serial.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185
  1. /*
  2. * QEMU 16550A UART emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2008 Citrix Systems, Inc.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a copy
  8. * of this software and associated documentation files (the "Software"), to deal
  9. * in the Software without restriction, including without limitation the rights
  10. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. * copies of the Software, and to permit persons to whom the Software is
  12. * furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice shall be included in
  15. * all copies or substantial portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23. * THE SOFTWARE.
  24. */
  25. #include "qemu/osdep.h"
  26. #include "hw/char/serial.h"
  27. #include "hw/irq.h"
  28. #include "migration/vmstate.h"
  29. #include "chardev/char-serial.h"
  30. #include "qapi/error.h"
  31. #include "qemu/timer.h"
  32. #include "sysemu/reset.h"
  33. #include "sysemu/runstate.h"
  34. #include "qemu/error-report.h"
  35. #include "trace.h"
  36. #include "hw/qdev-properties.h"
  37. //#define DEBUG_SERIAL
  38. #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
  39. #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
  40. #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
  41. #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
  42. #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
  43. #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
  44. #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
  45. #define UART_IIR_MSI 0x00 /* Modem status interrupt */
  46. #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
  47. #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
  48. #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
  49. #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
  50. #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
  51. #define UART_IIR_FE 0xC0 /* Fifo enabled */
  52. /*
  53. * These are the definitions for the Modem Control Register
  54. */
  55. #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
  56. #define UART_MCR_OUT2 0x08 /* Out2 complement */
  57. #define UART_MCR_OUT1 0x04 /* Out1 complement */
  58. #define UART_MCR_RTS 0x02 /* RTS complement */
  59. #define UART_MCR_DTR 0x01 /* DTR complement */
  60. /*
  61. * These are the definitions for the Modem Status Register
  62. */
  63. #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
  64. #define UART_MSR_RI 0x40 /* Ring Indicator */
  65. #define UART_MSR_DSR 0x20 /* Data Set Ready */
  66. #define UART_MSR_CTS 0x10 /* Clear to Send */
  67. #define UART_MSR_DDCD 0x08 /* Delta DCD */
  68. #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
  69. #define UART_MSR_DDSR 0x02 /* Delta DSR */
  70. #define UART_MSR_DCTS 0x01 /* Delta CTS */
  71. #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
  72. #define UART_LSR_TEMT 0x40 /* Transmitter empty */
  73. #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
  74. #define UART_LSR_BI 0x10 /* Break interrupt indicator */
  75. #define UART_LSR_FE 0x08 /* Frame error indicator */
  76. #define UART_LSR_PE 0x04 /* Parity error indicator */
  77. #define UART_LSR_OE 0x02 /* Overrun error indicator */
  78. #define UART_LSR_DR 0x01 /* Receiver data ready */
  79. #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
  80. /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
  81. #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
  82. #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
  83. #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
  84. #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
  85. #define UART_FCR_DMS 0x08 /* DMA Mode Select */
  86. #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
  87. #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
  88. #define UART_FCR_FE 0x01 /* FIFO Enable */
  89. #define MAX_XMIT_RETRY 4
  90. #ifdef DEBUG_SERIAL
  91. #define DPRINTF(fmt, ...) \
  92. do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
  93. #else
  94. #define DPRINTF(fmt, ...) \
  95. do {} while (0)
  96. #endif
  97. static void serial_receive1(void *opaque, const uint8_t *buf, int size);
  98. static void serial_xmit(SerialState *s);
  99. static inline void recv_fifo_put(SerialState *s, uint8_t chr)
  100. {
  101. /* Receive overruns do not overwrite FIFO contents. */
  102. if (!fifo8_is_full(&s->recv_fifo)) {
  103. fifo8_push(&s->recv_fifo, chr);
  104. } else {
  105. s->lsr |= UART_LSR_OE;
  106. }
  107. }
  108. static void serial_update_irq(SerialState *s)
  109. {
  110. uint8_t tmp_iir = UART_IIR_NO_INT;
  111. if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
  112. tmp_iir = UART_IIR_RLSI;
  113. } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
  114. /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
  115. * this is not in the specification but is observed on existing
  116. * hardware. */
  117. tmp_iir = UART_IIR_CTI;
  118. } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
  119. (!(s->fcr & UART_FCR_FE) ||
  120. s->recv_fifo.num >= s->recv_fifo_itl)) {
  121. tmp_iir = UART_IIR_RDI;
  122. } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
  123. tmp_iir = UART_IIR_THRI;
  124. } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
  125. tmp_iir = UART_IIR_MSI;
  126. }
  127. s->iir = tmp_iir | (s->iir & 0xF0);
  128. if (tmp_iir != UART_IIR_NO_INT) {
  129. qemu_irq_raise(s->irq);
  130. } else {
  131. qemu_irq_lower(s->irq);
  132. }
  133. }
  134. static void serial_update_parameters(SerialState *s)
  135. {
  136. float speed;
  137. int parity, data_bits, stop_bits, frame_size;
  138. QEMUSerialSetParams ssp;
  139. /* Start bit. */
  140. frame_size = 1;
  141. if (s->lcr & 0x08) {
  142. /* Parity bit. */
  143. frame_size++;
  144. if (s->lcr & 0x10)
  145. parity = 'E';
  146. else
  147. parity = 'O';
  148. } else {
  149. parity = 'N';
  150. }
  151. if (s->lcr & 0x04) {
  152. stop_bits = 2;
  153. } else {
  154. stop_bits = 1;
  155. }
  156. data_bits = (s->lcr & 0x03) + 5;
  157. frame_size += data_bits + stop_bits;
  158. /* Zero divisor should give about 3500 baud */
  159. speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
  160. ssp.speed = speed;
  161. ssp.parity = parity;
  162. ssp.data_bits = data_bits;
  163. ssp.stop_bits = stop_bits;
  164. s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
  165. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  166. DPRINTF("speed=%.2f parity=%c data=%d stop=%d\n",
  167. speed, parity, data_bits, stop_bits);
  168. }
  169. static void serial_update_msl(SerialState *s)
  170. {
  171. uint8_t omsr;
  172. int flags;
  173. timer_del(s->modem_status_poll);
  174. if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
  175. &flags) == -ENOTSUP) {
  176. s->poll_msl = -1;
  177. return;
  178. }
  179. omsr = s->msr;
  180. s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
  181. s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
  182. s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
  183. s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
  184. if (s->msr != omsr) {
  185. /* Set delta bits */
  186. s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
  187. /* UART_MSR_TERI only if change was from 1 -> 0 */
  188. if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
  189. s->msr &= ~UART_MSR_TERI;
  190. serial_update_irq(s);
  191. }
  192. /* The real 16550A apparently has a 250ns response latency to line status changes.
  193. We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
  194. if (s->poll_msl) {
  195. timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  196. NANOSECONDS_PER_SECOND / 100);
  197. }
  198. }
  199. static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
  200. void *opaque)
  201. {
  202. SerialState *s = opaque;
  203. s->watch_tag = 0;
  204. serial_xmit(s);
  205. return FALSE;
  206. }
  207. static void serial_xmit(SerialState *s)
  208. {
  209. do {
  210. assert(!(s->lsr & UART_LSR_TEMT));
  211. if (s->tsr_retry == 0) {
  212. assert(!(s->lsr & UART_LSR_THRE));
  213. if (s->fcr & UART_FCR_FE) {
  214. assert(!fifo8_is_empty(&s->xmit_fifo));
  215. s->tsr = fifo8_pop(&s->xmit_fifo);
  216. if (!s->xmit_fifo.num) {
  217. s->lsr |= UART_LSR_THRE;
  218. }
  219. } else {
  220. s->tsr = s->thr;
  221. s->lsr |= UART_LSR_THRE;
  222. }
  223. if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
  224. s->thr_ipending = 1;
  225. serial_update_irq(s);
  226. }
  227. }
  228. if (s->mcr & UART_MCR_LOOP) {
  229. /* in loopback mode, say that we just received a char */
  230. serial_receive1(s, &s->tsr, 1);
  231. } else {
  232. int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
  233. if ((rc == 0 ||
  234. (rc == -1 && errno == EAGAIN)) &&
  235. s->tsr_retry < MAX_XMIT_RETRY) {
  236. assert(s->watch_tag == 0);
  237. s->watch_tag =
  238. qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  239. serial_watch_cb, s);
  240. if (s->watch_tag > 0) {
  241. s->tsr_retry++;
  242. return;
  243. }
  244. }
  245. }
  246. s->tsr_retry = 0;
  247. /* Transmit another byte if it is already available. It is only
  248. possible when FIFO is enabled and not empty. */
  249. } while (!(s->lsr & UART_LSR_THRE));
  250. s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  251. s->lsr |= UART_LSR_TEMT;
  252. }
  253. /* Setter for FCR.
  254. is_load flag means, that value is set while loading VM state
  255. and interrupt should not be invoked */
  256. static void serial_write_fcr(SerialState *s, uint8_t val)
  257. {
  258. /* Set fcr - val only has the bits that are supposed to "stick" */
  259. s->fcr = val;
  260. if (val & UART_FCR_FE) {
  261. s->iir |= UART_IIR_FE;
  262. /* Set recv_fifo trigger Level */
  263. switch (val & 0xC0) {
  264. case UART_FCR_ITL_1:
  265. s->recv_fifo_itl = 1;
  266. break;
  267. case UART_FCR_ITL_2:
  268. s->recv_fifo_itl = 4;
  269. break;
  270. case UART_FCR_ITL_3:
  271. s->recv_fifo_itl = 8;
  272. break;
  273. case UART_FCR_ITL_4:
  274. s->recv_fifo_itl = 14;
  275. break;
  276. }
  277. } else {
  278. s->iir &= ~UART_IIR_FE;
  279. }
  280. }
  281. static void serial_update_tiocm(SerialState *s)
  282. {
  283. int flags;
  284. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
  285. flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
  286. if (s->mcr & UART_MCR_RTS) {
  287. flags |= CHR_TIOCM_RTS;
  288. }
  289. if (s->mcr & UART_MCR_DTR) {
  290. flags |= CHR_TIOCM_DTR;
  291. }
  292. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
  293. }
  294. static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
  295. unsigned size)
  296. {
  297. SerialState *s = opaque;
  298. addr &= 7;
  299. trace_serial_ioport_write(addr, val);
  300. switch(addr) {
  301. default:
  302. case 0:
  303. if (s->lcr & UART_LCR_DLAB) {
  304. if (size == 1) {
  305. s->divider = (s->divider & 0xff00) | val;
  306. } else {
  307. s->divider = val;
  308. }
  309. serial_update_parameters(s);
  310. } else {
  311. s->thr = (uint8_t) val;
  312. if(s->fcr & UART_FCR_FE) {
  313. /* xmit overruns overwrite data, so make space if needed */
  314. if (fifo8_is_full(&s->xmit_fifo)) {
  315. fifo8_pop(&s->xmit_fifo);
  316. }
  317. fifo8_push(&s->xmit_fifo, s->thr);
  318. }
  319. s->thr_ipending = 0;
  320. s->lsr &= ~UART_LSR_THRE;
  321. s->lsr &= ~UART_LSR_TEMT;
  322. serial_update_irq(s);
  323. if (s->tsr_retry == 0) {
  324. serial_xmit(s);
  325. }
  326. }
  327. break;
  328. case 1:
  329. if (s->lcr & UART_LCR_DLAB) {
  330. s->divider = (s->divider & 0x00ff) | (val << 8);
  331. serial_update_parameters(s);
  332. } else {
  333. uint8_t changed = (s->ier ^ val) & 0x0f;
  334. s->ier = val & 0x0f;
  335. /* If the backend device is a real serial port, turn polling of the modem
  336. * status lines on physical port on or off depending on UART_IER_MSI state.
  337. */
  338. if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
  339. if (s->ier & UART_IER_MSI) {
  340. s->poll_msl = 1;
  341. serial_update_msl(s);
  342. } else {
  343. timer_del(s->modem_status_poll);
  344. s->poll_msl = 0;
  345. }
  346. }
  347. /* Turning on the THRE interrupt on IER can trigger the interrupt
  348. * if LSR.THRE=1, even if it had been masked before by reading IIR.
  349. * This is not in the datasheet, but Windows relies on it. It is
  350. * unclear if THRE has to be resampled every time THRI becomes
  351. * 1, or only on the rising edge. Bochs does the latter, and Windows
  352. * always toggles IER to all zeroes and back to all ones, so do the
  353. * same.
  354. *
  355. * If IER.THRI is zero, thr_ipending is not used. Set it to zero
  356. * so that the thr_ipending subsection is not migrated.
  357. */
  358. if (changed & UART_IER_THRI) {
  359. if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
  360. s->thr_ipending = 1;
  361. } else {
  362. s->thr_ipending = 0;
  363. }
  364. }
  365. if (changed) {
  366. serial_update_irq(s);
  367. }
  368. }
  369. break;
  370. case 2:
  371. /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
  372. if ((val ^ s->fcr) & UART_FCR_FE) {
  373. val |= UART_FCR_XFR | UART_FCR_RFR;
  374. }
  375. /* FIFO clear */
  376. if (val & UART_FCR_RFR) {
  377. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  378. timer_del(s->fifo_timeout_timer);
  379. s->timeout_ipending = 0;
  380. fifo8_reset(&s->recv_fifo);
  381. }
  382. if (val & UART_FCR_XFR) {
  383. s->lsr |= UART_LSR_THRE;
  384. s->thr_ipending = 1;
  385. fifo8_reset(&s->xmit_fifo);
  386. }
  387. serial_write_fcr(s, val & 0xC9);
  388. serial_update_irq(s);
  389. break;
  390. case 3:
  391. {
  392. int break_enable;
  393. s->lcr = val;
  394. serial_update_parameters(s);
  395. break_enable = (val >> 6) & 1;
  396. if (break_enable != s->last_break_enable) {
  397. s->last_break_enable = break_enable;
  398. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  399. &break_enable);
  400. }
  401. }
  402. break;
  403. case 4:
  404. {
  405. int old_mcr = s->mcr;
  406. s->mcr = val & 0x1f;
  407. if (val & UART_MCR_LOOP)
  408. break;
  409. if (s->poll_msl >= 0 && old_mcr != s->mcr) {
  410. serial_update_tiocm(s);
  411. /* Update the modem status after a one-character-send wait-time, since there may be a response
  412. from the device/computer at the other end of the serial line */
  413. timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
  414. }
  415. }
  416. break;
  417. case 5:
  418. break;
  419. case 6:
  420. break;
  421. case 7:
  422. s->scr = val;
  423. break;
  424. }
  425. }
  426. static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
  427. {
  428. SerialState *s = opaque;
  429. uint32_t ret;
  430. addr &= 7;
  431. switch(addr) {
  432. default:
  433. case 0:
  434. if (s->lcr & UART_LCR_DLAB) {
  435. ret = s->divider & 0xff;
  436. } else {
  437. if(s->fcr & UART_FCR_FE) {
  438. ret = fifo8_is_empty(&s->recv_fifo) ?
  439. 0 : fifo8_pop(&s->recv_fifo);
  440. if (s->recv_fifo.num == 0) {
  441. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  442. } else {
  443. timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
  444. }
  445. s->timeout_ipending = 0;
  446. } else {
  447. ret = s->rbr;
  448. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  449. }
  450. serial_update_irq(s);
  451. if (!(s->mcr & UART_MCR_LOOP)) {
  452. /* in loopback mode, don't receive any data */
  453. qemu_chr_fe_accept_input(&s->chr);
  454. }
  455. }
  456. break;
  457. case 1:
  458. if (s->lcr & UART_LCR_DLAB) {
  459. ret = (s->divider >> 8) & 0xff;
  460. } else {
  461. ret = s->ier;
  462. }
  463. break;
  464. case 2:
  465. ret = s->iir;
  466. if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
  467. s->thr_ipending = 0;
  468. serial_update_irq(s);
  469. }
  470. break;
  471. case 3:
  472. ret = s->lcr;
  473. break;
  474. case 4:
  475. ret = s->mcr;
  476. break;
  477. case 5:
  478. ret = s->lsr;
  479. /* Clear break and overrun interrupts */
  480. if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
  481. s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
  482. serial_update_irq(s);
  483. }
  484. break;
  485. case 6:
  486. if (s->mcr & UART_MCR_LOOP) {
  487. /* in loopback, the modem output pins are connected to the
  488. inputs */
  489. ret = (s->mcr & 0x0c) << 4;
  490. ret |= (s->mcr & 0x02) << 3;
  491. ret |= (s->mcr & 0x01) << 5;
  492. } else {
  493. if (s->poll_msl >= 0)
  494. serial_update_msl(s);
  495. ret = s->msr;
  496. /* Clear delta bits & msr int after read, if they were set */
  497. if (s->msr & UART_MSR_ANY_DELTA) {
  498. s->msr &= 0xF0;
  499. serial_update_irq(s);
  500. }
  501. }
  502. break;
  503. case 7:
  504. ret = s->scr;
  505. break;
  506. }
  507. trace_serial_ioport_read(addr, ret);
  508. return ret;
  509. }
  510. static int serial_can_receive(SerialState *s)
  511. {
  512. if(s->fcr & UART_FCR_FE) {
  513. if (s->recv_fifo.num < UART_FIFO_LENGTH) {
  514. /*
  515. * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
  516. * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
  517. * effect will be to almost always fill the fifo completely before
  518. * the guest has a chance to respond, effectively overriding the ITL
  519. * that the guest has set.
  520. */
  521. return (s->recv_fifo.num <= s->recv_fifo_itl) ?
  522. s->recv_fifo_itl - s->recv_fifo.num : 1;
  523. } else {
  524. return 0;
  525. }
  526. } else {
  527. return !(s->lsr & UART_LSR_DR);
  528. }
  529. }
  530. static void serial_receive_break(SerialState *s)
  531. {
  532. s->rbr = 0;
  533. /* When the LSR_DR is set a null byte is pushed into the fifo */
  534. recv_fifo_put(s, '\0');
  535. s->lsr |= UART_LSR_BI | UART_LSR_DR;
  536. serial_update_irq(s);
  537. }
  538. /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
  539. static void fifo_timeout_int (void *opaque) {
  540. SerialState *s = opaque;
  541. if (s->recv_fifo.num) {
  542. s->timeout_ipending = 1;
  543. serial_update_irq(s);
  544. }
  545. }
  546. static int serial_can_receive1(void *opaque)
  547. {
  548. SerialState *s = opaque;
  549. return serial_can_receive(s);
  550. }
  551. static void serial_receive1(void *opaque, const uint8_t *buf, int size)
  552. {
  553. SerialState *s = opaque;
  554. if (s->wakeup) {
  555. qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
  556. }
  557. if(s->fcr & UART_FCR_FE) {
  558. int i;
  559. for (i = 0; i < size; i++) {
  560. recv_fifo_put(s, buf[i]);
  561. }
  562. s->lsr |= UART_LSR_DR;
  563. /* call the timeout receive callback in 4 char transmit time */
  564. timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
  565. } else {
  566. if (s->lsr & UART_LSR_DR)
  567. s->lsr |= UART_LSR_OE;
  568. s->rbr = buf[0];
  569. s->lsr |= UART_LSR_DR;
  570. }
  571. serial_update_irq(s);
  572. }
  573. static void serial_event(void *opaque, QEMUChrEvent event)
  574. {
  575. SerialState *s = opaque;
  576. DPRINTF("event %x\n", event);
  577. if (event == CHR_EVENT_BREAK)
  578. serial_receive_break(s);
  579. }
  580. static int serial_pre_save(void *opaque)
  581. {
  582. SerialState *s = opaque;
  583. s->fcr_vmstate = s->fcr;
  584. return 0;
  585. }
  586. static int serial_pre_load(void *opaque)
  587. {
  588. SerialState *s = opaque;
  589. s->thr_ipending = -1;
  590. s->poll_msl = -1;
  591. return 0;
  592. }
  593. static int serial_post_load(void *opaque, int version_id)
  594. {
  595. SerialState *s = opaque;
  596. if (version_id < 3) {
  597. s->fcr_vmstate = 0;
  598. }
  599. if (s->thr_ipending == -1) {
  600. s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
  601. }
  602. if (s->tsr_retry > 0) {
  603. /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
  604. if (s->lsr & UART_LSR_TEMT) {
  605. error_report("inconsistent state in serial device "
  606. "(tsr empty, tsr_retry=%d", s->tsr_retry);
  607. return -1;
  608. }
  609. if (s->tsr_retry > MAX_XMIT_RETRY) {
  610. s->tsr_retry = MAX_XMIT_RETRY;
  611. }
  612. assert(s->watch_tag == 0);
  613. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  614. serial_watch_cb, s);
  615. } else {
  616. /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
  617. if (!(s->lsr & UART_LSR_TEMT)) {
  618. error_report("inconsistent state in serial device "
  619. "(tsr not empty, tsr_retry=0");
  620. return -1;
  621. }
  622. }
  623. s->last_break_enable = (s->lcr >> 6) & 1;
  624. /* Initialize fcr via setter to perform essential side-effects */
  625. serial_write_fcr(s, s->fcr_vmstate);
  626. serial_update_parameters(s);
  627. return 0;
  628. }
  629. static bool serial_thr_ipending_needed(void *opaque)
  630. {
  631. SerialState *s = opaque;
  632. if (s->ier & UART_IER_THRI) {
  633. bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
  634. return s->thr_ipending != expected_value;
  635. } else {
  636. /* LSR.THRE will be sampled again when the interrupt is
  637. * enabled. thr_ipending is not used in this case, do
  638. * not migrate it.
  639. */
  640. return false;
  641. }
  642. }
  643. static const VMStateDescription vmstate_serial_thr_ipending = {
  644. .name = "serial/thr_ipending",
  645. .version_id = 1,
  646. .minimum_version_id = 1,
  647. .needed = serial_thr_ipending_needed,
  648. .fields = (VMStateField[]) {
  649. VMSTATE_INT32(thr_ipending, SerialState),
  650. VMSTATE_END_OF_LIST()
  651. }
  652. };
  653. static bool serial_tsr_needed(void *opaque)
  654. {
  655. SerialState *s = (SerialState *)opaque;
  656. return s->tsr_retry != 0;
  657. }
  658. static const VMStateDescription vmstate_serial_tsr = {
  659. .name = "serial/tsr",
  660. .version_id = 1,
  661. .minimum_version_id = 1,
  662. .needed = serial_tsr_needed,
  663. .fields = (VMStateField[]) {
  664. VMSTATE_UINT32(tsr_retry, SerialState),
  665. VMSTATE_UINT8(thr, SerialState),
  666. VMSTATE_UINT8(tsr, SerialState),
  667. VMSTATE_END_OF_LIST()
  668. }
  669. };
  670. static bool serial_recv_fifo_needed(void *opaque)
  671. {
  672. SerialState *s = (SerialState *)opaque;
  673. return !fifo8_is_empty(&s->recv_fifo);
  674. }
  675. static const VMStateDescription vmstate_serial_recv_fifo = {
  676. .name = "serial/recv_fifo",
  677. .version_id = 1,
  678. .minimum_version_id = 1,
  679. .needed = serial_recv_fifo_needed,
  680. .fields = (VMStateField[]) {
  681. VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
  682. VMSTATE_END_OF_LIST()
  683. }
  684. };
  685. static bool serial_xmit_fifo_needed(void *opaque)
  686. {
  687. SerialState *s = (SerialState *)opaque;
  688. return !fifo8_is_empty(&s->xmit_fifo);
  689. }
  690. static const VMStateDescription vmstate_serial_xmit_fifo = {
  691. .name = "serial/xmit_fifo",
  692. .version_id = 1,
  693. .minimum_version_id = 1,
  694. .needed = serial_xmit_fifo_needed,
  695. .fields = (VMStateField[]) {
  696. VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
  697. VMSTATE_END_OF_LIST()
  698. }
  699. };
  700. static bool serial_fifo_timeout_timer_needed(void *opaque)
  701. {
  702. SerialState *s = (SerialState *)opaque;
  703. return timer_pending(s->fifo_timeout_timer);
  704. }
  705. static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
  706. .name = "serial/fifo_timeout_timer",
  707. .version_id = 1,
  708. .minimum_version_id = 1,
  709. .needed = serial_fifo_timeout_timer_needed,
  710. .fields = (VMStateField[]) {
  711. VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
  712. VMSTATE_END_OF_LIST()
  713. }
  714. };
  715. static bool serial_timeout_ipending_needed(void *opaque)
  716. {
  717. SerialState *s = (SerialState *)opaque;
  718. return s->timeout_ipending != 0;
  719. }
  720. static const VMStateDescription vmstate_serial_timeout_ipending = {
  721. .name = "serial/timeout_ipending",
  722. .version_id = 1,
  723. .minimum_version_id = 1,
  724. .needed = serial_timeout_ipending_needed,
  725. .fields = (VMStateField[]) {
  726. VMSTATE_INT32(timeout_ipending, SerialState),
  727. VMSTATE_END_OF_LIST()
  728. }
  729. };
  730. static bool serial_poll_needed(void *opaque)
  731. {
  732. SerialState *s = (SerialState *)opaque;
  733. return s->poll_msl >= 0;
  734. }
  735. static const VMStateDescription vmstate_serial_poll = {
  736. .name = "serial/poll",
  737. .version_id = 1,
  738. .needed = serial_poll_needed,
  739. .minimum_version_id = 1,
  740. .fields = (VMStateField[]) {
  741. VMSTATE_INT32(poll_msl, SerialState),
  742. VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
  743. VMSTATE_END_OF_LIST()
  744. }
  745. };
  746. const VMStateDescription vmstate_serial = {
  747. .name = "serial",
  748. .version_id = 3,
  749. .minimum_version_id = 2,
  750. .pre_save = serial_pre_save,
  751. .pre_load = serial_pre_load,
  752. .post_load = serial_post_load,
  753. .fields = (VMStateField[]) {
  754. VMSTATE_UINT16_V(divider, SerialState, 2),
  755. VMSTATE_UINT8(rbr, SerialState),
  756. VMSTATE_UINT8(ier, SerialState),
  757. VMSTATE_UINT8(iir, SerialState),
  758. VMSTATE_UINT8(lcr, SerialState),
  759. VMSTATE_UINT8(mcr, SerialState),
  760. VMSTATE_UINT8(lsr, SerialState),
  761. VMSTATE_UINT8(msr, SerialState),
  762. VMSTATE_UINT8(scr, SerialState),
  763. VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
  764. VMSTATE_END_OF_LIST()
  765. },
  766. .subsections = (const VMStateDescription*[]) {
  767. &vmstate_serial_thr_ipending,
  768. &vmstate_serial_tsr,
  769. &vmstate_serial_recv_fifo,
  770. &vmstate_serial_xmit_fifo,
  771. &vmstate_serial_fifo_timeout_timer,
  772. &vmstate_serial_timeout_ipending,
  773. &vmstate_serial_poll,
  774. NULL
  775. }
  776. };
  777. static void serial_reset(void *opaque)
  778. {
  779. SerialState *s = opaque;
  780. if (s->watch_tag > 0) {
  781. g_source_remove(s->watch_tag);
  782. s->watch_tag = 0;
  783. }
  784. s->rbr = 0;
  785. s->ier = 0;
  786. s->iir = UART_IIR_NO_INT;
  787. s->lcr = 0;
  788. s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
  789. s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
  790. /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
  791. s->divider = 0x0C;
  792. s->mcr = UART_MCR_OUT2;
  793. s->scr = 0;
  794. s->tsr_retry = 0;
  795. s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
  796. s->poll_msl = 0;
  797. s->timeout_ipending = 0;
  798. timer_del(s->fifo_timeout_timer);
  799. timer_del(s->modem_status_poll);
  800. fifo8_reset(&s->recv_fifo);
  801. fifo8_reset(&s->xmit_fifo);
  802. s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  803. s->thr_ipending = 0;
  804. s->last_break_enable = 0;
  805. qemu_irq_lower(s->irq);
  806. serial_update_msl(s);
  807. s->msr &= ~UART_MSR_ANY_DELTA;
  808. }
  809. static int serial_be_change(void *opaque)
  810. {
  811. SerialState *s = opaque;
  812. qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
  813. serial_event, serial_be_change, s, NULL, true);
  814. serial_update_parameters(s);
  815. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  816. &s->last_break_enable);
  817. s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
  818. serial_update_msl(s);
  819. if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
  820. serial_update_tiocm(s);
  821. }
  822. if (s->watch_tag > 0) {
  823. g_source_remove(s->watch_tag);
  824. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  825. serial_watch_cb, s);
  826. }
  827. return 0;
  828. }
  829. static void serial_realize(DeviceState *dev, Error **errp)
  830. {
  831. SerialState *s = SERIAL(dev);
  832. s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
  833. s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
  834. qemu_register_reset(serial_reset, s);
  835. qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
  836. serial_event, serial_be_change, s, NULL, true);
  837. fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
  838. fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
  839. serial_reset(s);
  840. }
  841. static void serial_unrealize(DeviceState *dev)
  842. {
  843. SerialState *s = SERIAL(dev);
  844. qemu_chr_fe_deinit(&s->chr, false);
  845. timer_del(s->modem_status_poll);
  846. timer_free(s->modem_status_poll);
  847. timer_del(s->fifo_timeout_timer);
  848. timer_free(s->fifo_timeout_timer);
  849. fifo8_destroy(&s->recv_fifo);
  850. fifo8_destroy(&s->xmit_fifo);
  851. qemu_unregister_reset(serial_reset, s);
  852. }
  853. /* Change the main reference oscillator frequency. */
  854. void serial_set_frequency(SerialState *s, uint32_t frequency)
  855. {
  856. s->baudbase = frequency;
  857. serial_update_parameters(s);
  858. }
  859. const MemoryRegionOps serial_io_ops = {
  860. .read = serial_ioport_read,
  861. .write = serial_ioport_write,
  862. .impl = {
  863. .min_access_size = 1,
  864. .max_access_size = 1,
  865. },
  866. .endianness = DEVICE_LITTLE_ENDIAN,
  867. };
  868. static void serial_io_realize(DeviceState *dev, Error **errp)
  869. {
  870. SerialIO *sio = SERIAL_IO(dev);
  871. SerialState *s = &sio->serial;
  872. if (!qdev_realize(DEVICE(s), NULL, errp)) {
  873. return;
  874. }
  875. memory_region_init_io(&s->io, OBJECT(dev), &serial_io_ops, s, "serial", 8);
  876. sysbus_init_mmio(SYS_BUS_DEVICE(sio), &s->io);
  877. sysbus_init_irq(SYS_BUS_DEVICE(sio), &s->irq);
  878. }
  879. static void serial_io_class_init(ObjectClass *klass, void* data)
  880. {
  881. DeviceClass *dc = DEVICE_CLASS(klass);
  882. dc->realize = serial_io_realize;
  883. /* No dc->vmsd: class has no migratable state */
  884. }
  885. static void serial_io_instance_init(Object *o)
  886. {
  887. SerialIO *sio = SERIAL_IO(o);
  888. object_initialize_child(o, "serial", &sio->serial, TYPE_SERIAL);
  889. qdev_alias_all_properties(DEVICE(&sio->serial), o);
  890. }
  891. static const TypeInfo serial_io_info = {
  892. .name = TYPE_SERIAL_IO,
  893. .parent = TYPE_SYS_BUS_DEVICE,
  894. .instance_size = sizeof(SerialIO),
  895. .instance_init = serial_io_instance_init,
  896. .class_init = serial_io_class_init,
  897. };
  898. static Property serial_properties[] = {
  899. DEFINE_PROP_CHR("chardev", SerialState, chr),
  900. DEFINE_PROP_UINT32("baudbase", SerialState, baudbase, 115200),
  901. DEFINE_PROP_END_OF_LIST(),
  902. };
  903. static void serial_class_init(ObjectClass *klass, void* data)
  904. {
  905. DeviceClass *dc = DEVICE_CLASS(klass);
  906. /* internal device for serialio/serialmm, not user-creatable */
  907. dc->user_creatable = false;
  908. dc->realize = serial_realize;
  909. dc->unrealize = serial_unrealize;
  910. device_class_set_props(dc, serial_properties);
  911. }
  912. static const TypeInfo serial_info = {
  913. .name = TYPE_SERIAL,
  914. .parent = TYPE_DEVICE,
  915. .instance_size = sizeof(SerialState),
  916. .class_init = serial_class_init,
  917. };
  918. /* Memory mapped interface */
  919. static uint64_t serial_mm_read(void *opaque, hwaddr addr,
  920. unsigned size)
  921. {
  922. SerialMM *s = SERIAL_MM(opaque);
  923. return serial_ioport_read(&s->serial, addr >> s->regshift, 1);
  924. }
  925. static void serial_mm_write(void *opaque, hwaddr addr,
  926. uint64_t value, unsigned size)
  927. {
  928. SerialMM *s = SERIAL_MM(opaque);
  929. value &= 255;
  930. serial_ioport_write(&s->serial, addr >> s->regshift, value, 1);
  931. }
  932. static const MemoryRegionOps serial_mm_ops[3] = {
  933. [DEVICE_NATIVE_ENDIAN] = {
  934. .read = serial_mm_read,
  935. .write = serial_mm_write,
  936. .endianness = DEVICE_NATIVE_ENDIAN,
  937. .valid.max_access_size = 8,
  938. .impl.max_access_size = 8,
  939. },
  940. [DEVICE_LITTLE_ENDIAN] = {
  941. .read = serial_mm_read,
  942. .write = serial_mm_write,
  943. .endianness = DEVICE_LITTLE_ENDIAN,
  944. .valid.max_access_size = 8,
  945. .impl.max_access_size = 8,
  946. },
  947. [DEVICE_BIG_ENDIAN] = {
  948. .read = serial_mm_read,
  949. .write = serial_mm_write,
  950. .endianness = DEVICE_BIG_ENDIAN,
  951. .valid.max_access_size = 8,
  952. .impl.max_access_size = 8,
  953. },
  954. };
  955. static void serial_mm_realize(DeviceState *dev, Error **errp)
  956. {
  957. SerialMM *smm = SERIAL_MM(dev);
  958. SerialState *s = &smm->serial;
  959. if (!qdev_realize(DEVICE(s), NULL, errp)) {
  960. return;
  961. }
  962. memory_region_init_io(&s->io, OBJECT(dev),
  963. &serial_mm_ops[smm->endianness], smm, "serial",
  964. 8 << smm->regshift);
  965. sysbus_init_mmio(SYS_BUS_DEVICE(smm), &s->io);
  966. sysbus_init_irq(SYS_BUS_DEVICE(smm), &smm->serial.irq);
  967. }
  968. static const VMStateDescription vmstate_serial_mm = {
  969. .name = "serial",
  970. .version_id = 3,
  971. .minimum_version_id = 2,
  972. .fields = (VMStateField[]) {
  973. VMSTATE_STRUCT(serial, SerialMM, 0, vmstate_serial, SerialState),
  974. VMSTATE_END_OF_LIST()
  975. }
  976. };
  977. SerialMM *serial_mm_init(MemoryRegion *address_space,
  978. hwaddr base, int regshift,
  979. qemu_irq irq, int baudbase,
  980. Chardev *chr, enum device_endian end)
  981. {
  982. SerialMM *smm = SERIAL_MM(qdev_new(TYPE_SERIAL_MM));
  983. MemoryRegion *mr;
  984. qdev_prop_set_uint8(DEVICE(smm), "regshift", regshift);
  985. qdev_prop_set_uint32(DEVICE(smm), "baudbase", baudbase);
  986. qdev_prop_set_chr(DEVICE(smm), "chardev", chr);
  987. qdev_set_legacy_instance_id(DEVICE(smm), base, 2);
  988. qdev_prop_set_uint8(DEVICE(smm), "endianness", end);
  989. sysbus_realize_and_unref(SYS_BUS_DEVICE(smm), &error_fatal);
  990. sysbus_connect_irq(SYS_BUS_DEVICE(smm), 0, irq);
  991. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(smm), 0);
  992. memory_region_add_subregion(address_space, base, mr);
  993. return smm;
  994. }
  995. static void serial_mm_instance_init(Object *o)
  996. {
  997. SerialMM *smm = SERIAL_MM(o);
  998. object_initialize_child(o, "serial", &smm->serial, TYPE_SERIAL);
  999. qdev_alias_all_properties(DEVICE(&smm->serial), o);
  1000. }
  1001. static Property serial_mm_properties[] = {
  1002. /*
  1003. * Set the spacing between adjacent memory-mapped UART registers.
  1004. * Each register will be at (1 << regshift) bytes after the
  1005. * previous one.
  1006. */
  1007. DEFINE_PROP_UINT8("regshift", SerialMM, regshift, 0),
  1008. DEFINE_PROP_UINT8("endianness", SerialMM, endianness, DEVICE_NATIVE_ENDIAN),
  1009. DEFINE_PROP_END_OF_LIST(),
  1010. };
  1011. static void serial_mm_class_init(ObjectClass *oc, void *data)
  1012. {
  1013. DeviceClass *dc = DEVICE_CLASS(oc);
  1014. device_class_set_props(dc, serial_mm_properties);
  1015. dc->realize = serial_mm_realize;
  1016. dc->vmsd = &vmstate_serial_mm;
  1017. }
  1018. static const TypeInfo serial_mm_info = {
  1019. .name = TYPE_SERIAL_MM,
  1020. .parent = TYPE_SYS_BUS_DEVICE,
  1021. .class_init = serial_mm_class_init,
  1022. .instance_init = serial_mm_instance_init,
  1023. .instance_size = sizeof(SerialMM),
  1024. .class_init = serial_mm_class_init,
  1025. };
  1026. static void serial_register_types(void)
  1027. {
  1028. type_register_static(&serial_info);
  1029. type_register_static(&serial_io_info);
  1030. type_register_static(&serial_mm_info);
  1031. }
  1032. type_init(serial_register_types)