123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146 |
- /*
- * defines common to all virtual CPUs
- *
- * Copyright (c) 2003 Fabrice Bellard
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
- */
- #ifndef CPU_ALL_H
- #define CPU_ALL_H
- #include "qemu-common.h"
- #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
- #define WORDS_ALIGNED
- #endif
- /* some important defines:
- *
- * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
- * memory accesses.
- *
- * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
- * otherwise little endian.
- *
- * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
- *
- * TARGET_WORDS_BIGENDIAN : same for target cpu
- */
- #include "bswap.h"
- #include "softfloat.h"
- #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
- #define BSWAP_NEEDED
- #endif
- #ifdef BSWAP_NEEDED
- static inline uint16_t tswap16(uint16_t s)
- {
- return bswap16(s);
- }
- static inline uint32_t tswap32(uint32_t s)
- {
- return bswap32(s);
- }
- static inline uint64_t tswap64(uint64_t s)
- {
- return bswap64(s);
- }
- static inline void tswap16s(uint16_t *s)
- {
- *s = bswap16(*s);
- }
- static inline void tswap32s(uint32_t *s)
- {
- *s = bswap32(*s);
- }
- static inline void tswap64s(uint64_t *s)
- {
- *s = bswap64(*s);
- }
- #else
- static inline uint16_t tswap16(uint16_t s)
- {
- return s;
- }
- static inline uint32_t tswap32(uint32_t s)
- {
- return s;
- }
- static inline uint64_t tswap64(uint64_t s)
- {
- return s;
- }
- static inline void tswap16s(uint16_t *s)
- {
- }
- static inline void tswap32s(uint32_t *s)
- {
- }
- static inline void tswap64s(uint64_t *s)
- {
- }
- #endif
- #if TARGET_LONG_SIZE == 4
- #define tswapl(s) tswap32(s)
- #define tswapls(s) tswap32s((uint32_t *)(s))
- #define bswaptls(s) bswap32s(s)
- #else
- #define tswapl(s) tswap64(s)
- #define tswapls(s) tswap64s((uint64_t *)(s))
- #define bswaptls(s) bswap64s(s)
- #endif
- typedef union {
- float32 f;
- uint32_t l;
- } CPU_FloatU;
- /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
- endian ! */
- typedef union {
- float64 d;
- #if defined(WORDS_BIGENDIAN) \
- || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
- struct {
- uint32_t upper;
- uint32_t lower;
- } l;
- #else
- struct {
- uint32_t lower;
- uint32_t upper;
- } l;
- #endif
- uint64_t ll;
- } CPU_DoubleU;
- #ifdef TARGET_SPARC
- typedef union {
- float128 q;
- #if defined(WORDS_BIGENDIAN) \
- || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
- struct {
- uint32_t upmost;
- uint32_t upper;
- uint32_t lower;
- uint32_t lowest;
- } l;
- struct {
- uint64_t upper;
- uint64_t lower;
- } ll;
- #else
- struct {
- uint32_t lowest;
- uint32_t lower;
- uint32_t upper;
- uint32_t upmost;
- } l;
- struct {
- uint64_t lower;
- uint64_t upper;
- } ll;
- #endif
- } CPU_QuadU;
- #endif
- /* CPU memory access without any memory or io remapping */
- /*
- * the generic syntax for the memory accesses is:
- *
- * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
- *
- * store: st{type}{size}{endian}_{access_type}(ptr, val)
- *
- * type is:
- * (empty): integer access
- * f : float access
- *
- * sign is:
- * (empty): for floats or 32 bit size
- * u : unsigned
- * s : signed
- *
- * size is:
- * b: 8 bits
- * w: 16 bits
- * l: 32 bits
- * q: 64 bits
- *
- * endian is:
- * (empty): target cpu endianness or 8 bit access
- * r : reversed target cpu endianness (not implemented yet)
- * be : big endian (not implemented yet)
- * le : little endian (not implemented yet)
- *
- * access_type is:
- * raw : host memory access
- * user : user mode access using soft MMU
- * kernel : kernel mode access using soft MMU
- */
- static inline int ldub_p(const void *ptr)
- {
- return *(uint8_t *)ptr;
- }
- static inline int ldsb_p(const void *ptr)
- {
- return *(int8_t *)ptr;
- }
- static inline void stb_p(void *ptr, int v)
- {
- *(uint8_t *)ptr = v;
- }
- /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
- kernel handles unaligned load/stores may give better results, but
- it is a system wide setting : bad */
- #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
- /* conservative code for little endian unaligned accesses */
- static inline int lduw_le_p(const void *ptr)
- {
- #ifdef _ARCH_PPC
- int val;
- __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
- return val;
- #else
- const uint8_t *p = ptr;
- return p[0] | (p[1] << 8);
- #endif
- }
- static inline int ldsw_le_p(const void *ptr)
- {
- #ifdef _ARCH_PPC
- int val;
- __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
- return (int16_t)val;
- #else
- const uint8_t *p = ptr;
- return (int16_t)(p[0] | (p[1] << 8));
- #endif
- }
- static inline int ldl_le_p(const void *ptr)
- {
- #ifdef _ARCH_PPC
- int val;
- __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
- return val;
- #else
- const uint8_t *p = ptr;
- return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
- #endif
- }
- static inline uint64_t ldq_le_p(const void *ptr)
- {
- const uint8_t *p = ptr;
- uint32_t v1, v2;
- v1 = ldl_le_p(p);
- v2 = ldl_le_p(p + 4);
- return v1 | ((uint64_t)v2 << 32);
- }
- static inline void stw_le_p(void *ptr, int v)
- {
- #ifdef _ARCH_PPC
- __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
- #else
- uint8_t *p = ptr;
- p[0] = v;
- p[1] = v >> 8;
- #endif
- }
- static inline void stl_le_p(void *ptr, int v)
- {
- #ifdef _ARCH_PPC
- __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
- #else
- uint8_t *p = ptr;
- p[0] = v;
- p[1] = v >> 8;
- p[2] = v >> 16;
- p[3] = v >> 24;
- #endif
- }
- static inline void stq_le_p(void *ptr, uint64_t v)
- {
- uint8_t *p = ptr;
- stl_le_p(p, (uint32_t)v);
- stl_le_p(p + 4, v >> 32);
- }
- /* float access */
- static inline float32 ldfl_le_p(const void *ptr)
- {
- union {
- float32 f;
- uint32_t i;
- } u;
- u.i = ldl_le_p(ptr);
- return u.f;
- }
- static inline void stfl_le_p(void *ptr, float32 v)
- {
- union {
- float32 f;
- uint32_t i;
- } u;
- u.f = v;
- stl_le_p(ptr, u.i);
- }
- static inline float64 ldfq_le_p(const void *ptr)
- {
- CPU_DoubleU u;
- u.l.lower = ldl_le_p(ptr);
- u.l.upper = ldl_le_p(ptr + 4);
- return u.d;
- }
- static inline void stfq_le_p(void *ptr, float64 v)
- {
- CPU_DoubleU u;
- u.d = v;
- stl_le_p(ptr, u.l.lower);
- stl_le_p(ptr + 4, u.l.upper);
- }
- #else
- static inline int lduw_le_p(const void *ptr)
- {
- return *(uint16_t *)ptr;
- }
- static inline int ldsw_le_p(const void *ptr)
- {
- return *(int16_t *)ptr;
- }
- static inline int ldl_le_p(const void *ptr)
- {
- return *(uint32_t *)ptr;
- }
- static inline uint64_t ldq_le_p(const void *ptr)
- {
- return *(uint64_t *)ptr;
- }
- static inline void stw_le_p(void *ptr, int v)
- {
- *(uint16_t *)ptr = v;
- }
- static inline void stl_le_p(void *ptr, int v)
- {
- *(uint32_t *)ptr = v;
- }
- static inline void stq_le_p(void *ptr, uint64_t v)
- {
- *(uint64_t *)ptr = v;
- }
- /* float access */
- static inline float32 ldfl_le_p(const void *ptr)
- {
- return *(float32 *)ptr;
- }
- static inline float64 ldfq_le_p(const void *ptr)
- {
- return *(float64 *)ptr;
- }
- static inline void stfl_le_p(void *ptr, float32 v)
- {
- *(float32 *)ptr = v;
- }
- static inline void stfq_le_p(void *ptr, float64 v)
- {
- *(float64 *)ptr = v;
- }
- #endif
- #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
- static inline int lduw_be_p(const void *ptr)
- {
- #if defined(__i386__)
- int val;
- asm volatile ("movzwl %1, %0\n"
- "xchgb %b0, %h0\n"
- : "=q" (val)
- : "m" (*(uint16_t *)ptr));
- return val;
- #else
- const uint8_t *b = ptr;
- return ((b[0] << 8) | b[1]);
- #endif
- }
- static inline int ldsw_be_p(const void *ptr)
- {
- #if defined(__i386__)
- int val;
- asm volatile ("movzwl %1, %0\n"
- "xchgb %b0, %h0\n"
- : "=q" (val)
- : "m" (*(uint16_t *)ptr));
- return (int16_t)val;
- #else
- const uint8_t *b = ptr;
- return (int16_t)((b[0] << 8) | b[1]);
- #endif
- }
- static inline int ldl_be_p(const void *ptr)
- {
- #if defined(__i386__) || defined(__x86_64__)
- int val;
- asm volatile ("movl %1, %0\n"
- "bswap %0\n"
- : "=r" (val)
- : "m" (*(uint32_t *)ptr));
- return val;
- #else
- const uint8_t *b = ptr;
- return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
- #endif
- }
- static inline uint64_t ldq_be_p(const void *ptr)
- {
- uint32_t a,b;
- a = ldl_be_p(ptr);
- b = ldl_be_p((uint8_t *)ptr + 4);
- return (((uint64_t)a<<32)|b);
- }
- static inline void stw_be_p(void *ptr, int v)
- {
- #if defined(__i386__)
- asm volatile ("xchgb %b0, %h0\n"
- "movw %w0, %1\n"
- : "=q" (v)
- : "m" (*(uint16_t *)ptr), "0" (v));
- #else
- uint8_t *d = (uint8_t *) ptr;
- d[0] = v >> 8;
- d[1] = v;
- #endif
- }
- static inline void stl_be_p(void *ptr, int v)
- {
- #if defined(__i386__) || defined(__x86_64__)
- asm volatile ("bswap %0\n"
- "movl %0, %1\n"
- : "=r" (v)
- : "m" (*(uint32_t *)ptr), "0" (v));
- #else
- uint8_t *d = (uint8_t *) ptr;
- d[0] = v >> 24;
- d[1] = v >> 16;
- d[2] = v >> 8;
- d[3] = v;
- #endif
- }
- static inline void stq_be_p(void *ptr, uint64_t v)
- {
- stl_be_p(ptr, v >> 32);
- stl_be_p((uint8_t *)ptr + 4, v);
- }
- /* float access */
- static inline float32 ldfl_be_p(const void *ptr)
- {
- union {
- float32 f;
- uint32_t i;
- } u;
- u.i = ldl_be_p(ptr);
- return u.f;
- }
- static inline void stfl_be_p(void *ptr, float32 v)
- {
- union {
- float32 f;
- uint32_t i;
- } u;
- u.f = v;
- stl_be_p(ptr, u.i);
- }
- static inline float64 ldfq_be_p(const void *ptr)
- {
- CPU_DoubleU u;
- u.l.upper = ldl_be_p(ptr);
- u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
- return u.d;
- }
- static inline void stfq_be_p(void *ptr, float64 v)
- {
- CPU_DoubleU u;
- u.d = v;
- stl_be_p(ptr, u.l.upper);
- stl_be_p((uint8_t *)ptr + 4, u.l.lower);
- }
- #else
- static inline int lduw_be_p(const void *ptr)
- {
- return *(uint16_t *)ptr;
- }
- static inline int ldsw_be_p(const void *ptr)
- {
- return *(int16_t *)ptr;
- }
- static inline int ldl_be_p(const void *ptr)
- {
- return *(uint32_t *)ptr;
- }
- static inline uint64_t ldq_be_p(const void *ptr)
- {
- return *(uint64_t *)ptr;
- }
- static inline void stw_be_p(void *ptr, int v)
- {
- *(uint16_t *)ptr = v;
- }
- static inline void stl_be_p(void *ptr, int v)
- {
- *(uint32_t *)ptr = v;
- }
- static inline void stq_be_p(void *ptr, uint64_t v)
- {
- *(uint64_t *)ptr = v;
- }
- /* float access */
- static inline float32 ldfl_be_p(const void *ptr)
- {
- return *(float32 *)ptr;
- }
- static inline float64 ldfq_be_p(const void *ptr)
- {
- return *(float64 *)ptr;
- }
- static inline void stfl_be_p(void *ptr, float32 v)
- {
- *(float32 *)ptr = v;
- }
- static inline void stfq_be_p(void *ptr, float64 v)
- {
- *(float64 *)ptr = v;
- }
- #endif
- /* target CPU memory access functions */
- #if defined(TARGET_WORDS_BIGENDIAN)
- #define lduw_p(p) lduw_be_p(p)
- #define ldsw_p(p) ldsw_be_p(p)
- #define ldl_p(p) ldl_be_p(p)
- #define ldq_p(p) ldq_be_p(p)
- #define ldfl_p(p) ldfl_be_p(p)
- #define ldfq_p(p) ldfq_be_p(p)
- #define stw_p(p, v) stw_be_p(p, v)
- #define stl_p(p, v) stl_be_p(p, v)
- #define stq_p(p, v) stq_be_p(p, v)
- #define stfl_p(p, v) stfl_be_p(p, v)
- #define stfq_p(p, v) stfq_be_p(p, v)
- #else
- #define lduw_p(p) lduw_le_p(p)
- #define ldsw_p(p) ldsw_le_p(p)
- #define ldl_p(p) ldl_le_p(p)
- #define ldq_p(p) ldq_le_p(p)
- #define ldfl_p(p) ldfl_le_p(p)
- #define ldfq_p(p) ldfq_le_p(p)
- #define stw_p(p, v) stw_le_p(p, v)
- #define stl_p(p, v) stl_le_p(p, v)
- #define stq_p(p, v) stq_le_p(p, v)
- #define stfl_p(p, v) stfl_le_p(p, v)
- #define stfq_p(p, v) stfq_le_p(p, v)
- #endif
- /* MMU memory access macros */
- #if defined(CONFIG_USER_ONLY)
- #include <assert.h>
- #include "qemu-types.h"
- /* On some host systems the guest address space is reserved on the host.
- * This allows the guest address space to be offset to a convenient location.
- */
- //#define GUEST_BASE 0x20000000
- #define GUEST_BASE 0
- /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
- #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
- #define h2g(x) ({ \
- unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
- /* Check if given address fits target address space */ \
- assert(__ret == (abi_ulong)__ret); \
- (abi_ulong)__ret; \
- })
- #define h2g_valid(x) ({ \
- unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
- (__guest == (abi_ulong)__guest); \
- })
- #define saddr(x) g2h(x)
- #define laddr(x) g2h(x)
- #else /* !CONFIG_USER_ONLY */
- /* NOTE: we use double casts if pointers and target_ulong have
- different sizes */
- #define saddr(x) (uint8_t *)(long)(x)
- #define laddr(x) (uint8_t *)(long)(x)
- #endif
- #define ldub_raw(p) ldub_p(laddr((p)))
- #define ldsb_raw(p) ldsb_p(laddr((p)))
- #define lduw_raw(p) lduw_p(laddr((p)))
- #define ldsw_raw(p) ldsw_p(laddr((p)))
- #define ldl_raw(p) ldl_p(laddr((p)))
- #define ldq_raw(p) ldq_p(laddr((p)))
- #define ldfl_raw(p) ldfl_p(laddr((p)))
- #define ldfq_raw(p) ldfq_p(laddr((p)))
- #define stb_raw(p, v) stb_p(saddr((p)), v)
- #define stw_raw(p, v) stw_p(saddr((p)), v)
- #define stl_raw(p, v) stl_p(saddr((p)), v)
- #define stq_raw(p, v) stq_p(saddr((p)), v)
- #define stfl_raw(p, v) stfl_p(saddr((p)), v)
- #define stfq_raw(p, v) stfq_p(saddr((p)), v)
- #if defined(CONFIG_USER_ONLY)
- /* if user mode, no other memory access functions */
- #define ldub(p) ldub_raw(p)
- #define ldsb(p) ldsb_raw(p)
- #define lduw(p) lduw_raw(p)
- #define ldsw(p) ldsw_raw(p)
- #define ldl(p) ldl_raw(p)
- #define ldq(p) ldq_raw(p)
- #define ldfl(p) ldfl_raw(p)
- #define ldfq(p) ldfq_raw(p)
- #define stb(p, v) stb_raw(p, v)
- #define stw(p, v) stw_raw(p, v)
- #define stl(p, v) stl_raw(p, v)
- #define stq(p, v) stq_raw(p, v)
- #define stfl(p, v) stfl_raw(p, v)
- #define stfq(p, v) stfq_raw(p, v)
- #define ldub_code(p) ldub_raw(p)
- #define ldsb_code(p) ldsb_raw(p)
- #define lduw_code(p) lduw_raw(p)
- #define ldsw_code(p) ldsw_raw(p)
- #define ldl_code(p) ldl_raw(p)
- #define ldq_code(p) ldq_raw(p)
- #define ldub_kernel(p) ldub_raw(p)
- #define ldsb_kernel(p) ldsb_raw(p)
- #define lduw_kernel(p) lduw_raw(p)
- #define ldsw_kernel(p) ldsw_raw(p)
- #define ldl_kernel(p) ldl_raw(p)
- #define ldq_kernel(p) ldq_raw(p)
- #define ldfl_kernel(p) ldfl_raw(p)
- #define ldfq_kernel(p) ldfq_raw(p)
- #define stb_kernel(p, v) stb_raw(p, v)
- #define stw_kernel(p, v) stw_raw(p, v)
- #define stl_kernel(p, v) stl_raw(p, v)
- #define stq_kernel(p, v) stq_raw(p, v)
- #define stfl_kernel(p, v) stfl_raw(p, v)
- #define stfq_kernel(p, vt) stfq_raw(p, v)
- #endif /* defined(CONFIG_USER_ONLY) */
- /* page related stuff */
- #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
- #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
- #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
- /* ??? These should be the larger of unsigned long and target_ulong. */
- extern unsigned long qemu_real_host_page_size;
- extern unsigned long qemu_host_page_bits;
- extern unsigned long qemu_host_page_size;
- extern unsigned long qemu_host_page_mask;
- #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
- /* same as PROT_xxx */
- #define PAGE_READ 0x0001
- #define PAGE_WRITE 0x0002
- #define PAGE_EXEC 0x0004
- #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
- #define PAGE_VALID 0x0008
- /* original state of the write flag (used when tracking self-modifying
- code */
- #define PAGE_WRITE_ORG 0x0010
- #define PAGE_RESERVED 0x0020
- void page_dump(FILE *f);
- int page_get_flags(target_ulong address);
- void page_set_flags(target_ulong start, target_ulong end, int flags);
- int page_check_range(target_ulong start, target_ulong len, int flags);
- void cpu_exec_init_all(unsigned long tb_size);
- CPUState *cpu_copy(CPUState *env);
- void cpu_dump_state(CPUState *env, FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
- int flags);
- void cpu_dump_statistics (CPUState *env, FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
- int flags);
- void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
- __attribute__ ((__format__ (__printf__, 2, 3)));
- extern CPUState *first_cpu;
- extern CPUState *cpu_single_env;
- extern int64_t qemu_icount;
- extern int use_icount;
- #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
- #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
- #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
- #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
- #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
- #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
- #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
- #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
- #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
- #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
- void cpu_interrupt(CPUState *s, int mask);
- void cpu_reset_interrupt(CPUState *env, int mask);
- /* Breakpoint/watchpoint flags */
- #define BP_MEM_READ 0x01
- #define BP_MEM_WRITE 0x02
- #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
- #define BP_STOP_BEFORE_ACCESS 0x04
- #define BP_WATCHPOINT_HIT 0x08
- #define BP_GDB 0x10
- #define BP_CPU 0x20
- int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
- CPUBreakpoint **breakpoint);
- int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
- void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
- void cpu_breakpoint_remove_all(CPUState *env, int mask);
- int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
- int flags, CPUWatchpoint **watchpoint);
- int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
- target_ulong len, int flags);
- void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
- void cpu_watchpoint_remove_all(CPUState *env, int mask);
- #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
- #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
- #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
- void cpu_single_step(CPUState *env, int enabled);
- void cpu_reset(CPUState *s);
- /* Return the physical page corresponding to a virtual one. Use it
- only for debugging because no protection checks are done. Return -1
- if no page found. */
- target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
- #define CPU_LOG_TB_OUT_ASM (1 << 0)
- #define CPU_LOG_TB_IN_ASM (1 << 1)
- #define CPU_LOG_TB_OP (1 << 2)
- #define CPU_LOG_TB_OP_OPT (1 << 3)
- #define CPU_LOG_INT (1 << 4)
- #define CPU_LOG_EXEC (1 << 5)
- #define CPU_LOG_PCALL (1 << 6)
- #define CPU_LOG_IOPORT (1 << 7)
- #define CPU_LOG_TB_CPU (1 << 8)
- #define CPU_LOG_RESET (1 << 9)
- /* define log items */
- typedef struct CPULogItem {
- int mask;
- const char *name;
- const char *help;
- } CPULogItem;
- extern const CPULogItem cpu_log_items[];
- void cpu_set_log(int log_flags);
- void cpu_set_log_filename(const char *filename);
- int cpu_str_to_log_mask(const char *str);
- /* IO ports API */
- /* NOTE: as these functions may be even used when there is an isa
- brige on non x86 targets, we always defined them */
- #ifndef NO_CPU_IO_DEFS
- void cpu_outb(CPUState *env, int addr, int val);
- void cpu_outw(CPUState *env, int addr, int val);
- void cpu_outl(CPUState *env, int addr, int val);
- int cpu_inb(CPUState *env, int addr);
- int cpu_inw(CPUState *env, int addr);
- int cpu_inl(CPUState *env, int addr);
- #endif
- /* address in the RAM (different from a physical address) */
- #ifdef USE_KQEMU
- typedef uint32_t ram_addr_t;
- #else
- typedef unsigned long ram_addr_t;
- #endif
- /* memory API */
- extern ram_addr_t phys_ram_size;
- extern int phys_ram_fd;
- extern uint8_t *phys_ram_base;
- extern uint8_t *phys_ram_dirty;
- extern ram_addr_t ram_size;
- /* physical memory access */
- /* MMIO pages are identified by a combination of an IO device index and
- 3 flags. The ROMD code stores the page ram offset in iotlb entry,
- so only a limited number of ids are avaiable. */
- #define IO_MEM_SHIFT 3
- #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
- #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
- #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
- #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
- #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
- /* Acts like a ROM when read and like a device when written. */
- #define IO_MEM_ROMD (1)
- #define IO_MEM_SUBPAGE (2)
- #define IO_MEM_SUBWIDTH (4)
- /* Flags stored in the low bits of the TLB virtual address. These are
- defined so that fast path ram access is all zeros. */
- /* Zero if TLB entry is valid. */
- #define TLB_INVALID_MASK (1 << 3)
- /* Set if TLB entry references a clean RAM page. The iotlb entry will
- contain the page physical address. */
- #define TLB_NOTDIRTY (1 << 4)
- /* Set if TLB entry is an IO callback. */
- #define TLB_MMIO (1 << 5)
- typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
- typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
- void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
- ram_addr_t size,
- ram_addr_t phys_offset,
- ram_addr_t region_offset);
- static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
- ram_addr_t size,
- ram_addr_t phys_offset)
- {
- cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
- }
- ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
- ram_addr_t qemu_ram_alloc(ram_addr_t);
- void qemu_ram_free(ram_addr_t addr);
- int cpu_register_io_memory(int io_index,
- CPUReadMemoryFunc **mem_read,
- CPUWriteMemoryFunc **mem_write,
- void *opaque);
- void cpu_unregister_io_memory(int table_address);
- CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
- CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
- void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
- int len, int is_write);
- static inline void cpu_physical_memory_read(target_phys_addr_t addr,
- uint8_t *buf, int len)
- {
- cpu_physical_memory_rw(addr, buf, len, 0);
- }
- static inline void cpu_physical_memory_write(target_phys_addr_t addr,
- const uint8_t *buf, int len)
- {
- cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
- }
- void *cpu_physical_memory_map(target_phys_addr_t addr,
- target_phys_addr_t *plen,
- int is_write);
- void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
- int is_write, target_phys_addr_t access_len);
- void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
- void cpu_unregister_map_client(void *cookie);
- uint32_t ldub_phys(target_phys_addr_t addr);
- uint32_t lduw_phys(target_phys_addr_t addr);
- uint32_t ldl_phys(target_phys_addr_t addr);
- uint64_t ldq_phys(target_phys_addr_t addr);
- void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
- void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
- void stb_phys(target_phys_addr_t addr, uint32_t val);
- void stw_phys(target_phys_addr_t addr, uint32_t val);
- void stl_phys(target_phys_addr_t addr, uint32_t val);
- void stq_phys(target_phys_addr_t addr, uint64_t val);
- void cpu_physical_memory_write_rom(target_phys_addr_t addr,
- const uint8_t *buf, int len);
- int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
- uint8_t *buf, int len, int is_write);
- #define VGA_DIRTY_FLAG 0x01
- #define CODE_DIRTY_FLAG 0x02
- #define KQEMU_DIRTY_FLAG 0x04
- #define MIGRATION_DIRTY_FLAG 0x08
- /* read dirty bit (return 0 or 1) */
- static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
- {
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
- }
- static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
- int dirty_flags)
- {
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
- }
- static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
- {
- phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
- }
- void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
- int dirty_flags);
- void cpu_tlb_update_dirty(CPUState *env);
- int cpu_physical_memory_set_dirty_tracking(int enable);
- int cpu_physical_memory_get_dirty_tracking(void);
- void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
- void dump_exec_info(FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
- /* Coalesced MMIO regions are areas where write operations can be reordered.
- * This usually implies that write operations are side-effect free. This allows
- * batching which can make a major impact on performance when using
- * virtualization.
- */
- void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
- void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
- /*******************************************/
- /* host CPU ticks (if available) */
- #if defined(_ARCH_PPC)
- static inline int64_t cpu_get_real_ticks(void)
- {
- int64_t retval;
- #ifdef _ARCH_PPC64
- /* This reads timebase in one 64bit go and includes Cell workaround from:
- http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
- */
- __asm__ __volatile__ (
- "mftb %0\n\t"
- "cmpwi %0,0\n\t"
- "beq- $-8"
- : "=r" (retval));
- #else
- /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
- unsigned long junk;
- __asm__ __volatile__ (
- "mftbu %1\n\t"
- "mftb %L0\n\t"
- "mftbu %0\n\t"
- "cmpw %0,%1\n\t"
- "bne $-16"
- : "=r" (retval), "=r" (junk));
- #endif
- return retval;
- }
- #elif defined(__i386__)
- static inline int64_t cpu_get_real_ticks(void)
- {
- int64_t val;
- asm volatile ("rdtsc" : "=A" (val));
- return val;
- }
- #elif defined(__x86_64__)
- static inline int64_t cpu_get_real_ticks(void)
- {
- uint32_t low,high;
- int64_t val;
- asm volatile("rdtsc" : "=a" (low), "=d" (high));
- val = high;
- val <<= 32;
- val |= low;
- return val;
- }
- #elif defined(__hppa__)
- static inline int64_t cpu_get_real_ticks(void)
- {
- int val;
- asm volatile ("mfctl %%cr16, %0" : "=r"(val));
- return val;
- }
- #elif defined(__ia64)
- static inline int64_t cpu_get_real_ticks(void)
- {
- int64_t val;
- asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
- return val;
- }
- #elif defined(__s390__)
- static inline int64_t cpu_get_real_ticks(void)
- {
- int64_t val;
- asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
- return val;
- }
- #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
- static inline int64_t cpu_get_real_ticks (void)
- {
- #if defined(_LP64)
- uint64_t rval;
- asm volatile("rd %%tick,%0" : "=r"(rval));
- return rval;
- #else
- union {
- uint64_t i64;
- struct {
- uint32_t high;
- uint32_t low;
- } i32;
- } rval;
- asm volatile("rd %%tick,%1; srlx %1,32,%0"
- : "=r"(rval.i32.high), "=r"(rval.i32.low));
- return rval.i64;
- #endif
- }
- #elif defined(__mips__)
- static inline int64_t cpu_get_real_ticks(void)
- {
- #if __mips_isa_rev >= 2
- uint32_t count;
- static uint32_t cyc_per_count = 0;
- if (!cyc_per_count)
- __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
- __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
- return (int64_t)(count * cyc_per_count);
- #else
- /* FIXME */
- static int64_t ticks = 0;
- return ticks++;
- #endif
- }
- #else
- /* The host CPU doesn't have an easily accessible cycle counter.
- Just return a monotonically increasing value. This will be
- totally wrong, but hopefully better than nothing. */
- static inline int64_t cpu_get_real_ticks (void)
- {
- static int64_t ticks = 0;
- return ticks++;
- }
- #endif
- /* profiling */
- #ifdef CONFIG_PROFILER
- static inline int64_t profile_getclock(void)
- {
- return cpu_get_real_ticks();
- }
- extern int64_t kqemu_time, kqemu_time_start;
- extern int64_t qemu_time, qemu_time_start;
- extern int64_t tlb_flush_time;
- extern int64_t kqemu_exec_count;
- extern int64_t dev_time;
- extern int64_t kqemu_ret_int_count;
- extern int64_t kqemu_ret_excp_count;
- extern int64_t kqemu_ret_intr_count;
- #endif
- #endif /* CPU_ALL_H */
|