172. char *p = buf;
  1173. char c;
  1174. while (len--) {
  1175. c = *(mem++);
  1176. switch (c) {
  1177. case '#': case '$': case '*': case '}':
  1178. *(p++) = '}';
  1179. *(p++) = c ^ 0x20;
  1180. break;
  1181. default:
  1182. *(p++) = c;
  1183. break;
  1184. }
  1185. }
  1186. return p - buf;
  1187. }
  1188. static const char *get_feature_xml(const char *p, const char **newp)
  1189. {
  1190. extern const char *const xml_builtin[][2];
  1191. size_t len;
  1192. int i;
  1193. const char *name;
  1194. static char target_xml[1024];
  1195. len = 0;
  1196. while (p[len] && p[len] != ':')
  1197. len++;
  1198. *newp = p + len;
  1199. name = NULL;
  1200. if (strncmp(p, "target.xml", len) == 0) {
  1201. /* Generate the XML description for this CPU. */
  1202. if (!target_xml[0]) {
  1203. GDBRegisterState *r;
  1204. snprintf(target_xml, sizeof(target_xml),
  1205. "<?xml version=\"1.0\"?>"
  1206. "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
  1207. "<target>"
  1208. "<xi:include href=\"%s\"/>",
  1209. GDB_CORE_XML);
  1210. for (r = first_cpu->gdb_regs; r; r = r->next) {
  1211. strcat(target_xml, "<xi:include href=\"");
  1212. strcat(target_xml, r->xml);
  1213. strcat(target_xml, "\"/>");
  1214. }
  1215. strcat(target_xml, "</target>");
  1216. }
  1217. return target_xml;
  1218. }
  1219. for (i = 0; ; i++) {
  1220. name = xml_builtin[i][0];
  1221. if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
  1222. break;
  1223. }
  1224. return name ? xml_builtin[i][1] : NULL;
  1225. }
  1226. #endif
  1227. static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
  1228. {
  1229. GDBRegisterState *r;
  1230. if (reg < NUM_CORE_REGS)
  1231. return cpu_gdb_read_register(env, mem_buf, reg);
  1232. for (r = env->gdb_regs; r; r = r->next) {
  1233. if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
  1234. return r->get_reg(env, mem_buf, reg - r->base_reg);
  1235. }
  1236. }
  1237. return 0;
  1238. }
  1239. static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
  1240. {
  1241. GDBRegisterState *r;
  1242. if (reg < NUM_CORE_REGS)
  1243. return cpu_gdb_write_register(env, mem_buf, reg);
  1244. for (r = env->gdb_regs; r; r = r->next) {
  1245. if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
  1246. return r->set_reg(env, mem_buf, reg - r->base_reg);
  1247. }
  1248. }
  1249. return 0;
  1250. }
  1251. /* Register a supplemental set of CPU registers. If g_pos is nonzero it
  1252. specifies the first register number and these registers are included in
  1253. a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
  1254. gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
  1255. */
  1256. void gdb_register_coprocessor(CPUState * env,
  1257. gdb_reg_cb get_reg, gdb_reg_cb set_reg,
  1258. int num_regs, const char *xml, int g_pos)
  1259. {
  1260. GDBRegisterState *s;
  1261. GDBRegisterState **p;
  1262. static int last_reg = NUM_CORE_REGS;
  1263. s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
  1264. s->base_reg = last_reg;
  1265. s->num_regs = num_regs;
  1266. s->get_reg = get_reg;
  1267. s->set_reg = set_reg;
  1268. s->xml = xml;
  1269. p = &env->gdb_regs;
  1270. while (*p) {
  1271. /* Check for duplicates. */
  1272. if (strcmp((*p)->xml, xml) == 0)
  1273. return;
  1274. p = &(*p)->next;
  1275. }
  1276. /* Add to end of list. */
  1277. last_reg += num_regs;
  1278. *p = s;
  1279. if (g_pos) {
  1280. if (g_pos != s->base_reg) {
  1281. fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
  1282. "Expected %d got %d\n", xml, g_pos, s->base_reg);
  1283. } else {
  1284. num_g_regs = last_reg;
  1285. }
  1286. }
  1287. }
  1288. /* GDB breakpoint/watchpoint types */
  1289. #define GDB_BREAKPOINT_SW 0
  1290. #define GDB_BREAKPOINT_HW 1
  1291. #define GDB_WATCHPOINT_WRITE 2
  1292. #define GDB_WATCHPOINT_READ 3
  1293. #define GDB_WATCHPOINT_ACCESS 4
  1294. #ifndef CONFIG_USER_ONLY
  1295. static const int xlat_gdb_type[] = {
  1296. [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
  1297. [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
  1298. [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
  1299. };
  1300. #endif
  1301. static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
  1302. {
  1303. CPUState *env;
  1304. int err = 0;
  1305. switch (type) {
  1306. case GDB_BREAKPOINT_SW:
  1307. case GDB_BREAKPOINT_HW:
  1308. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1309. err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
  1310. if (err)
  1311. break;
  1312. }
  1313. return err;
  1314. #ifndef CONFIG_USER_ONLY
  1315. case GDB_WATCHPOINT_WRITE:
  1316. case GDB_WATCHPOINT_READ:
  1317. case GDB_WATCHPOINT_ACCESS:
  1318. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1319. err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
  1320. NULL);
  1321. if (err)
  1322. break;
  1323. }
  1324. return err;
  1325. #endif
  1326. default:
  1327. return -ENOSYS;
  1328. }
  1329. }
  1330. static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
  1331. {
  1332. CPUState *env;
  1333. int err = 0;
  1334. switch (type) {
  1335. case GDB_BREAKPOINT_SW:
  1336. case GDB_BREAKPOINT_HW:
  1337. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1338. err = cpu_breakpoint_remove(env, addr, BP_GDB);
  1339. if (err)
  1340. break;
  1341. }
  1342. return err;
  1343. #ifndef CONFIG_USER_ONLY
  1344. case GDB_WATCHPOINT_WRITE:
  1345. case GDB_WATCHPOINT_READ:
  1346. case GDB_WATCHPOINT_ACCESS:
  1347. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1348. err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
  1349. if (err)
  1350. break;
  1351. }
  1352. return err;
  1353. #endif
  1354. default:
  1355. return -ENOSYS;
  1356. }
  1357. }
  1358. static void gdb_breakpoint_remove_all(void)
  1359. {
  1360. CPUState *env;
  1361. for (env = first_cpu; env != NULL; env = env->next_cpu) {
  1362. cpu_breakpoint_remove_all(env, BP_GDB);
  1363. #ifndef CONFIG_USER_ONLY
  1364. cpu_watchpoint_remove_all(env, BP_GDB);
  1365. #endif
  1366. }
  1367. }
  1368. static int gdb_handle_packet(GDBState *s, const char *line_buf)
  1369. {
  1370. CPUState *env;
  1371. const char *p;
  1372. int ch, reg_size, type, res, thread;
  1373. char buf[MAX_PACKET_LENGTH];
  1374. uint8_t mem_buf[MAX_PACKET_LENGTH];
  1375. uint8_t *registers;
  1376. target_ulong addr, len;
  1377. #ifdef DEBUG_GDB
  1378. printf("command='%s'\n", line_buf);
  1379. #endif
  1380. p = line_buf;
  1381. ch = *p++;
  1382. switch(ch) {
  1383. case '?':
  1384. /* TODO: Make this return the correct value for user-mode. */
  1385. snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
  1386. s->c_cpu->cpu_index+1);
  1387. put_packet(s, buf);
  1388. /* Remove all the breakpoints when this query is issued,
  1389. * because gdb is doing and initial connect and the state
  1390. * should be cleaned up.
  1391. */
  1392. gdb_breakpoint_remove_all();
  1393. break;
  1394. case 'c':
  1395. if (*p != '\0') {
  1396. addr = strtoull(p, (char **)&p, 16);
  1397. #if defined(TARGET_I386)
  1398. s->c_cpu->eip = addr;
  1399. #elif defined (TARGET_PPC)
  1400. s->c_cpu->nip = addr;
  1401. #elif defined (TARGET_SPARC)
  1402. s->c_cpu->pc = addr;
  1403. s->c_cpu->npc = addr + 4;
  1404. #elif defined (TARGET_ARM)
  1405. s->c_cpu->regs[15] = addr;
  1406. #elif defined (TARGET_SH4)
  1407. s->c_cpu->pc = addr;
  1408. #elif defined (TARGET_MIPS)
  1409. s->c_cpu->active_tc.PC = addr;
  1410. #elif defined (TARGET_CRIS)
  1411. s->c_cpu->pc = addr;
  1412. #elif defined (TARGET_ALPHA)
  1413. s->c_cpu->pc = addr;
  1414. #endif
  1415. }
  1416. s->signal = 0;
  1417. gdb_continue(s);
  1418. return RS_IDLE;
  1419. case 'C':
  1420. s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
  1421. if (s->signal == -1)
  1422. s->signal = 0;
  1423. gdb_continue(s);
  1424. return RS_IDLE;
  1425. case 'k':
  1426. /* Kill the target */
  1427. fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
  1428. exit(0);
  1429. case 'D':
  1430. /* Detach packet */
  1431. gdb_breakpoint_remove_all();
  1432. gdb_continue(s);
  1433. put_packet(s, "OK");
  1434. break;
  1435. case 's':
  1436. if (*p != '\0') {
  1437. addr = strtoull(p, (char **)&p, 16);
  1438. #if defined(TARGET_I386)
  1439. s->c_cpu->eip = addr;
  1440. #elif defined (TARGET_PPC)
  1441. s->c_cpu->nip = addr;
  1442. #elif defined (TARGET_SPARC)
  1443. s->c_cpu->pc = addr;
  1444. s->c_cpu->npc = addr + 4;
  1445. #elif defined (TARGET_ARM)
  1446. s->c_cpu->regs[15] = addr;
  1447. #elif defined (TARGET_SH4)
  1448. s->c_cpu->pc = addr;
  1449. #elif defined (TARGET_MIPS)
  1450. s->c_cpu->active_tc.PC = addr;
  1451. #elif defined (TARGET_CRIS)
  1452. s->c_cpu->pc = addr;
  1453. #elif defined (TARGET_ALPHA)
  1454. s->c_cpu->pc = addr;
  1455. #endif
  1456. }
  1457. cpu_single_step(s->c_cpu, sstep_flags);
  1458. gdb_continue(s);
  1459. return RS_IDLE;
  1460. case 'F':
  1461. {
  1462. target_ulong ret;
  1463. target_ulong err;
  1464. ret = strtoull(p, (char **)&p, 16);
  1465. if (*p == ',') {
  1466. p++;
  1467. err = strtoull(p, (char **)&p, 16);
  1468. } else {
  1469. err = 0;
  1470. }
  1471. if (*p == ',')
  1472. p++;
  1473. type = *p;
  1474. if (gdb_current_syscall_cb)
  1475. gdb_current_syscall_cb(s->c_cpu, ret, err);
  1476. if (type == 'C') {
  1477. put_packet(s, "T02");
  1478. } else {
  1479. gdb_continue(s);
  1480. }
  1481. }
  1482. break;
  1483. case 'g':
  1484. len = 0;
  1485. for (addr = 0; addr < num_g_regs; addr++) {
  1486. reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
  1487. len += reg_size;
  1488. }
  1489. memtohex(buf, mem_buf, len);
  1490. put_packet(s, buf);
  1491. break;
  1492. case 'G':
  1493. registers = mem_buf;
  1494. len = strlen(p) / 2;
  1495. hextomem((uint8_t *)registers, p, len);
  1496. for (addr = 0; addr < num_g_regs && len > 0; addr++) {
  1497. reg_size = gdb_write_register(s->g_cpu, registers, addr);
  1498. len -= reg_size;
  1499. registers += reg_size;
  1500. }
  1501. put_packet(s, "OK");
  1502. break;
  1503. case 'm':
  1504. addr = strtoull(p, (char **)&p, 16);
  1505. if (*p == ',')
  1506. p++;
  1507. len = strtoull(p, NULL, 16);
  1508. if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
  1509. put_packet (s, "E14");
  1510. } else {
  1511. memtohex(buf, mem_buf, len);
  1512. put_packet(s, buf);
  1513. }
  1514. break;
  1515. case 'M':
  1516. addr = strtoull(p, (char **)&p, 16);
  1517. if (*p == ',')
  1518. p++;
  1519. len = strtoull(p, (char **)&p, 16);
  1520. if (*p == ':')
  1521. p++;
  1522. hextomem(mem_buf, p, len);
  1523. if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
  1524. put_packet(s, "E14");
  1525. else
  1526. put_packet(s, "OK");
  1527. break;
  1528. case 'p':
  1529. /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
  1530. This works, but can be very slow. Anything new enough to
  1531. understand XML also knows how to use this properly. */
  1532. if (!gdb_has_xml)
  1533. goto unknown_command;
  1534. addr = strtoull(p, (char **)&p, 16);
  1535. reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
  1536. if (reg_size) {
  1537. memtohex(buf, mem_buf, reg_size);
  1538. put_packet(s, buf);
  1539. } else {
  1540. put_packet(s, "E14");
  1541. }
  1542. break;
  1543. case 'P':
  1544. if (!gdb_has_xml)
  1545. goto unknown_command;
  1546. addr = strtoull(p, (char **)&p, 16);
  1547. if (*p == '=')
  1548. p++;
  1549. reg_size = strlen(p) / 2;
  1550. hextomem(mem_buf, p, reg_size);
  1551. gdb_write_register(s->g_cpu, mem_buf, addr);
  1552. put_packet(s, "OK");
  1553. break;
  1554. case 'Z':
  1555. case 'z':
  1556. type = strtoul(p, (char **)&p, 16);
  1557. if (*p == ',')
  1558. p++;
  1559. addr = strtoull(p, (char **)&p, 16);
  1560. if (*p == ',')
  1561. p++;
  1562. len = strtoull(p, (char **)&p, 16);
  1563. if (ch == 'Z')
  1564. res = gdb_breakpoint_insert(addr, len, type);
  1565. else
  1566. res = gdb_breakpoint_remove(addr, len, type);
  1567. if (res >= 0)
  1568. put_packet(s, "OK");
  1569. else if (res == -ENOSYS)
  1570. put_packet(s, "");
  1571. else
  1572. put_packet(s, "E22");
  1573. break;
  1574. case 'H':
  1575. type = *p++;
  1576. thread = strtoull(p, (char **)&p, 16);
  1577. if (thread == -1 || thread == 0) {
  1578. put_packet(s, "OK");
  1579. break;
  1580. }
  1581. for (env = first_cpu; env != NULL; env = env->next_cpu)
  1582. if (env->cpu_index + 1 == thread)
  1583. break;
  1584. if (env == NULL) {
  1585. put_packet(s, "E22");
  1586. break;
  1587. }
  1588. switch (type) {
  1589. case 'c':
  1590. s->c_cpu = env;
  1591. put_packet(s, "OK");
  1592. break;
  1593. case 'g':
  1594. s->g_cpu = env;
  1595. put_packet(s, "OK");
  1596. break;
  1597. default:
  1598. put_packet(s, "E22");
  1599. break;
  1600. }
  1601. break;
  1602. case 'T':
  1603. thread = strtoull(p, (char **)&p, 16);
  1604. #ifndef CONFIG_USER_ONLY
  1605. if (thread > 0 && thread < smp_cpus + 1)
  1606. #else
  1607. if (thread == 1)
  1608. #endif
  1609. put_packet(s, "OK");
  1610. else
  1611. put_packet(s, "E22");
  1612. break;
  1613. case 'q':
  1614. case 'Q':
  1615. /* parse any 'q' packets here */
  1616. if (!strcmp(p,"qemu.sstepbits")) {
  1617. /* Query Breakpoint bit definitions */
  1618. snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
  1619. SSTEP_ENABLE,
  1620. SSTEP_NOIRQ,
  1621. SSTEP_NOTIMER);
  1622. put_packet(s, buf);
  1623. break;
  1624. } else if (strncmp(p,"qemu.sstep",10) == 0) {
  1625. /* Display or change the sstep_flags */
  1626. p += 10;
  1627. if (*p != '=') {
  1628. /* Display current setting */
  1629. snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
  1630. put_packet(s, buf);
  1631. break;
  1632. }
  1633. p++;
  1634. type = strtoul(p, (char **)&p, 16);
  1635. sstep_flags = type;
  1636. put_packet(s, "OK");
  1637. break;
  1638. } else if (strcmp(p,"C") == 0) {
  1639. /* "Current thread" remains vague in the spec, so always return
  1640. * the first CPU (gdb returns the first thread). */
  1641. put_packet(s, "QC1");
  1642. break;
  1643. } else if (strcmp(p,"fThreadInfo") == 0) {
  1644. s->query_cpu = first_cpu;
  1645. goto report_cpuinfo;
  1646. } else if (strcmp(p,"sThreadInfo") == 0) {
  1647. report_cpuinfo:
  1648. if (s->query_cpu) {
  1649. snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
  1650. put_packet(s, buf);
  1651. s->query_cpu = s->query_cpu->next_cpu;
  1652. } else
  1653. put_packet(s, "l");
  1654. break;
  1655. } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
  1656. thread = strtoull(p+16, (char **)&p, 16);
  1657. for (env = first_cpu; env != NULL; env = env->next_cpu)
  1658. if (env->cpu_index + 1 == thread) {
  1659. len = snprintf((char *)mem_buf, sizeof(mem_buf),
  1660. "CPU#%d [%s]", env->cpu_index,
  1661. env->halted ? "halted " : "running");
  1662. memtohex(buf, mem_buf, len);
  1663. put_packet(s, buf);
  1664. break;
  1665. }
  1666. break;
  1667. }
  1668. #ifdef CONFIG_LINUX_USER
  1669. else if (strncmp(p, "Offsets", 7) == 0) {
  1670. TaskState *ts = s->c_cpu->opaque;
  1671. snprintf(buf, sizeof(buf),
  1672. "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
  1673. ";Bss=" TARGET_ABI_FMT_lx,
  1674. ts->info->code_offset,
  1675. ts->info->data_offset,
  1676. ts->info->data_offset);
  1677. put_packet(s, buf);
  1678. break;
  1679. }
  1680. #endif
  1681. if (strncmp(p, "Supported", 9) == 0) {
  1682. snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
  1683. #ifdef GDB_CORE_XML
  1684. strcat(buf, ";qXfer:features:read+");
  1685. #endif
  1686. put_packet(s, buf);
  1687. break;
  1688. }
  1689. #ifdef GDB_CORE_XML
  1690. if (strncmp(p, "Xfer:features:read:", 19) == 0) {
  1691. const char *xml;
  1692. target_ulong total_len;
  1693. gdb_has_xml = 1;
  1694. p += 19;
  1695. xml = get_feature_xml(p, &p);
  1696. if (!xml) {
  1697. snprintf(buf, sizeof(buf), "E00");
  1698. put_packet(s, buf);
  1699. break;
  1700. }
  1701. if (*p == ':')
  1702. p++;
  1703. addr = strtoul(p, (char **)&p, 16);
  1704. if (*p == ',')
  1705. p++;
  1706. len = strtoul(p, (char **)&p, 16);
  1707. total_len = strlen(xml);
  1708. if (addr > total_len) {
  1709. snprintf(buf, sizeof(buf), "E00");
  1710. put_packet(s, buf);
  1711. break;
  1712. }
  1713. if (len > (MAX_PACKET_LENGTH - 5) / 2)
  1714. len = (MAX_PACKET_LENGTH - 5) / 2;
  1715. if (len < total_len - addr) {
  1716. buf[0] = 'm';
  1717. len = memtox(buf + 1, xml + addr, len);
  1718. } else {
  1719. buf[0] = 'l';
  1720. len = memtox(buf + 1, xml + addr, total_len - addr);
  1721. }
  1722. put_packet_binary(s, buf, len + 1);
  1723. break;
  1724. }
  1725. #endif
  1726. /* Unrecognised 'q' command. */
  1727. goto unknown_command;
  1728. default:
  1729. unknown_command:
  1730. /* put empty packet */
  1731. buf[0] = '\0';
  1732. put_packet(s, buf);
  1733. break;
  1734. }
  1735. return RS_IDLE;
  1736. }
  1737. void gdb_set_stop_cpu(CPUState *env)
  1738. {
  1739. gdbserver_state->c_cpu = env;
  1740. gdbserver_state->g_cpu = env;
  1741. }
  1742. #ifndef CONFIG_USER_ONLY
  1743. static void gdb_vm_state_change(void *opaque, int running, int reason)
  1744. {
  1745. GDBState *s = gdbserver_state;
  1746. CPUState *env = s->c_cpu;
  1747. char buf[256];
  1748. const char *type;
  1749. int ret;
  1750. if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
  1751. s->state == RS_SYSCALL)
  1752. return;
  1753. /* disable single step if it was enable */
  1754. cpu_single_step(env, 0);
  1755. if (reason == EXCP_DEBUG) {
  1756. if (env->watchpoint_hit) {
  1757. switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
  1758. case BP_MEM_READ:
  1759. type = "r";
  1760. break;
  1761. case BP_MEM_ACCESS:
  1762. type = "a";
  1763. break;
  1764. default:
  1765. type = "";
  1766. break;
  1767. }
  1768. snprintf(buf, sizeof(buf),
  1769. "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
  1770. GDB_SIGNAL_TRAP, env->cpu_index+1, type,
  1771. env->watchpoint_hit->vaddr);
  1772. put_packet(s, buf);
  1773. env->watchpoint_hit = NULL;
  1774. return;
  1775. }
  1776. tb_flush(env);
  1777. ret = GDB_SIGNAL_TRAP;
  1778. } else {
  1779. ret = GDB_SIGNAL_INT;
  1780. }
  1781. snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
  1782. put_packet(s, buf);
  1783. }
  1784. #endif
  1785. /* Send a gdb syscall request.
  1786. This accepts limited printf-style format specifiers, specifically:
  1787. %x - target_ulong argument printed in hex.
  1788. %lx - 64-bit argument printed in hex.
  1789. %s - string pointer (target_ulong) and length (int) pair. */
  1790. void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
  1791. {
  1792. va_list va;
  1793. char buf[256];
  1794. char *p;
  1795. target_ulong addr;
  1796. uint64_t i64;
  1797. GDBState *s;
  1798. s = gdbserver_state;
  1799. if (!s)
  1800. return;
  1801. gdb_current_syscall_cb = cb;
  1802. s->state = RS_SYSCALL;
  1803. #ifndef CONFIG_USER_ONLY
  1804. vm_stop(EXCP_DEBUG);
  1805. #endif
  1806. s->state = RS_IDLE;
  1807. va_start(va, fmt);
  1808. p = buf;
  1809. *(p++) = 'F';
  1810. while (*fmt) {
  1811. if (*fmt == '%') {
  1812. fmt++;
  1813. switch (*fmt++) {
  1814. case 'x':
  1815. addr = va_arg(va, target_ulong);
  1816. p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
  1817. break;
  1818. case 'l':
  1819. if (*(fmt++) != 'x')
  1820. goto bad_format;
  1821. i64 = va_arg(va, uint64_t);
  1822. p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
  1823. break;
  1824. case 's':
  1825. addr = va_arg(va, target_ulong);
  1826. p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
  1827. addr, va_arg(va, int));
  1828. break;
  1829. default:
  1830. bad_format:
  1831. fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
  1832. fmt - 1);
  1833. break;
  1834. }
  1835. } else {
  1836. *(p++) = *(fmt++);
  1837. }
  1838. }
  1839. *p = 0;
  1840. va_end(va);
  1841. put_packet(s, buf);
  1842. #ifdef CONFIG_USER_ONLY
  1843. gdb_handlesig(s->c_cpu, 0);
  1844. #else
  1845. cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
  1846. #endif
  1847. }
  1848. static void gdb_read_byte(GDBState *s, int ch)
  1849. {
  1850. int i, csum;
  1851. uint8_t reply;
  1852. #ifndef CONFIG_USER_ONLY
  1853. if (s->last_packet_len) {
  1854. /* Waiting for a response to the last packet. If we see the start
  1855. of a new command then abandon the previous response. */
  1856. if (ch == '-') {
  1857. #ifdef DEBUG_GDB
  1858. printf("Got NACK, retransmitting\n");
  1859. #endif
  1860. put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
  1861. }
  1862. #ifdef DEBUG_GDB
  1863. else if (ch == '+')
  1864. printf("Got ACK\n");
  1865. else
  1866. printf("Got '%c' when expecting ACK/NACK\n", ch);
  1867. #endif
  1868. if (ch == '+' || ch == '$')
  1869. s->last_packet_len = 0;
  1870. if (ch != '$')
  1871. return;
  1872. }
  1873. if (vm_running) {
  1874. /* when the CPU is running, we cannot do anything except stop
  1875. it when receiving a char */
  1876. vm_stop(EXCP_INTERRUPT);
  1877. } else
  1878. #endif
  1879. {
  1880. switch(s->state) {
  1881. case RS_IDLE:
  1882. if (ch == '$') {
  1883. s->line_buf_index = 0;
  1884. s->state = RS_GETLINE;
  1885. }
  1886. break;
  1887. case RS_GETLINE:
  1888. if (ch == '#') {
  1889. s->state = RS_CHKSUM1;
  1890. } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
  1891. s->state = RS_IDLE;
  1892. } else {
  1893. s->line_buf[s->line_buf_index++] = ch;
  1894. }
  1895. break;
  1896. case RS_CHKSUM1:
  1897. s->line_buf[s->line_buf_index] = '\0';
  1898. s->line_csum = fromhex(ch) << 4;
  1899. s->state = RS_CHKSUM2;
  1900. break;
  1901. case RS_CHKSUM2:
  1902. s->line_csum |= fromhex(ch);
  1903. csum = 0;
  1904. for(i = 0; i < s->line_buf_index; i++) {
  1905. csum += s->line_buf[i];
  1906. }
  1907. if (s->line_csum != (csum & 0xff)) {
  1908. reply = '-';
  1909. put_buffer(s, &reply, 1);
  1910. s->state = RS_IDLE;
  1911. } else {
  1912. reply = '+';
  1913. put_buffer(s, &reply, 1);
  1914. s->state = gdb_handle_packet(s, s->line_buf);
  1915. }
  1916. break;
  1917. default:
  1918. abort();
  1919. }
  1920. }
  1921. }
  1922. #ifdef CONFIG_USER_ONLY
  1923. int
  1924. gdb_queuesig (void)
  1925. {
  1926. GDBState *s;
  1927. s = gdbserver_state;
  1928. if (gdbserver_fd < 0 || s->fd < 0)
  1929. return 0;
  1930. else
  1931. return 1;
  1932. }
  1933. int
  1934. gdb_handlesig (CPUState *env, int sig)
  1935. {
  1936. GDBState *s;
  1937. char buf[256];
  1938. int n;
  1939. s = gdbserver_state;
  1940. if (gdbserver_fd < 0 || s->fd < 0)
  1941. return sig;
  1942. /* disable single step if it was enabled */
  1943. cpu_single_step(env, 0);
  1944. tb_flush(env);
  1945. if (sig != 0)
  1946. {
  1947. snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
  1948. put_packet(s, buf);
  1949. }
  1950. /* put_packet() might have detected that the peer terminated the
  1951. connection. */
  1952. if (s->fd < 0)
  1953. return sig;
  1954. sig = 0;
  1955. s->state = RS_IDLE;
  1956. s->running_state = 0;
  1957. while (s->running_state == 0) {
  1958. n = read (s->fd, buf, 256);
  1959. if (n > 0)
  1960. {
  1961. int i;
  1962. for (i = 0; i < n; i++)
  1963. gdb_read_byte (s, buf[i]);
  1964. }
  1965. else if (n == 0 || errno != EAGAIN)
  1966. {
  1967. /* XXX: Connection closed. Should probably wait for annother
  1968. connection before continuing. */
  1969. return sig;
  1970. }
  1971. }
  1972. sig = s->signal;
  1973. s->signal = 0;
  1974. return sig;
  1975. }
  1976. /* Tell the remote gdb that the process has exited. */
  1977. void gdb_exit(CPUState *env, int code)
  1978. {
  1979. GDBState *s;
  1980. char buf[4];
  1981. s = gdbserver_state;
  1982. if (gdbserver_fd < 0 || s->fd < 0)
  1983. return;
  1984. snprintf(buf, sizeof(buf), "W%02x", code);
  1985. put_packet(s, buf);
  1986. }
  1987. /* Tell the remote gdb that the process has exited due to SIG. */
  1988. void gdb_signalled(CPUState *env, int sig)
  1989. {
  1990. GDBState *s;
  1991. char buf[4];
  1992. s = gdbserver_state;
  1993. if (gdbserver_fd < 0 || s->fd < 0)
  1994. return;
  1995. snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
  1996. put_packet(s, buf);
  1997. }
  1998. static void gdb_accept(void)
  1999. {
  2000. GDBState *s;
  2001. struct sockaddr_in sockaddr;
  2002. socklen_t len;
  2003. int val, fd;
  2004. for(;;) {
  2005. len = sizeof(sockaddr);
  2006. fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
  2007. if (fd < 0 && errno != EINTR) {
  2008. perror("accept");
  2009. return;
  2010. } else if (fd >= 0) {
  2011. break;
  2012. }
  2013. }
  2014. /* set short latency */
  2015. val = 1;
  2016. setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
  2017. s = qemu_mallocz(sizeof(GDBState));
  2018. memset (s, 0, sizeof (GDBState));
  2019. s->c_cpu = first_cpu;
  2020. s->g_cpu = first_cpu;
  2021. s->fd = fd;
  2022. gdb_has_xml = 0;
  2023. gdbserver_state = s;
  2024. fcntl(fd, F_SETFL, O_NONBLOCK);
  2025. }
  2026. static int gdbserver_open(int port)
  2027. {
  2028. struct sockaddr_in sockaddr;
  2029. int fd, val, ret;
  2030. fd = socket(PF_INET, SOCK_STREAM, 0);
  2031. if (fd < 0) {
  2032. perror("socket");
  2033. return -1;
  2034. }
  2035. /* allow fast reuse */
  2036. val = 1;
  2037. setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
  2038. sockaddr.sin_family = AF_INET;
  2039. sockaddr.sin_port = htons(port);
  2040. sockaddr.sin_addr.s_addr = 0;
  2041. ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
  2042. if (ret < 0) {
  2043. perror("bind");
  2044. return -1;
  2045. }
  2046. ret = listen(fd, 0);
  2047. if (ret < 0) {
  2048. perror("listen");
  2049. return -1;
  2050. }
  2051. return fd;
  2052. }
  2053. int gdbserver_start(int port)
  2054. {
  2055. gdbserver_fd = gdbserver_open(port);
  2056. if (gdbserver_fd < 0)
  2057. return -1;
  2058. /* accept connections */
  2059. gdb_accept();
  2060. return 0;
  2061. }
  2062. /* Disable gdb stub for child processes. */
  2063. void gdbserver_fork(CPUState *env)
  2064. {
  2065. GDBState *s = gdbserver_state;
  2066. if (gdbserver_fd < 0 || s->fd < 0)
  2067. return;
  2068. close(s->fd);
  2069. s->fd = -1;
  2070. cpu_breakpoint_remove_all(env, BP_GDB);
  2071. cpu_watchpoint_remove_all(env, BP_GDB);
  2072. }
  2073. #else
  2074. static int gdb_chr_can_receive(void *opaque)
  2075. {
  2076. /* We can handle an arbitrarily large amount of data.
  2077. Pick the maximum packet size, which is as good as anything. */
  2078. return MAX_PACKET_LENGTH;
  2079. }
  2080. static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
  2081. {
  2082. int i;
  2083. for (i = 0; i < size; i++) {
  2084. gdb_read_byte(gdbserver_state, buf[i]);
  2085. }
  2086. }
  2087. static void gdb_chr_event(void *opaque, int event)
  2088. {
  2089. switch (event) {
  2090. case CHR_EVENT_RESET:
  2091. vm_stop(EXCP_INTERRUPT);
  2092. gdb_has_xml = 0;
  2093. break;
  2094. default:
  2095. break;
  2096. }
  2097. }
  2098. int gdbserver_start(const char *port)
  2099. {
  2100. GDBState *s;
  2101. char gdbstub_port_name[128];
  2102. int port_num;
  2103. char *p;
  2104. CharDriverState *chr;
  2105. if (!port || !*port)
  2106. return -1;
  2107. port_num = strtol(port, &p, 10);
  2108. if (*p == 0) {
  2109. /* A numeric value is interpreted as a port number. */
  2110. snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
  2111. "tcp::%d,nowait,nodelay,server", port_num);
  2112. port = gdbstub_port_name;
  2113. }
  2114. chr = qemu_chr_open("gdb", port, NULL);
  2115. if (!chr)
  2116. return -1;
  2117. s = qemu_mallocz(sizeof(GDBState));
  2118. s->c_cpu = first_cpu;
  2119. s->g_cpu = first_cpu;
  2120. s->chr = chr;
  2121. gdbserver_state = s;
  2122. qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
  2123. gdb_chr_event, NULL);
  2124. qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
  2125. return 0;
  2126. }
  2127. #endif