2
0

tcx.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911
  1. /*
  2. * QEMU TCX Frame buffer
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu-common.h"
  26. #include "qapi/error.h"
  27. #include "ui/console.h"
  28. #include "ui/pixel_ops.h"
  29. #include "hw/loader.h"
  30. #include "hw/qdev-properties.h"
  31. #include "hw/sysbus.h"
  32. #include "migration/vmstate.h"
  33. #include "qemu/error-report.h"
  34. #include "qemu/module.h"
  35. #define TCX_ROM_FILE "QEMU,tcx.bin"
  36. #define FCODE_MAX_ROM_SIZE 0x10000
  37. #define MAXX 1024
  38. #define MAXY 768
  39. #define TCX_DAC_NREGS 16
  40. #define TCX_THC_NREGS 0x1000
  41. #define TCX_DHC_NREGS 0x4000
  42. #define TCX_TEC_NREGS 0x1000
  43. #define TCX_ALT_NREGS 0x8000
  44. #define TCX_STIP_NREGS 0x800000
  45. #define TCX_BLIT_NREGS 0x800000
  46. #define TCX_RSTIP_NREGS 0x800000
  47. #define TCX_RBLIT_NREGS 0x800000
  48. #define TCX_THC_MISC 0x818
  49. #define TCX_THC_CURSXY 0x8fc
  50. #define TCX_THC_CURSMASK 0x900
  51. #define TCX_THC_CURSBITS 0x980
  52. #define TYPE_TCX "SUNW,tcx"
  53. #define TCX(obj) OBJECT_CHECK(TCXState, (obj), TYPE_TCX)
  54. typedef struct TCXState {
  55. SysBusDevice parent_obj;
  56. QemuConsole *con;
  57. qemu_irq irq;
  58. uint8_t *vram;
  59. uint32_t *vram24, *cplane;
  60. hwaddr prom_addr;
  61. MemoryRegion rom;
  62. MemoryRegion vram_mem;
  63. MemoryRegion vram_8bit;
  64. MemoryRegion vram_24bit;
  65. MemoryRegion stip;
  66. MemoryRegion blit;
  67. MemoryRegion vram_cplane;
  68. MemoryRegion rstip;
  69. MemoryRegion rblit;
  70. MemoryRegion tec;
  71. MemoryRegion dac;
  72. MemoryRegion thc;
  73. MemoryRegion dhc;
  74. MemoryRegion alt;
  75. MemoryRegion thc24;
  76. ram_addr_t vram24_offset, cplane_offset;
  77. uint32_t tmpblit;
  78. uint32_t vram_size;
  79. uint32_t palette[260];
  80. uint8_t r[260], g[260], b[260];
  81. uint16_t width, height, depth;
  82. uint8_t dac_index, dac_state;
  83. uint32_t thcmisc;
  84. uint32_t cursmask[32];
  85. uint32_t cursbits[32];
  86. uint16_t cursx;
  87. uint16_t cursy;
  88. } TCXState;
  89. static void tcx_set_dirty(TCXState *s, ram_addr_t addr, int len)
  90. {
  91. memory_region_set_dirty(&s->vram_mem, addr, len);
  92. if (s->depth == 24) {
  93. memory_region_set_dirty(&s->vram_mem, s->vram24_offset + addr * 4,
  94. len * 4);
  95. memory_region_set_dirty(&s->vram_mem, s->cplane_offset + addr * 4,
  96. len * 4);
  97. }
  98. }
  99. static int tcx_check_dirty(TCXState *s, DirtyBitmapSnapshot *snap,
  100. ram_addr_t addr, int len)
  101. {
  102. int ret;
  103. ret = memory_region_snapshot_get_dirty(&s->vram_mem, snap, addr, len);
  104. if (s->depth == 24) {
  105. ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
  106. s->vram24_offset + addr * 4, len * 4);
  107. ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
  108. s->cplane_offset + addr * 4, len * 4);
  109. }
  110. return ret;
  111. }
  112. static void update_palette_entries(TCXState *s, int start, int end)
  113. {
  114. DisplaySurface *surface = qemu_console_surface(s->con);
  115. int i;
  116. for (i = start; i < end; i++) {
  117. if (is_surface_bgr(surface)) {
  118. s->palette[i] = rgb_to_pixel32bgr(s->r[i], s->g[i], s->b[i]);
  119. } else {
  120. s->palette[i] = rgb_to_pixel32(s->r[i], s->g[i], s->b[i]);
  121. }
  122. }
  123. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  124. }
  125. static void tcx_draw_line32(TCXState *s1, uint8_t *d,
  126. const uint8_t *s, int width)
  127. {
  128. int x;
  129. uint8_t val;
  130. uint32_t *p = (uint32_t *)d;
  131. for (x = 0; x < width; x++) {
  132. val = *s++;
  133. *p++ = s1->palette[val];
  134. }
  135. }
  136. static void tcx_draw_cursor32(TCXState *s1, uint8_t *d,
  137. int y, int width)
  138. {
  139. int x, len;
  140. uint32_t mask, bits;
  141. uint32_t *p = (uint32_t *)d;
  142. y = y - s1->cursy;
  143. mask = s1->cursmask[y];
  144. bits = s1->cursbits[y];
  145. len = MIN(width - s1->cursx, 32);
  146. p = &p[s1->cursx];
  147. for (x = 0; x < len; x++) {
  148. if (mask & 0x80000000) {
  149. if (bits & 0x80000000) {
  150. *p = s1->palette[259];
  151. } else {
  152. *p = s1->palette[258];
  153. }
  154. }
  155. p++;
  156. mask <<= 1;
  157. bits <<= 1;
  158. }
  159. }
  160. /*
  161. XXX Could be much more optimal:
  162. * detect if line/page/whole screen is in 24 bit mode
  163. * if destination is also BGR, use memcpy
  164. */
  165. static inline void tcx24_draw_line32(TCXState *s1, uint8_t *d,
  166. const uint8_t *s, int width,
  167. const uint32_t *cplane,
  168. const uint32_t *s24)
  169. {
  170. DisplaySurface *surface = qemu_console_surface(s1->con);
  171. int x, bgr, r, g, b;
  172. uint8_t val, *p8;
  173. uint32_t *p = (uint32_t *)d;
  174. uint32_t dval;
  175. bgr = is_surface_bgr(surface);
  176. for(x = 0; x < width; x++, s++, s24++) {
  177. if (be32_to_cpu(*cplane) & 0x03000000) {
  178. /* 24-bit direct, BGR order */
  179. p8 = (uint8_t *)s24;
  180. p8++;
  181. b = *p8++;
  182. g = *p8++;
  183. r = *p8;
  184. if (bgr)
  185. dval = rgb_to_pixel32bgr(r, g, b);
  186. else
  187. dval = rgb_to_pixel32(r, g, b);
  188. } else {
  189. /* 8-bit pseudocolor */
  190. val = *s;
  191. dval = s1->palette[val];
  192. }
  193. *p++ = dval;
  194. cplane++;
  195. }
  196. }
  197. /* Fixed line length 1024 allows us to do nice tricks not possible on
  198. VGA... */
  199. static void tcx_update_display(void *opaque)
  200. {
  201. TCXState *ts = opaque;
  202. DisplaySurface *surface = qemu_console_surface(ts->con);
  203. ram_addr_t page;
  204. DirtyBitmapSnapshot *snap = NULL;
  205. int y, y_start, dd, ds;
  206. uint8_t *d, *s;
  207. if (surface_bits_per_pixel(surface) != 32) {
  208. return;
  209. }
  210. page = 0;
  211. y_start = -1;
  212. d = surface_data(surface);
  213. s = ts->vram;
  214. dd = surface_stride(surface);
  215. ds = 1024;
  216. snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
  217. memory_region_size(&ts->vram_mem),
  218. DIRTY_MEMORY_VGA);
  219. for (y = 0; y < ts->height; y++, page += ds) {
  220. if (tcx_check_dirty(ts, snap, page, ds)) {
  221. if (y_start < 0)
  222. y_start = y;
  223. tcx_draw_line32(ts, d, s, ts->width);
  224. if (y >= ts->cursy && y < ts->cursy + 32 && ts->cursx < ts->width) {
  225. tcx_draw_cursor32(ts, d, y, ts->width);
  226. }
  227. } else {
  228. if (y_start >= 0) {
  229. /* flush to display */
  230. dpy_gfx_update(ts->con, 0, y_start,
  231. ts->width, y - y_start);
  232. y_start = -1;
  233. }
  234. }
  235. s += ds;
  236. d += dd;
  237. }
  238. if (y_start >= 0) {
  239. /* flush to display */
  240. dpy_gfx_update(ts->con, 0, y_start,
  241. ts->width, y - y_start);
  242. }
  243. g_free(snap);
  244. }
  245. static void tcx24_update_display(void *opaque)
  246. {
  247. TCXState *ts = opaque;
  248. DisplaySurface *surface = qemu_console_surface(ts->con);
  249. ram_addr_t page;
  250. DirtyBitmapSnapshot *snap = NULL;
  251. int y, y_start, dd, ds;
  252. uint8_t *d, *s;
  253. uint32_t *cptr, *s24;
  254. if (surface_bits_per_pixel(surface) != 32) {
  255. return;
  256. }
  257. page = 0;
  258. y_start = -1;
  259. d = surface_data(surface);
  260. s = ts->vram;
  261. s24 = ts->vram24;
  262. cptr = ts->cplane;
  263. dd = surface_stride(surface);
  264. ds = 1024;
  265. snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
  266. memory_region_size(&ts->vram_mem),
  267. DIRTY_MEMORY_VGA);
  268. for (y = 0; y < ts->height; y++, page += ds) {
  269. if (tcx_check_dirty(ts, snap, page, ds)) {
  270. if (y_start < 0)
  271. y_start = y;
  272. tcx24_draw_line32(ts, d, s, ts->width, cptr, s24);
  273. if (y >= ts->cursy && y < ts->cursy+32 && ts->cursx < ts->width) {
  274. tcx_draw_cursor32(ts, d, y, ts->width);
  275. }
  276. } else {
  277. if (y_start >= 0) {
  278. /* flush to display */
  279. dpy_gfx_update(ts->con, 0, y_start,
  280. ts->width, y - y_start);
  281. y_start = -1;
  282. }
  283. }
  284. d += dd;
  285. s += ds;
  286. cptr += ds;
  287. s24 += ds;
  288. }
  289. if (y_start >= 0) {
  290. /* flush to display */
  291. dpy_gfx_update(ts->con, 0, y_start,
  292. ts->width, y - y_start);
  293. }
  294. g_free(snap);
  295. }
  296. static void tcx_invalidate_display(void *opaque)
  297. {
  298. TCXState *s = opaque;
  299. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  300. qemu_console_resize(s->con, s->width, s->height);
  301. }
  302. static void tcx24_invalidate_display(void *opaque)
  303. {
  304. TCXState *s = opaque;
  305. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  306. qemu_console_resize(s->con, s->width, s->height);
  307. }
  308. static int vmstate_tcx_post_load(void *opaque, int version_id)
  309. {
  310. TCXState *s = opaque;
  311. update_palette_entries(s, 0, 256);
  312. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  313. return 0;
  314. }
  315. static const VMStateDescription vmstate_tcx = {
  316. .name ="tcx",
  317. .version_id = 4,
  318. .minimum_version_id = 4,
  319. .post_load = vmstate_tcx_post_load,
  320. .fields = (VMStateField[]) {
  321. VMSTATE_UINT16(height, TCXState),
  322. VMSTATE_UINT16(width, TCXState),
  323. VMSTATE_UINT16(depth, TCXState),
  324. VMSTATE_BUFFER(r, TCXState),
  325. VMSTATE_BUFFER(g, TCXState),
  326. VMSTATE_BUFFER(b, TCXState),
  327. VMSTATE_UINT8(dac_index, TCXState),
  328. VMSTATE_UINT8(dac_state, TCXState),
  329. VMSTATE_END_OF_LIST()
  330. }
  331. };
  332. static void tcx_reset(DeviceState *d)
  333. {
  334. TCXState *s = TCX(d);
  335. /* Initialize palette */
  336. memset(s->r, 0, 260);
  337. memset(s->g, 0, 260);
  338. memset(s->b, 0, 260);
  339. s->r[255] = s->g[255] = s->b[255] = 255;
  340. s->r[256] = s->g[256] = s->b[256] = 255;
  341. s->r[258] = s->g[258] = s->b[258] = 255;
  342. update_palette_entries(s, 0, 260);
  343. memset(s->vram, 0, MAXX*MAXY);
  344. memory_region_reset_dirty(&s->vram_mem, 0, MAXX * MAXY * (1 + 4 + 4),
  345. DIRTY_MEMORY_VGA);
  346. s->dac_index = 0;
  347. s->dac_state = 0;
  348. s->cursx = 0xf000; /* Put cursor off screen */
  349. s->cursy = 0xf000;
  350. }
  351. static uint64_t tcx_dac_readl(void *opaque, hwaddr addr,
  352. unsigned size)
  353. {
  354. TCXState *s = opaque;
  355. uint32_t val = 0;
  356. switch (s->dac_state) {
  357. case 0:
  358. val = s->r[s->dac_index] << 24;
  359. s->dac_state++;
  360. break;
  361. case 1:
  362. val = s->g[s->dac_index] << 24;
  363. s->dac_state++;
  364. break;
  365. case 2:
  366. val = s->b[s->dac_index] << 24;
  367. s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
  368. /* fall through */
  369. default:
  370. s->dac_state = 0;
  371. break;
  372. }
  373. return val;
  374. }
  375. static void tcx_dac_writel(void *opaque, hwaddr addr, uint64_t val,
  376. unsigned size)
  377. {
  378. TCXState *s = opaque;
  379. unsigned index;
  380. switch (addr) {
  381. case 0: /* Address */
  382. s->dac_index = val >> 24;
  383. s->dac_state = 0;
  384. break;
  385. case 4: /* Pixel colours */
  386. case 12: /* Overlay (cursor) colours */
  387. if (addr & 8) {
  388. index = (s->dac_index & 3) + 256;
  389. } else {
  390. index = s->dac_index;
  391. }
  392. switch (s->dac_state) {
  393. case 0:
  394. s->r[index] = val >> 24;
  395. update_palette_entries(s, index, index + 1);
  396. s->dac_state++;
  397. break;
  398. case 1:
  399. s->g[index] = val >> 24;
  400. update_palette_entries(s, index, index + 1);
  401. s->dac_state++;
  402. break;
  403. case 2:
  404. s->b[index] = val >> 24;
  405. update_palette_entries(s, index, index + 1);
  406. s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
  407. /* fall through */
  408. default:
  409. s->dac_state = 0;
  410. break;
  411. }
  412. break;
  413. default: /* Control registers */
  414. break;
  415. }
  416. }
  417. static const MemoryRegionOps tcx_dac_ops = {
  418. .read = tcx_dac_readl,
  419. .write = tcx_dac_writel,
  420. .endianness = DEVICE_NATIVE_ENDIAN,
  421. .valid = {
  422. .min_access_size = 4,
  423. .max_access_size = 4,
  424. },
  425. };
  426. static uint64_t tcx_stip_readl(void *opaque, hwaddr addr,
  427. unsigned size)
  428. {
  429. return 0;
  430. }
  431. static void tcx_stip_writel(void *opaque, hwaddr addr,
  432. uint64_t val, unsigned size)
  433. {
  434. TCXState *s = opaque;
  435. int i;
  436. uint32_t col;
  437. if (!(addr & 4)) {
  438. s->tmpblit = val;
  439. } else {
  440. addr = (addr >> 3) & 0xfffff;
  441. col = cpu_to_be32(s->tmpblit);
  442. if (s->depth == 24) {
  443. for (i = 0; i < 32; i++) {
  444. if (val & 0x80000000) {
  445. s->vram[addr + i] = s->tmpblit;
  446. s->vram24[addr + i] = col;
  447. }
  448. val <<= 1;
  449. }
  450. } else {
  451. for (i = 0; i < 32; i++) {
  452. if (val & 0x80000000) {
  453. s->vram[addr + i] = s->tmpblit;
  454. }
  455. val <<= 1;
  456. }
  457. }
  458. tcx_set_dirty(s, addr, 32);
  459. }
  460. }
  461. static void tcx_rstip_writel(void *opaque, hwaddr addr,
  462. uint64_t val, unsigned size)
  463. {
  464. TCXState *s = opaque;
  465. int i;
  466. uint32_t col;
  467. if (!(addr & 4)) {
  468. s->tmpblit = val;
  469. } else {
  470. addr = (addr >> 3) & 0xfffff;
  471. col = cpu_to_be32(s->tmpblit);
  472. if (s->depth == 24) {
  473. for (i = 0; i < 32; i++) {
  474. if (val & 0x80000000) {
  475. s->vram[addr + i] = s->tmpblit;
  476. s->vram24[addr + i] = col;
  477. s->cplane[addr + i] = col;
  478. }
  479. val <<= 1;
  480. }
  481. } else {
  482. for (i = 0; i < 32; i++) {
  483. if (val & 0x80000000) {
  484. s->vram[addr + i] = s->tmpblit;
  485. }
  486. val <<= 1;
  487. }
  488. }
  489. tcx_set_dirty(s, addr, 32);
  490. }
  491. }
  492. static const MemoryRegionOps tcx_stip_ops = {
  493. .read = tcx_stip_readl,
  494. .write = tcx_stip_writel,
  495. .endianness = DEVICE_NATIVE_ENDIAN,
  496. .valid = {
  497. .min_access_size = 4,
  498. .max_access_size = 4,
  499. },
  500. };
  501. static const MemoryRegionOps tcx_rstip_ops = {
  502. .read = tcx_stip_readl,
  503. .write = tcx_rstip_writel,
  504. .endianness = DEVICE_NATIVE_ENDIAN,
  505. .valid = {
  506. .min_access_size = 4,
  507. .max_access_size = 4,
  508. },
  509. };
  510. static uint64_t tcx_blit_readl(void *opaque, hwaddr addr,
  511. unsigned size)
  512. {
  513. return 0;
  514. }
  515. static void tcx_blit_writel(void *opaque, hwaddr addr,
  516. uint64_t val, unsigned size)
  517. {
  518. TCXState *s = opaque;
  519. uint32_t adsr, len;
  520. int i;
  521. if (!(addr & 4)) {
  522. s->tmpblit = val;
  523. } else {
  524. addr = (addr >> 3) & 0xfffff;
  525. adsr = val & 0xffffff;
  526. len = ((val >> 24) & 0x1f) + 1;
  527. if (adsr == 0xffffff) {
  528. memset(&s->vram[addr], s->tmpblit, len);
  529. if (s->depth == 24) {
  530. val = s->tmpblit & 0xffffff;
  531. val = cpu_to_be32(val);
  532. for (i = 0; i < len; i++) {
  533. s->vram24[addr + i] = val;
  534. }
  535. }
  536. } else {
  537. memcpy(&s->vram[addr], &s->vram[adsr], len);
  538. if (s->depth == 24) {
  539. memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
  540. }
  541. }
  542. tcx_set_dirty(s, addr, len);
  543. }
  544. }
  545. static void tcx_rblit_writel(void *opaque, hwaddr addr,
  546. uint64_t val, unsigned size)
  547. {
  548. TCXState *s = opaque;
  549. uint32_t adsr, len;
  550. int i;
  551. if (!(addr & 4)) {
  552. s->tmpblit = val;
  553. } else {
  554. addr = (addr >> 3) & 0xfffff;
  555. adsr = val & 0xffffff;
  556. len = ((val >> 24) & 0x1f) + 1;
  557. if (adsr == 0xffffff) {
  558. memset(&s->vram[addr], s->tmpblit, len);
  559. if (s->depth == 24) {
  560. val = s->tmpblit & 0xffffff;
  561. val = cpu_to_be32(val);
  562. for (i = 0; i < len; i++) {
  563. s->vram24[addr + i] = val;
  564. s->cplane[addr + i] = val;
  565. }
  566. }
  567. } else {
  568. memcpy(&s->vram[addr], &s->vram[adsr], len);
  569. if (s->depth == 24) {
  570. memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
  571. memcpy(&s->cplane[addr], &s->cplane[adsr], len * 4);
  572. }
  573. }
  574. tcx_set_dirty(s, addr, len);
  575. }
  576. }
  577. static const MemoryRegionOps tcx_blit_ops = {
  578. .read = tcx_blit_readl,
  579. .write = tcx_blit_writel,
  580. .endianness = DEVICE_NATIVE_ENDIAN,
  581. .valid = {
  582. .min_access_size = 4,
  583. .max_access_size = 4,
  584. },
  585. };
  586. static const MemoryRegionOps tcx_rblit_ops = {
  587. .read = tcx_blit_readl,
  588. .write = tcx_rblit_writel,
  589. .endianness = DEVICE_NATIVE_ENDIAN,
  590. .valid = {
  591. .min_access_size = 4,
  592. .max_access_size = 4,
  593. },
  594. };
  595. static void tcx_invalidate_cursor_position(TCXState *s)
  596. {
  597. int ymin, ymax, start, end;
  598. /* invalidate only near the cursor */
  599. ymin = s->cursy;
  600. if (ymin >= s->height) {
  601. return;
  602. }
  603. ymax = MIN(s->height, ymin + 32);
  604. start = ymin * 1024;
  605. end = ymax * 1024;
  606. tcx_set_dirty(s, start, end - start);
  607. }
  608. static uint64_t tcx_thc_readl(void *opaque, hwaddr addr,
  609. unsigned size)
  610. {
  611. TCXState *s = opaque;
  612. uint64_t val;
  613. if (addr == TCX_THC_MISC) {
  614. val = s->thcmisc | 0x02000000;
  615. } else {
  616. val = 0;
  617. }
  618. return val;
  619. }
  620. static void tcx_thc_writel(void *opaque, hwaddr addr,
  621. uint64_t val, unsigned size)
  622. {
  623. TCXState *s = opaque;
  624. if (addr == TCX_THC_CURSXY) {
  625. tcx_invalidate_cursor_position(s);
  626. s->cursx = val >> 16;
  627. s->cursy = val;
  628. tcx_invalidate_cursor_position(s);
  629. } else if (addr >= TCX_THC_CURSMASK && addr < TCX_THC_CURSMASK + 128) {
  630. s->cursmask[(addr - TCX_THC_CURSMASK) >> 2] = val;
  631. tcx_invalidate_cursor_position(s);
  632. } else if (addr >= TCX_THC_CURSBITS && addr < TCX_THC_CURSBITS + 128) {
  633. s->cursbits[(addr - TCX_THC_CURSBITS) >> 2] = val;
  634. tcx_invalidate_cursor_position(s);
  635. } else if (addr == TCX_THC_MISC) {
  636. s->thcmisc = val;
  637. }
  638. }
  639. static const MemoryRegionOps tcx_thc_ops = {
  640. .read = tcx_thc_readl,
  641. .write = tcx_thc_writel,
  642. .endianness = DEVICE_NATIVE_ENDIAN,
  643. .valid = {
  644. .min_access_size = 4,
  645. .max_access_size = 4,
  646. },
  647. };
  648. static uint64_t tcx_dummy_readl(void *opaque, hwaddr addr,
  649. unsigned size)
  650. {
  651. return 0;
  652. }
  653. static void tcx_dummy_writel(void *opaque, hwaddr addr,
  654. uint64_t val, unsigned size)
  655. {
  656. return;
  657. }
  658. static const MemoryRegionOps tcx_dummy_ops = {
  659. .read = tcx_dummy_readl,
  660. .write = tcx_dummy_writel,
  661. .endianness = DEVICE_NATIVE_ENDIAN,
  662. .valid = {
  663. .min_access_size = 4,
  664. .max_access_size = 4,
  665. },
  666. };
  667. static const GraphicHwOps tcx_ops = {
  668. .invalidate = tcx_invalidate_display,
  669. .gfx_update = tcx_update_display,
  670. };
  671. static const GraphicHwOps tcx24_ops = {
  672. .invalidate = tcx24_invalidate_display,
  673. .gfx_update = tcx24_update_display,
  674. };
  675. static void tcx_initfn(Object *obj)
  676. {
  677. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  678. TCXState *s = TCX(obj);
  679. memory_region_init_rom_nomigrate(&s->rom, obj, "tcx.prom",
  680. FCODE_MAX_ROM_SIZE, &error_fatal);
  681. sysbus_init_mmio(sbd, &s->rom);
  682. /* 2/STIP : Stippler */
  683. memory_region_init_io(&s->stip, obj, &tcx_stip_ops, s, "tcx.stip",
  684. TCX_STIP_NREGS);
  685. sysbus_init_mmio(sbd, &s->stip);
  686. /* 3/BLIT : Blitter */
  687. memory_region_init_io(&s->blit, obj, &tcx_blit_ops, s, "tcx.blit",
  688. TCX_BLIT_NREGS);
  689. sysbus_init_mmio(sbd, &s->blit);
  690. /* 5/RSTIP : Raw Stippler */
  691. memory_region_init_io(&s->rstip, obj, &tcx_rstip_ops, s, "tcx.rstip",
  692. TCX_RSTIP_NREGS);
  693. sysbus_init_mmio(sbd, &s->rstip);
  694. /* 6/RBLIT : Raw Blitter */
  695. memory_region_init_io(&s->rblit, obj, &tcx_rblit_ops, s, "tcx.rblit",
  696. TCX_RBLIT_NREGS);
  697. sysbus_init_mmio(sbd, &s->rblit);
  698. /* 7/TEC : ??? */
  699. memory_region_init_io(&s->tec, obj, &tcx_dummy_ops, s, "tcx.tec",
  700. TCX_TEC_NREGS);
  701. sysbus_init_mmio(sbd, &s->tec);
  702. /* 8/CMAP : DAC */
  703. memory_region_init_io(&s->dac, obj, &tcx_dac_ops, s, "tcx.dac",
  704. TCX_DAC_NREGS);
  705. sysbus_init_mmio(sbd, &s->dac);
  706. /* 9/THC : Cursor */
  707. memory_region_init_io(&s->thc, obj, &tcx_thc_ops, s, "tcx.thc",
  708. TCX_THC_NREGS);
  709. sysbus_init_mmio(sbd, &s->thc);
  710. /* 11/DHC : ??? */
  711. memory_region_init_io(&s->dhc, obj, &tcx_dummy_ops, s, "tcx.dhc",
  712. TCX_DHC_NREGS);
  713. sysbus_init_mmio(sbd, &s->dhc);
  714. /* 12/ALT : ??? */
  715. memory_region_init_io(&s->alt, obj, &tcx_dummy_ops, s, "tcx.alt",
  716. TCX_ALT_NREGS);
  717. sysbus_init_mmio(sbd, &s->alt);
  718. }
  719. static void tcx_realizefn(DeviceState *dev, Error **errp)
  720. {
  721. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  722. TCXState *s = TCX(dev);
  723. ram_addr_t vram_offset = 0;
  724. int size, ret;
  725. uint8_t *vram_base;
  726. char *fcode_filename;
  727. memory_region_init_ram_nomigrate(&s->vram_mem, OBJECT(s), "tcx.vram",
  728. s->vram_size * (1 + 4 + 4), &error_fatal);
  729. vmstate_register_ram_global(&s->vram_mem);
  730. memory_region_set_log(&s->vram_mem, true, DIRTY_MEMORY_VGA);
  731. vram_base = memory_region_get_ram_ptr(&s->vram_mem);
  732. /* 10/ROM : FCode ROM */
  733. vmstate_register_ram_global(&s->rom);
  734. fcode_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, TCX_ROM_FILE);
  735. if (fcode_filename) {
  736. ret = load_image_mr(fcode_filename, &s->rom);
  737. g_free(fcode_filename);
  738. if (ret < 0 || ret > FCODE_MAX_ROM_SIZE) {
  739. warn_report("tcx: could not load prom '%s'", TCX_ROM_FILE);
  740. }
  741. }
  742. /* 0/DFB8 : 8-bit plane */
  743. s->vram = vram_base;
  744. size = s->vram_size;
  745. memory_region_init_alias(&s->vram_8bit, OBJECT(s), "tcx.vram.8bit",
  746. &s->vram_mem, vram_offset, size);
  747. sysbus_init_mmio(sbd, &s->vram_8bit);
  748. vram_offset += size;
  749. vram_base += size;
  750. /* 1/DFB24 : 24bit plane */
  751. size = s->vram_size * 4;
  752. s->vram24 = (uint32_t *)vram_base;
  753. s->vram24_offset = vram_offset;
  754. memory_region_init_alias(&s->vram_24bit, OBJECT(s), "tcx.vram.24bit",
  755. &s->vram_mem, vram_offset, size);
  756. sysbus_init_mmio(sbd, &s->vram_24bit);
  757. vram_offset += size;
  758. vram_base += size;
  759. /* 4/RDFB32 : Raw Framebuffer */
  760. size = s->vram_size * 4;
  761. s->cplane = (uint32_t *)vram_base;
  762. s->cplane_offset = vram_offset;
  763. memory_region_init_alias(&s->vram_cplane, OBJECT(s), "tcx.vram.cplane",
  764. &s->vram_mem, vram_offset, size);
  765. sysbus_init_mmio(sbd, &s->vram_cplane);
  766. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  767. if (s->depth == 8) {
  768. memory_region_init_io(&s->thc24, OBJECT(s), &tcx_dummy_ops, s,
  769. "tcx.thc24", TCX_THC_NREGS);
  770. sysbus_init_mmio(sbd, &s->thc24);
  771. }
  772. sysbus_init_irq(sbd, &s->irq);
  773. if (s->depth == 8) {
  774. s->con = graphic_console_init(dev, 0, &tcx_ops, s);
  775. } else {
  776. s->con = graphic_console_init(dev, 0, &tcx24_ops, s);
  777. }
  778. s->thcmisc = 0;
  779. qemu_console_resize(s->con, s->width, s->height);
  780. }
  781. static Property tcx_properties[] = {
  782. DEFINE_PROP_UINT32("vram_size", TCXState, vram_size, -1),
  783. DEFINE_PROP_UINT16("width", TCXState, width, -1),
  784. DEFINE_PROP_UINT16("height", TCXState, height, -1),
  785. DEFINE_PROP_UINT16("depth", TCXState, depth, -1),
  786. DEFINE_PROP_END_OF_LIST(),
  787. };
  788. static void tcx_class_init(ObjectClass *klass, void *data)
  789. {
  790. DeviceClass *dc = DEVICE_CLASS(klass);
  791. dc->realize = tcx_realizefn;
  792. dc->reset = tcx_reset;
  793. dc->vmsd = &vmstate_tcx;
  794. device_class_set_props(dc, tcx_properties);
  795. }
  796. static const TypeInfo tcx_info = {
  797. .name = TYPE_TCX,
  798. .parent = TYPE_SYS_BUS_DEVICE,
  799. .instance_size = sizeof(TCXState),
  800. .instance_init = tcx_initfn,
  801. .class_init = tcx_class_init,
  802. };
  803. static void tcx_register_types(void)
  804. {
  805. type_register_static(&tcx_info);
  806. }
  807. type_init(tcx_register_types)