mcf5206.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. * Motorola ColdFire MCF5206 SoC embedded peripheral emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licensed under the GPL
  7. */
  8. #include "qemu/osdep.h"
  9. #include "qemu/error-report.h"
  10. #include "qemu/log.h"
  11. #include "cpu.h"
  12. #include "hw/irq.h"
  13. #include "hw/m68k/mcf.h"
  14. #include "qemu/timer.h"
  15. #include "hw/ptimer.h"
  16. #include "sysemu/sysemu.h"
  17. /* General purpose timer module. */
  18. typedef struct {
  19. uint16_t tmr;
  20. uint16_t trr;
  21. uint16_t tcr;
  22. uint16_t ter;
  23. ptimer_state *timer;
  24. qemu_irq irq;
  25. int irq_state;
  26. } m5206_timer_state;
  27. #define TMR_RST 0x01
  28. #define TMR_CLK 0x06
  29. #define TMR_FRR 0x08
  30. #define TMR_ORI 0x10
  31. #define TMR_OM 0x20
  32. #define TMR_CE 0xc0
  33. #define TER_CAP 0x01
  34. #define TER_REF 0x02
  35. static void m5206_timer_update(m5206_timer_state *s)
  36. {
  37. if ((s->tmr & TMR_ORI) != 0 && (s->ter & TER_REF))
  38. qemu_irq_raise(s->irq);
  39. else
  40. qemu_irq_lower(s->irq);
  41. }
  42. static void m5206_timer_reset(m5206_timer_state *s)
  43. {
  44. s->tmr = 0;
  45. s->trr = 0;
  46. }
  47. static void m5206_timer_recalibrate(m5206_timer_state *s)
  48. {
  49. int prescale;
  50. int mode;
  51. ptimer_transaction_begin(s->timer);
  52. ptimer_stop(s->timer);
  53. if ((s->tmr & TMR_RST) == 0) {
  54. goto exit;
  55. }
  56. prescale = (s->tmr >> 8) + 1;
  57. mode = (s->tmr >> 1) & 3;
  58. if (mode == 2)
  59. prescale *= 16;
  60. if (mode == 3 || mode == 0) {
  61. qemu_log_mask(LOG_UNIMP, "m5206_timer: mode %d not implemented\n",
  62. mode);
  63. goto exit;
  64. }
  65. if ((s->tmr & TMR_FRR) == 0) {
  66. qemu_log_mask(LOG_UNIMP,
  67. "m5206_timer: free running mode not implemented\n");
  68. goto exit;
  69. }
  70. /* Assume 66MHz system clock. */
  71. ptimer_set_freq(s->timer, 66000000 / prescale);
  72. ptimer_set_limit(s->timer, s->trr, 0);
  73. ptimer_run(s->timer, 0);
  74. exit:
  75. ptimer_transaction_commit(s->timer);
  76. }
  77. static void m5206_timer_trigger(void *opaque)
  78. {
  79. m5206_timer_state *s = (m5206_timer_state *)opaque;
  80. s->ter |= TER_REF;
  81. m5206_timer_update(s);
  82. }
  83. static uint32_t m5206_timer_read(m5206_timer_state *s, uint32_t addr)
  84. {
  85. switch (addr) {
  86. case 0:
  87. return s->tmr;
  88. case 4:
  89. return s->trr;
  90. case 8:
  91. return s->tcr;
  92. case 0xc:
  93. return s->trr - ptimer_get_count(s->timer);
  94. case 0x11:
  95. return s->ter;
  96. default:
  97. return 0;
  98. }
  99. }
  100. static void m5206_timer_write(m5206_timer_state *s, uint32_t addr, uint32_t val)
  101. {
  102. switch (addr) {
  103. case 0:
  104. if ((s->tmr & TMR_RST) != 0 && (val & TMR_RST) == 0) {
  105. m5206_timer_reset(s);
  106. }
  107. s->tmr = val;
  108. m5206_timer_recalibrate(s);
  109. break;
  110. case 4:
  111. s->trr = val;
  112. m5206_timer_recalibrate(s);
  113. break;
  114. case 8:
  115. s->tcr = val;
  116. break;
  117. case 0xc:
  118. ptimer_transaction_begin(s->timer);
  119. ptimer_set_count(s->timer, val);
  120. ptimer_transaction_commit(s->timer);
  121. break;
  122. case 0x11:
  123. s->ter &= ~val;
  124. break;
  125. default:
  126. break;
  127. }
  128. m5206_timer_update(s);
  129. }
  130. static m5206_timer_state *m5206_timer_init(qemu_irq irq)
  131. {
  132. m5206_timer_state *s;
  133. s = g_new0(m5206_timer_state, 1);
  134. s->timer = ptimer_init(m5206_timer_trigger, s, PTIMER_POLICY_DEFAULT);
  135. s->irq = irq;
  136. m5206_timer_reset(s);
  137. return s;
  138. }
  139. /* System Integration Module. */
  140. typedef struct {
  141. M68kCPU *cpu;
  142. MemoryRegion iomem;
  143. m5206_timer_state *timer[2];
  144. void *uart[2];
  145. uint8_t scr;
  146. uint8_t icr[14];
  147. uint16_t imr; /* 1 == interrupt is masked. */
  148. uint16_t ipr;
  149. uint8_t rsr;
  150. uint8_t swivr;
  151. uint8_t par;
  152. /* Include the UART vector registers here. */
  153. uint8_t uivr[2];
  154. } m5206_mbar_state;
  155. /* Interrupt controller. */
  156. static int m5206_find_pending_irq(m5206_mbar_state *s)
  157. {
  158. int level;
  159. int vector;
  160. uint16_t active;
  161. int i;
  162. level = 0;
  163. vector = 0;
  164. active = s->ipr & ~s->imr;
  165. if (!active)
  166. return 0;
  167. for (i = 1; i < 14; i++) {
  168. if (active & (1 << i)) {
  169. if ((s->icr[i] & 0x1f) > level) {
  170. level = s->icr[i] & 0x1f;
  171. vector = i;
  172. }
  173. }
  174. }
  175. if (level < 4)
  176. vector = 0;
  177. return vector;
  178. }
  179. static void m5206_mbar_update(m5206_mbar_state *s)
  180. {
  181. int irq;
  182. int vector;
  183. int level;
  184. irq = m5206_find_pending_irq(s);
  185. if (irq) {
  186. int tmp;
  187. tmp = s->icr[irq];
  188. level = (tmp >> 2) & 7;
  189. if (tmp & 0x80) {
  190. /* Autovector. */
  191. vector = 24 + level;
  192. } else {
  193. switch (irq) {
  194. case 8: /* SWT */
  195. vector = s->swivr;
  196. break;
  197. case 12: /* UART1 */
  198. vector = s->uivr[0];
  199. break;
  200. case 13: /* UART2 */
  201. vector = s->uivr[1];
  202. break;
  203. default:
  204. /* Unknown vector. */
  205. qemu_log_mask(LOG_UNIMP, "%s: Unhandled vector for IRQ %d\n",
  206. __func__, irq);
  207. vector = 0xf;
  208. break;
  209. }
  210. }
  211. } else {
  212. level = 0;
  213. vector = 0;
  214. }
  215. m68k_set_irq_level(s->cpu, level, vector);
  216. }
  217. static void m5206_mbar_set_irq(void *opaque, int irq, int level)
  218. {
  219. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  220. if (level) {
  221. s->ipr |= 1 << irq;
  222. } else {
  223. s->ipr &= ~(1 << irq);
  224. }
  225. m5206_mbar_update(s);
  226. }
  227. /* System Integration Module. */
  228. static void m5206_mbar_reset(m5206_mbar_state *s)
  229. {
  230. s->scr = 0xc0;
  231. s->icr[1] = 0x04;
  232. s->icr[2] = 0x08;
  233. s->icr[3] = 0x0c;
  234. s->icr[4] = 0x10;
  235. s->icr[5] = 0x14;
  236. s->icr[6] = 0x18;
  237. s->icr[7] = 0x1c;
  238. s->icr[8] = 0x1c;
  239. s->icr[9] = 0x80;
  240. s->icr[10] = 0x80;
  241. s->icr[11] = 0x80;
  242. s->icr[12] = 0x00;
  243. s->icr[13] = 0x00;
  244. s->imr = 0x3ffe;
  245. s->rsr = 0x80;
  246. s->swivr = 0x0f;
  247. s->par = 0;
  248. }
  249. static uint64_t m5206_mbar_read(m5206_mbar_state *s,
  250. uint16_t offset, unsigned size)
  251. {
  252. if (offset >= 0x100 && offset < 0x120) {
  253. return m5206_timer_read(s->timer[0], offset - 0x100);
  254. } else if (offset >= 0x120 && offset < 0x140) {
  255. return m5206_timer_read(s->timer[1], offset - 0x120);
  256. } else if (offset >= 0x140 && offset < 0x160) {
  257. return mcf_uart_read(s->uart[0], offset - 0x140, size);
  258. } else if (offset >= 0x180 && offset < 0x1a0) {
  259. return mcf_uart_read(s->uart[1], offset - 0x180, size);
  260. }
  261. switch (offset) {
  262. case 0x03: return s->scr;
  263. case 0x14 ... 0x20: return s->icr[offset - 0x13];
  264. case 0x36: return s->imr;
  265. case 0x3a: return s->ipr;
  266. case 0x40: return s->rsr;
  267. case 0x41: return 0;
  268. case 0x42: return s->swivr;
  269. case 0x50:
  270. /* DRAM mask register. */
  271. /* FIXME: currently hardcoded to 128Mb. */
  272. {
  273. uint32_t mask = ~0;
  274. while (mask > ram_size)
  275. mask >>= 1;
  276. return mask & 0x0ffe0000;
  277. }
  278. case 0x5c: return 1; /* DRAM bank 1 empty. */
  279. case 0xcb: return s->par;
  280. case 0x170: return s->uivr[0];
  281. case 0x1b0: return s->uivr[1];
  282. }
  283. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad MBAR offset 0x%"PRIx16"\n",
  284. __func__, offset);
  285. return 0;
  286. }
  287. static void m5206_mbar_write(m5206_mbar_state *s, uint16_t offset,
  288. uint64_t value, unsigned size)
  289. {
  290. if (offset >= 0x100 && offset < 0x120) {
  291. m5206_timer_write(s->timer[0], offset - 0x100, value);
  292. return;
  293. } else if (offset >= 0x120 && offset < 0x140) {
  294. m5206_timer_write(s->timer[1], offset - 0x120, value);
  295. return;
  296. } else if (offset >= 0x140 && offset < 0x160) {
  297. mcf_uart_write(s->uart[0], offset - 0x140, value, size);
  298. return;
  299. } else if (offset >= 0x180 && offset < 0x1a0) {
  300. mcf_uart_write(s->uart[1], offset - 0x180, value, size);
  301. return;
  302. }
  303. switch (offset) {
  304. case 0x03:
  305. s->scr = value;
  306. break;
  307. case 0x14 ... 0x20:
  308. s->icr[offset - 0x13] = value;
  309. m5206_mbar_update(s);
  310. break;
  311. case 0x36:
  312. s->imr = value;
  313. m5206_mbar_update(s);
  314. break;
  315. case 0x40:
  316. s->rsr &= ~value;
  317. break;
  318. case 0x41:
  319. /* TODO: implement watchdog. */
  320. break;
  321. case 0x42:
  322. s->swivr = value;
  323. break;
  324. case 0xcb:
  325. s->par = value;
  326. break;
  327. case 0x170:
  328. s->uivr[0] = value;
  329. break;
  330. case 0x178: case 0x17c: case 0x1c8: case 0x1bc:
  331. /* Not implemented: UART Output port bits. */
  332. break;
  333. case 0x1b0:
  334. s->uivr[1] = value;
  335. break;
  336. default:
  337. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad MBAR offset 0x%"PRIx16"\n",
  338. __func__, offset);
  339. break;
  340. }
  341. }
  342. /* Internal peripherals use a variety of register widths.
  343. This lookup table allows a single routine to handle all of them. */
  344. static const uint8_t m5206_mbar_width[] =
  345. {
  346. /* 000-040 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
  347. /* 040-080 */ 1, 2, 2, 2, 4, 1, 2, 4, 1, 2, 4, 2, 2, 4, 2, 2,
  348. /* 080-0c0 */ 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4,
  349. /* 0c0-100 */ 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  350. /* 100-140 */ 2, 2, 2, 2, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0,
  351. /* 140-180 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  352. /* 180-1c0 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  353. /* 1c0-200 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  354. };
  355. static uint32_t m5206_mbar_readw(void *opaque, hwaddr offset);
  356. static uint32_t m5206_mbar_readl(void *opaque, hwaddr offset);
  357. static uint32_t m5206_mbar_readb(void *opaque, hwaddr offset)
  358. {
  359. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  360. offset &= 0x3ff;
  361. if (offset >= 0x200) {
  362. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR read offset 0x%" HWADDR_PRIX,
  363. offset);
  364. return 0;
  365. }
  366. if (m5206_mbar_width[offset >> 2] > 1) {
  367. uint16_t val;
  368. val = m5206_mbar_readw(opaque, offset & ~1);
  369. if ((offset & 1) == 0) {
  370. val >>= 8;
  371. }
  372. return val & 0xff;
  373. }
  374. return m5206_mbar_read(s, offset, 1);
  375. }
  376. static uint32_t m5206_mbar_readw(void *opaque, hwaddr offset)
  377. {
  378. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  379. int width;
  380. offset &= 0x3ff;
  381. if (offset >= 0x200) {
  382. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR read offset 0x%" HWADDR_PRIX,
  383. offset);
  384. return 0;
  385. }
  386. width = m5206_mbar_width[offset >> 2];
  387. if (width > 2) {
  388. uint32_t val;
  389. val = m5206_mbar_readl(opaque, offset & ~3);
  390. if ((offset & 3) == 0)
  391. val >>= 16;
  392. return val & 0xffff;
  393. } else if (width < 2) {
  394. uint16_t val;
  395. val = m5206_mbar_readb(opaque, offset) << 8;
  396. val |= m5206_mbar_readb(opaque, offset + 1);
  397. return val;
  398. }
  399. return m5206_mbar_read(s, offset, 2);
  400. }
  401. static uint32_t m5206_mbar_readl(void *opaque, hwaddr offset)
  402. {
  403. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  404. int width;
  405. offset &= 0x3ff;
  406. if (offset >= 0x200) {
  407. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR read offset 0x%" HWADDR_PRIX,
  408. offset);
  409. return 0;
  410. }
  411. width = m5206_mbar_width[offset >> 2];
  412. if (width < 4) {
  413. uint32_t val;
  414. val = m5206_mbar_readw(opaque, offset) << 16;
  415. val |= m5206_mbar_readw(opaque, offset + 2);
  416. return val;
  417. }
  418. return m5206_mbar_read(s, offset, 4);
  419. }
  420. static void m5206_mbar_writew(void *opaque, hwaddr offset,
  421. uint32_t value);
  422. static void m5206_mbar_writel(void *opaque, hwaddr offset,
  423. uint32_t value);
  424. static void m5206_mbar_writeb(void *opaque, hwaddr offset,
  425. uint32_t value)
  426. {
  427. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  428. int width;
  429. offset &= 0x3ff;
  430. if (offset >= 0x200) {
  431. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR write offset 0x%" HWADDR_PRIX,
  432. offset);
  433. return;
  434. }
  435. width = m5206_mbar_width[offset >> 2];
  436. if (width > 1) {
  437. uint32_t tmp;
  438. tmp = m5206_mbar_readw(opaque, offset & ~1);
  439. if (offset & 1) {
  440. tmp = (tmp & 0xff00) | value;
  441. } else {
  442. tmp = (tmp & 0x00ff) | (value << 8);
  443. }
  444. m5206_mbar_writew(opaque, offset & ~1, tmp);
  445. return;
  446. }
  447. m5206_mbar_write(s, offset, value, 1);
  448. }
  449. static void m5206_mbar_writew(void *opaque, hwaddr offset,
  450. uint32_t value)
  451. {
  452. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  453. int width;
  454. offset &= 0x3ff;
  455. if (offset >= 0x200) {
  456. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR write offset 0x%" HWADDR_PRIX,
  457. offset);
  458. return;
  459. }
  460. width = m5206_mbar_width[offset >> 2];
  461. if (width > 2) {
  462. uint32_t tmp;
  463. tmp = m5206_mbar_readl(opaque, offset & ~3);
  464. if (offset & 3) {
  465. tmp = (tmp & 0xffff0000) | value;
  466. } else {
  467. tmp = (tmp & 0x0000ffff) | (value << 16);
  468. }
  469. m5206_mbar_writel(opaque, offset & ~3, tmp);
  470. return;
  471. } else if (width < 2) {
  472. m5206_mbar_writeb(opaque, offset, value >> 8);
  473. m5206_mbar_writeb(opaque, offset + 1, value & 0xff);
  474. return;
  475. }
  476. m5206_mbar_write(s, offset, value, 2);
  477. }
  478. static void m5206_mbar_writel(void *opaque, hwaddr offset,
  479. uint32_t value)
  480. {
  481. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  482. int width;
  483. offset &= 0x3ff;
  484. if (offset >= 0x200) {
  485. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR write offset 0x%" HWADDR_PRIX,
  486. offset);
  487. return;
  488. }
  489. width = m5206_mbar_width[offset >> 2];
  490. if (width < 4) {
  491. m5206_mbar_writew(opaque, offset, value >> 16);
  492. m5206_mbar_writew(opaque, offset + 2, value & 0xffff);
  493. return;
  494. }
  495. m5206_mbar_write(s, offset, value, 4);
  496. }
  497. static uint64_t m5206_mbar_readfn(void *opaque, hwaddr addr, unsigned size)
  498. {
  499. switch (size) {
  500. case 1:
  501. return m5206_mbar_readb(opaque, addr);
  502. case 2:
  503. return m5206_mbar_readw(opaque, addr);
  504. case 4:
  505. return m5206_mbar_readl(opaque, addr);
  506. default:
  507. g_assert_not_reached();
  508. }
  509. }
  510. static void m5206_mbar_writefn(void *opaque, hwaddr addr,
  511. uint64_t value, unsigned size)
  512. {
  513. switch (size) {
  514. case 1:
  515. m5206_mbar_writeb(opaque, addr, value);
  516. break;
  517. case 2:
  518. m5206_mbar_writew(opaque, addr, value);
  519. break;
  520. case 4:
  521. m5206_mbar_writel(opaque, addr, value);
  522. break;
  523. default:
  524. g_assert_not_reached();
  525. }
  526. }
  527. static const MemoryRegionOps m5206_mbar_ops = {
  528. .read = m5206_mbar_readfn,
  529. .write = m5206_mbar_writefn,
  530. .valid.min_access_size = 1,
  531. .valid.max_access_size = 4,
  532. .endianness = DEVICE_NATIVE_ENDIAN,
  533. };
  534. qemu_irq *mcf5206_init(MemoryRegion *sysmem, uint32_t base, M68kCPU *cpu)
  535. {
  536. m5206_mbar_state *s;
  537. qemu_irq *pic;
  538. s = g_new0(m5206_mbar_state, 1);
  539. memory_region_init_io(&s->iomem, NULL, &m5206_mbar_ops, s,
  540. "mbar", 0x00001000);
  541. memory_region_add_subregion(sysmem, base, &s->iomem);
  542. pic = qemu_allocate_irqs(m5206_mbar_set_irq, s, 14);
  543. s->timer[0] = m5206_timer_init(pic[9]);
  544. s->timer[1] = m5206_timer_init(pic[10]);
  545. s->uart[0] = mcf_uart_init(pic[12], serial_hd(0));
  546. s->uart[1] = mcf_uart_init(pic[13], serial_hd(1));
  547. s->cpu = cpu;
  548. m5206_mbar_reset(s);
  549. return pic;
  550. }