2
0

imx_epit.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /*
  2. * IMX EPIT Timer
  3. *
  4. * Copyright (c) 2008 OK Labs
  5. * Copyright (c) 2011 NICTA Pty Ltd
  6. * Originally written by Hans Jiang
  7. * Updated by Peter Chubb
  8. * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
  9. *
  10. * This code is licensed under GPL version 2 or later. See
  11. * the COPYING file in the top-level directory.
  12. *
  13. */
  14. #include "qemu/osdep.h"
  15. #include "hw/timer/imx_epit.h"
  16. #include "migration/vmstate.h"
  17. #include "hw/irq.h"
  18. #include "hw/misc/imx_ccm.h"
  19. #include "qemu/module.h"
  20. #include "qemu/log.h"
  21. #ifndef DEBUG_IMX_EPIT
  22. #define DEBUG_IMX_EPIT 0
  23. #endif
  24. #define DPRINTF(fmt, args...) \
  25. do { \
  26. if (DEBUG_IMX_EPIT) { \
  27. fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_EPIT, \
  28. __func__, ##args); \
  29. } \
  30. } while (0)
  31. static const char *imx_epit_reg_name(uint32_t reg)
  32. {
  33. switch (reg) {
  34. case 0:
  35. return "CR";
  36. case 1:
  37. return "SR";
  38. case 2:
  39. return "LR";
  40. case 3:
  41. return "CMP";
  42. case 4:
  43. return "CNT";
  44. default:
  45. return "[?]";
  46. }
  47. }
  48. /*
  49. * Exact clock frequencies vary from board to board.
  50. * These are typical.
  51. */
  52. static const IMXClk imx_epit_clocks[] = {
  53. CLK_NONE, /* 00 disabled */
  54. CLK_IPG, /* 01 ipg_clk, ~532MHz */
  55. CLK_IPG_HIGH, /* 10 ipg_clk_highfreq */
  56. CLK_32k, /* 11 ipg_clk_32k -- ~32kHz */
  57. };
  58. /*
  59. * Update interrupt status
  60. */
  61. static void imx_epit_update_int(IMXEPITState *s)
  62. {
  63. if (s->sr && (s->cr & CR_OCIEN) && (s->cr & CR_EN)) {
  64. qemu_irq_raise(s->irq);
  65. } else {
  66. qemu_irq_lower(s->irq);
  67. }
  68. }
  69. /*
  70. * Must be called from within a ptimer_transaction_begin/commit block
  71. * for both s->timer_cmp and s->timer_reload.
  72. */
  73. static void imx_epit_set_freq(IMXEPITState *s)
  74. {
  75. uint32_t clksrc;
  76. uint32_t prescaler;
  77. clksrc = extract32(s->cr, CR_CLKSRC_SHIFT, 2);
  78. prescaler = 1 + extract32(s->cr, CR_PRESCALE_SHIFT, 12);
  79. s->freq = imx_ccm_get_clock_frequency(s->ccm,
  80. imx_epit_clocks[clksrc]) / prescaler;
  81. DPRINTF("Setting ptimer frequency to %u\n", s->freq);
  82. if (s->freq) {
  83. ptimer_set_freq(s->timer_reload, s->freq);
  84. ptimer_set_freq(s->timer_cmp, s->freq);
  85. }
  86. }
  87. static void imx_epit_reset(DeviceState *dev)
  88. {
  89. IMXEPITState *s = IMX_EPIT(dev);
  90. /*
  91. * Soft reset doesn't touch some bits; hard reset clears them
  92. */
  93. s->cr &= (CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN);
  94. s->sr = 0;
  95. s->lr = EPIT_TIMER_MAX;
  96. s->cmp = 0;
  97. s->cnt = 0;
  98. ptimer_transaction_begin(s->timer_cmp);
  99. ptimer_transaction_begin(s->timer_reload);
  100. /* stop both timers */
  101. ptimer_stop(s->timer_cmp);
  102. ptimer_stop(s->timer_reload);
  103. /* compute new frequency */
  104. imx_epit_set_freq(s);
  105. /* init both timers to EPIT_TIMER_MAX */
  106. ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1);
  107. ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1);
  108. if (s->freq && (s->cr & CR_EN)) {
  109. /* if the timer is still enabled, restart it */
  110. ptimer_run(s->timer_reload, 0);
  111. }
  112. ptimer_transaction_commit(s->timer_cmp);
  113. ptimer_transaction_commit(s->timer_reload);
  114. }
  115. static uint32_t imx_epit_update_count(IMXEPITState *s)
  116. {
  117. s->cnt = ptimer_get_count(s->timer_reload);
  118. return s->cnt;
  119. }
  120. static uint64_t imx_epit_read(void *opaque, hwaddr offset, unsigned size)
  121. {
  122. IMXEPITState *s = IMX_EPIT(opaque);
  123. uint32_t reg_value = 0;
  124. switch (offset >> 2) {
  125. case 0: /* Control Register */
  126. reg_value = s->cr;
  127. break;
  128. case 1: /* Status Register */
  129. reg_value = s->sr;
  130. break;
  131. case 2: /* LR - ticks*/
  132. reg_value = s->lr;
  133. break;
  134. case 3: /* CMP */
  135. reg_value = s->cmp;
  136. break;
  137. case 4: /* CNT */
  138. imx_epit_update_count(s);
  139. reg_value = s->cnt;
  140. break;
  141. default:
  142. qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
  143. HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset);
  144. break;
  145. }
  146. DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(offset >> 2), reg_value);
  147. return reg_value;
  148. }
  149. /* Must be called from ptimer_transaction_begin/commit block for s->timer_cmp */
  150. static void imx_epit_reload_compare_timer(IMXEPITState *s)
  151. {
  152. if ((s->cr & (CR_EN | CR_OCIEN)) == (CR_EN | CR_OCIEN)) {
  153. /* if the compare feature is on and timers are running */
  154. uint32_t tmp = imx_epit_update_count(s);
  155. uint64_t next;
  156. if (tmp > s->cmp) {
  157. /* It'll fire in this round of the timer */
  158. next = tmp - s->cmp;
  159. } else { /* catch it next time around */
  160. next = tmp - s->cmp + ((s->cr & CR_RLD) ? EPIT_TIMER_MAX : s->lr);
  161. }
  162. ptimer_set_count(s->timer_cmp, next);
  163. }
  164. }
  165. static void imx_epit_write(void *opaque, hwaddr offset, uint64_t value,
  166. unsigned size)
  167. {
  168. IMXEPITState *s = IMX_EPIT(opaque);
  169. uint64_t oldcr;
  170. DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(offset >> 2),
  171. (uint32_t)value);
  172. switch (offset >> 2) {
  173. case 0: /* CR */
  174. oldcr = s->cr;
  175. s->cr = value & 0x03ffffff;
  176. if (s->cr & CR_SWR) {
  177. /* handle the reset */
  178. imx_epit_reset(DEVICE(s));
  179. /*
  180. * TODO: could we 'break' here? following operations appear
  181. * to duplicate the work imx_epit_reset() already did.
  182. */
  183. }
  184. ptimer_transaction_begin(s->timer_cmp);
  185. ptimer_transaction_begin(s->timer_reload);
  186. if (!(s->cr & CR_SWR)) {
  187. imx_epit_set_freq(s);
  188. }
  189. if (s->freq && (s->cr & CR_EN) && !(oldcr & CR_EN)) {
  190. if (s->cr & CR_ENMOD) {
  191. if (s->cr & CR_RLD) {
  192. ptimer_set_limit(s->timer_reload, s->lr, 1);
  193. ptimer_set_limit(s->timer_cmp, s->lr, 1);
  194. } else {
  195. ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1);
  196. ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1);
  197. }
  198. }
  199. imx_epit_reload_compare_timer(s);
  200. ptimer_run(s->timer_reload, 0);
  201. if (s->cr & CR_OCIEN) {
  202. ptimer_run(s->timer_cmp, 0);
  203. } else {
  204. ptimer_stop(s->timer_cmp);
  205. }
  206. } else if (!(s->cr & CR_EN)) {
  207. /* stop both timers */
  208. ptimer_stop(s->timer_reload);
  209. ptimer_stop(s->timer_cmp);
  210. } else if (s->cr & CR_OCIEN) {
  211. if (!(oldcr & CR_OCIEN)) {
  212. imx_epit_reload_compare_timer(s);
  213. ptimer_run(s->timer_cmp, 0);
  214. }
  215. } else {
  216. ptimer_stop(s->timer_cmp);
  217. }
  218. ptimer_transaction_commit(s->timer_cmp);
  219. ptimer_transaction_commit(s->timer_reload);
  220. break;
  221. case 1: /* SR - ACK*/
  222. /* writing 1 to OCIF clear the OCIF bit */
  223. if (value & 0x01) {
  224. s->sr = 0;
  225. imx_epit_update_int(s);
  226. }
  227. break;
  228. case 2: /* LR - set ticks */
  229. s->lr = value;
  230. ptimer_transaction_begin(s->timer_cmp);
  231. ptimer_transaction_begin(s->timer_reload);
  232. if (s->cr & CR_RLD) {
  233. /* Also set the limit if the LRD bit is set */
  234. /* If IOVW bit is set then set the timer value */
  235. ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW);
  236. ptimer_set_limit(s->timer_cmp, s->lr, 0);
  237. } else if (s->cr & CR_IOVW) {
  238. /* If IOVW bit is set then set the timer value */
  239. ptimer_set_count(s->timer_reload, s->lr);
  240. }
  241. imx_epit_reload_compare_timer(s);
  242. ptimer_transaction_commit(s->timer_cmp);
  243. ptimer_transaction_commit(s->timer_reload);
  244. break;
  245. case 3: /* CMP */
  246. s->cmp = value;
  247. ptimer_transaction_begin(s->timer_cmp);
  248. imx_epit_reload_compare_timer(s);
  249. ptimer_transaction_commit(s->timer_cmp);
  250. break;
  251. default:
  252. qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
  253. HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset);
  254. break;
  255. }
  256. }
  257. static void imx_epit_cmp(void *opaque)
  258. {
  259. IMXEPITState *s = IMX_EPIT(opaque);
  260. DPRINTF("sr was %d\n", s->sr);
  261. s->sr = 1;
  262. imx_epit_update_int(s);
  263. }
  264. static void imx_epit_reload(void *opaque)
  265. {
  266. /* No action required on rollover of timer_reload */
  267. }
  268. static const MemoryRegionOps imx_epit_ops = {
  269. .read = imx_epit_read,
  270. .write = imx_epit_write,
  271. .endianness = DEVICE_NATIVE_ENDIAN,
  272. };
  273. static const VMStateDescription vmstate_imx_timer_epit = {
  274. .name = TYPE_IMX_EPIT,
  275. .version_id = 2,
  276. .minimum_version_id = 2,
  277. .fields = (VMStateField[]) {
  278. VMSTATE_UINT32(cr, IMXEPITState),
  279. VMSTATE_UINT32(sr, IMXEPITState),
  280. VMSTATE_UINT32(lr, IMXEPITState),
  281. VMSTATE_UINT32(cmp, IMXEPITState),
  282. VMSTATE_UINT32(cnt, IMXEPITState),
  283. VMSTATE_UINT32(freq, IMXEPITState),
  284. VMSTATE_PTIMER(timer_reload, IMXEPITState),
  285. VMSTATE_PTIMER(timer_cmp, IMXEPITState),
  286. VMSTATE_END_OF_LIST()
  287. }
  288. };
  289. static void imx_epit_realize(DeviceState *dev, Error **errp)
  290. {
  291. IMXEPITState *s = IMX_EPIT(dev);
  292. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  293. DPRINTF("\n");
  294. sysbus_init_irq(sbd, &s->irq);
  295. memory_region_init_io(&s->iomem, OBJECT(s), &imx_epit_ops, s, TYPE_IMX_EPIT,
  296. 0x00001000);
  297. sysbus_init_mmio(sbd, &s->iomem);
  298. s->timer_reload = ptimer_init(imx_epit_reload, s, PTIMER_POLICY_DEFAULT);
  299. s->timer_cmp = ptimer_init(imx_epit_cmp, s, PTIMER_POLICY_DEFAULT);
  300. }
  301. static void imx_epit_class_init(ObjectClass *klass, void *data)
  302. {
  303. DeviceClass *dc = DEVICE_CLASS(klass);
  304. dc->realize = imx_epit_realize;
  305. dc->reset = imx_epit_reset;
  306. dc->vmsd = &vmstate_imx_timer_epit;
  307. dc->desc = "i.MX periodic timer";
  308. }
  309. static const TypeInfo imx_epit_info = {
  310. .name = TYPE_IMX_EPIT,
  311. .parent = TYPE_SYS_BUS_DEVICE,
  312. .instance_size = sizeof(IMXEPITState),
  313. .class_init = imx_epit_class_init,
  314. };
  315. static void imx_epit_register_types(void)
  316. {
  317. type_register_static(&imx_epit_info);
  318. }
  319. type_init(imx_epit_register_types)