2
0

memory-device.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. /*
  2. * Memory Device Interface
  3. *
  4. * Copyright ProfitBricks GmbH 2012
  5. * Copyright (C) 2014 Red Hat Inc
  6. * Copyright (c) 2018 Red Hat Inc
  7. *
  8. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  9. * See the COPYING file in the top-level directory.
  10. */
  11. #include "qemu/osdep.h"
  12. #include "hw/mem/memory-device.h"
  13. #include "qapi/error.h"
  14. #include "hw/boards.h"
  15. #include "qemu/range.h"
  16. #include "hw/virtio/vhost.h"
  17. #include "sysemu/kvm.h"
  18. #include "trace.h"
  19. static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
  20. {
  21. const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
  22. const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
  23. const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
  24. const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
  25. const uint64_t addr_a = mdc_a->get_addr(md_a);
  26. const uint64_t addr_b = mdc_b->get_addr(md_b);
  27. if (addr_a > addr_b) {
  28. return 1;
  29. } else if (addr_a < addr_b) {
  30. return -1;
  31. }
  32. return 0;
  33. }
  34. static int memory_device_build_list(Object *obj, void *opaque)
  35. {
  36. GSList **list = opaque;
  37. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  38. DeviceState *dev = DEVICE(obj);
  39. if (dev->realized) { /* only realized memory devices matter */
  40. *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
  41. }
  42. }
  43. object_child_foreach(obj, memory_device_build_list, opaque);
  44. return 0;
  45. }
  46. static int memory_device_used_region_size(Object *obj, void *opaque)
  47. {
  48. uint64_t *size = opaque;
  49. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  50. const DeviceState *dev = DEVICE(obj);
  51. const MemoryDeviceState *md = MEMORY_DEVICE(obj);
  52. if (dev->realized) {
  53. *size += memory_device_get_region_size(md, &error_abort);
  54. }
  55. }
  56. object_child_foreach(obj, memory_device_used_region_size, opaque);
  57. return 0;
  58. }
  59. static void memory_device_check_addable(MachineState *ms, uint64_t size,
  60. Error **errp)
  61. {
  62. uint64_t used_region_size = 0;
  63. /* we will need a new memory slot for kvm and vhost */
  64. if (kvm_enabled() && !kvm_has_free_slot(ms)) {
  65. error_setg(errp, "hypervisor has no free memory slots left");
  66. return;
  67. }
  68. if (!vhost_has_free_slot()) {
  69. error_setg(errp, "a used vhost backend has no free memory slots left");
  70. return;
  71. }
  72. /* will we exceed the total amount of memory specified */
  73. memory_device_used_region_size(OBJECT(ms), &used_region_size);
  74. if (used_region_size + size < used_region_size ||
  75. used_region_size + size > ms->maxram_size - ms->ram_size) {
  76. error_setg(errp, "not enough space, currently 0x%" PRIx64
  77. " in use of total space for memory devices 0x" RAM_ADDR_FMT,
  78. used_region_size, ms->maxram_size - ms->ram_size);
  79. return;
  80. }
  81. }
  82. static uint64_t memory_device_get_free_addr(MachineState *ms,
  83. const uint64_t *hint,
  84. uint64_t align, uint64_t size,
  85. Error **errp)
  86. {
  87. Error *err = NULL;
  88. GSList *list = NULL, *item;
  89. Range as, new = range_empty;
  90. if (!ms->device_memory) {
  91. error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
  92. "supported by the machine");
  93. return 0;
  94. }
  95. if (!memory_region_size(&ms->device_memory->mr)) {
  96. error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
  97. "enabled, please specify the maxmem option");
  98. return 0;
  99. }
  100. range_init_nofail(&as, ms->device_memory->base,
  101. memory_region_size(&ms->device_memory->mr));
  102. /* start of address space indicates the maximum alignment we expect */
  103. if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
  104. error_setg(errp, "the alignment (0x%" PRIx64 ") is not supported",
  105. align);
  106. return 0;
  107. }
  108. memory_device_check_addable(ms, size, &err);
  109. if (err) {
  110. error_propagate(errp, err);
  111. return 0;
  112. }
  113. if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
  114. error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
  115. align);
  116. return 0;
  117. }
  118. if (!QEMU_IS_ALIGNED(size, align)) {
  119. error_setg(errp, "backend memory size must be multiple of 0x%"
  120. PRIx64, align);
  121. return 0;
  122. }
  123. if (hint) {
  124. if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
  125. error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
  126. "], usable range for memory devices [0x%" PRIx64 ":0x%"
  127. PRIx64 "]", *hint, size, range_lob(&as),
  128. range_size(&as));
  129. return 0;
  130. }
  131. } else {
  132. if (range_init(&new, range_lob(&as), size)) {
  133. error_setg(errp, "can't add memory device, device too big");
  134. return 0;
  135. }
  136. }
  137. /* find address range that will fit new memory device */
  138. object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
  139. for (item = list; item; item = g_slist_next(item)) {
  140. const MemoryDeviceState *md = item->data;
  141. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
  142. uint64_t next_addr;
  143. Range tmp;
  144. range_init_nofail(&tmp, mdc->get_addr(md),
  145. memory_device_get_region_size(md, &error_abort));
  146. if (range_overlaps_range(&tmp, &new)) {
  147. if (hint) {
  148. const DeviceState *d = DEVICE(md);
  149. error_setg(errp, "address range conflicts with memory device"
  150. " id='%s'", d->id ? d->id : "(unnamed)");
  151. goto out;
  152. }
  153. next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
  154. if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
  155. range_make_empty(&new);
  156. break;
  157. }
  158. } else if (range_lob(&tmp) > range_upb(&new)) {
  159. break;
  160. }
  161. }
  162. if (!range_contains_range(&as, &new)) {
  163. error_setg(errp, "could not find position in guest address space for "
  164. "memory device - memory fragmented due to alignments");
  165. }
  166. out:
  167. g_slist_free(list);
  168. return range_lob(&new);
  169. }
  170. MemoryDeviceInfoList *qmp_memory_device_list(void)
  171. {
  172. GSList *devices = NULL, *item;
  173. MemoryDeviceInfoList *list = NULL, *prev = NULL;
  174. object_child_foreach(qdev_get_machine(), memory_device_build_list,
  175. &devices);
  176. for (item = devices; item; item = g_slist_next(item)) {
  177. const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
  178. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
  179. MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
  180. MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
  181. mdc->fill_device_info(md, info);
  182. elem->value = info;
  183. elem->next = NULL;
  184. if (prev) {
  185. prev->next = elem;
  186. } else {
  187. list = elem;
  188. }
  189. prev = elem;
  190. }
  191. g_slist_free(devices);
  192. return list;
  193. }
  194. static int memory_device_plugged_size(Object *obj, void *opaque)
  195. {
  196. uint64_t *size = opaque;
  197. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  198. const DeviceState *dev = DEVICE(obj);
  199. const MemoryDeviceState *md = MEMORY_DEVICE(obj);
  200. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
  201. if (dev->realized) {
  202. *size += mdc->get_plugged_size(md, &error_abort);
  203. }
  204. }
  205. object_child_foreach(obj, memory_device_plugged_size, opaque);
  206. return 0;
  207. }
  208. uint64_t get_plugged_memory_size(void)
  209. {
  210. uint64_t size = 0;
  211. memory_device_plugged_size(qdev_get_machine(), &size);
  212. return size;
  213. }
  214. void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
  215. const uint64_t *legacy_align, Error **errp)
  216. {
  217. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  218. Error *local_err = NULL;
  219. uint64_t addr, align;
  220. MemoryRegion *mr;
  221. mr = mdc->get_memory_region(md, &local_err);
  222. if (local_err) {
  223. goto out;
  224. }
  225. align = legacy_align ? *legacy_align : memory_region_get_alignment(mr);
  226. addr = mdc->get_addr(md);
  227. addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
  228. memory_region_size(mr), &local_err);
  229. if (local_err) {
  230. goto out;
  231. }
  232. mdc->set_addr(md, addr, &local_err);
  233. if (!local_err) {
  234. trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
  235. addr);
  236. }
  237. out:
  238. error_propagate(errp, local_err);
  239. }
  240. void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
  241. {
  242. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  243. const uint64_t addr = mdc->get_addr(md);
  244. MemoryRegion *mr;
  245. /*
  246. * We expect that a previous call to memory_device_pre_plug() succeeded, so
  247. * it can't fail at this point.
  248. */
  249. mr = mdc->get_memory_region(md, &error_abort);
  250. g_assert(ms->device_memory);
  251. memory_region_add_subregion(&ms->device_memory->mr,
  252. addr - ms->device_memory->base, mr);
  253. trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
  254. }
  255. void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
  256. {
  257. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  258. MemoryRegion *mr;
  259. /*
  260. * We expect that a previous call to memory_device_pre_plug() succeeded, so
  261. * it can't fail at this point.
  262. */
  263. mr = mdc->get_memory_region(md, &error_abort);
  264. g_assert(ms->device_memory);
  265. memory_region_del_subregion(&ms->device_memory->mr, mr);
  266. trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
  267. mdc->get_addr(md));
  268. }
  269. uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
  270. Error **errp)
  271. {
  272. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  273. MemoryRegion *mr;
  274. /* dropping const here is fine as we don't touch the memory region */
  275. mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
  276. if (!mr) {
  277. return 0;
  278. }
  279. return memory_region_size(mr);
  280. }
  281. static const TypeInfo memory_device_info = {
  282. .name = TYPE_MEMORY_DEVICE,
  283. .parent = TYPE_INTERFACE,
  284. .class_size = sizeof(MemoryDeviceClass),
  285. };
  286. static void memory_device_register_types(void)
  287. {
  288. type_register_static(&memory_device_info);
  289. }
  290. type_init(memory_device_register_types)