renesas_sci.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. /*
  2. * Renesas Serial Communication Interface
  3. *
  4. * Datasheet: RX62N Group, RX621 Group User's Manual: Hardware
  5. * (Rev.1.40 R01UH0033EJ0140)
  6. *
  7. * Copyright (c) 2019 Yoshinori Sato
  8. *
  9. * SPDX-License-Identifier: GPL-2.0-or-later
  10. *
  11. * This program is free software; you can redistribute it and/or modify it
  12. * under the terms and conditions of the GNU General Public License,
  13. * version 2 or later, as published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope it will be useful, but WITHOUT
  16. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  17. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  18. * more details.
  19. *
  20. * You should have received a copy of the GNU General Public License along with
  21. * this program. If not, see <http://www.gnu.org/licenses/>.
  22. */
  23. #include "qemu/osdep.h"
  24. #include "qemu/log.h"
  25. #include "hw/irq.h"
  26. #include "hw/registerfields.h"
  27. #include "hw/qdev-properties.h"
  28. #include "hw/char/renesas_sci.h"
  29. #include "migration/vmstate.h"
  30. /* SCI register map */
  31. REG8(SMR, 0)
  32. FIELD(SMR, CKS, 0, 2)
  33. FIELD(SMR, MP, 2, 1)
  34. FIELD(SMR, STOP, 3, 1)
  35. FIELD(SMR, PM, 4, 1)
  36. FIELD(SMR, PE, 5, 1)
  37. FIELD(SMR, CHR, 6, 1)
  38. FIELD(SMR, CM, 7, 1)
  39. REG8(BRR, 1)
  40. REG8(SCR, 2)
  41. FIELD(SCR, CKE, 0, 2)
  42. FIELD(SCR, TEIE, 2, 1)
  43. FIELD(SCR, MPIE, 3, 1)
  44. FIELD(SCR, RE, 4, 1)
  45. FIELD(SCR, TE, 5, 1)
  46. FIELD(SCR, RIE, 6, 1)
  47. FIELD(SCR, TIE, 7, 1)
  48. REG8(TDR, 3)
  49. REG8(SSR, 4)
  50. FIELD(SSR, MPBT, 0, 1)
  51. FIELD(SSR, MPB, 1, 1)
  52. FIELD(SSR, TEND, 2, 1)
  53. FIELD(SSR, ERR, 3, 3)
  54. FIELD(SSR, PER, 3, 1)
  55. FIELD(SSR, FER, 4, 1)
  56. FIELD(SSR, ORER, 5, 1)
  57. FIELD(SSR, RDRF, 6, 1)
  58. FIELD(SSR, TDRE, 7, 1)
  59. REG8(RDR, 5)
  60. REG8(SCMR, 6)
  61. FIELD(SCMR, SMIF, 0, 1)
  62. FIELD(SCMR, SINV, 2, 1)
  63. FIELD(SCMR, SDIR, 3, 1)
  64. FIELD(SCMR, BCP2, 7, 1)
  65. REG8(SEMR, 7)
  66. FIELD(SEMR, ACS0, 0, 1)
  67. FIELD(SEMR, ABCS, 4, 1)
  68. static int can_receive(void *opaque)
  69. {
  70. RSCIState *sci = RSCI(opaque);
  71. if (sci->rx_next > qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
  72. return 0;
  73. } else {
  74. return FIELD_EX8(sci->scr, SCR, RE);
  75. }
  76. }
  77. static void receive(void *opaque, const uint8_t *buf, int size)
  78. {
  79. RSCIState *sci = RSCI(opaque);
  80. sci->rx_next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + sci->trtime;
  81. if (FIELD_EX8(sci->ssr, SSR, RDRF) || size > 1) {
  82. sci->ssr = FIELD_DP8(sci->ssr, SSR, ORER, 1);
  83. if (FIELD_EX8(sci->scr, SCR, RIE)) {
  84. qemu_set_irq(sci->irq[ERI], 1);
  85. }
  86. } else {
  87. sci->rdr = buf[0];
  88. sci->ssr = FIELD_DP8(sci->ssr, SSR, RDRF, 1);
  89. if (FIELD_EX8(sci->scr, SCR, RIE)) {
  90. qemu_irq_pulse(sci->irq[RXI]);
  91. }
  92. }
  93. }
  94. static void send_byte(RSCIState *sci)
  95. {
  96. if (qemu_chr_fe_backend_connected(&sci->chr)) {
  97. qemu_chr_fe_write_all(&sci->chr, &sci->tdr, 1);
  98. }
  99. timer_mod(&sci->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + sci->trtime);
  100. sci->ssr = FIELD_DP8(sci->ssr, SSR, TEND, 0);
  101. sci->ssr = FIELD_DP8(sci->ssr, SSR, TDRE, 1);
  102. qemu_set_irq(sci->irq[TEI], 0);
  103. if (FIELD_EX8(sci->scr, SCR, TIE)) {
  104. qemu_irq_pulse(sci->irq[TXI]);
  105. }
  106. }
  107. static void txend(void *opaque)
  108. {
  109. RSCIState *sci = RSCI(opaque);
  110. if (!FIELD_EX8(sci->ssr, SSR, TDRE)) {
  111. send_byte(sci);
  112. } else {
  113. sci->ssr = FIELD_DP8(sci->ssr, SSR, TEND, 1);
  114. if (FIELD_EX8(sci->scr, SCR, TEIE)) {
  115. qemu_set_irq(sci->irq[TEI], 1);
  116. }
  117. }
  118. }
  119. static void update_trtime(RSCIState *sci)
  120. {
  121. /* char per bits */
  122. sci->trtime = 8 - FIELD_EX8(sci->smr, SMR, CHR);
  123. sci->trtime += FIELD_EX8(sci->smr, SMR, PE);
  124. sci->trtime += FIELD_EX8(sci->smr, SMR, STOP) + 1;
  125. /* x bit transmit time (32 * divrate * brr) / base freq */
  126. sci->trtime *= 32 * sci->brr;
  127. sci->trtime *= 1 << (2 * FIELD_EX8(sci->smr, SMR, CKS));
  128. sci->trtime *= NANOSECONDS_PER_SECOND;
  129. sci->trtime /= sci->input_freq;
  130. }
  131. static bool sci_is_tr_enabled(RSCIState *sci)
  132. {
  133. return FIELD_EX8(sci->scr, SCR, TE) || FIELD_EX8(sci->scr, SCR, RE);
  134. }
  135. static void sci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
  136. {
  137. RSCIState *sci = RSCI(opaque);
  138. switch (offset) {
  139. case A_SMR:
  140. if (!sci_is_tr_enabled(sci)) {
  141. sci->smr = val;
  142. update_trtime(sci);
  143. }
  144. break;
  145. case A_BRR:
  146. if (!sci_is_tr_enabled(sci)) {
  147. sci->brr = val;
  148. update_trtime(sci);
  149. }
  150. break;
  151. case A_SCR:
  152. sci->scr = val;
  153. if (FIELD_EX8(sci->scr, SCR, TE)) {
  154. sci->ssr = FIELD_DP8(sci->ssr, SSR, TDRE, 1);
  155. sci->ssr = FIELD_DP8(sci->ssr, SSR, TEND, 1);
  156. if (FIELD_EX8(sci->scr, SCR, TIE)) {
  157. qemu_irq_pulse(sci->irq[TXI]);
  158. }
  159. }
  160. if (!FIELD_EX8(sci->scr, SCR, TEIE)) {
  161. qemu_set_irq(sci->irq[TEI], 0);
  162. }
  163. if (!FIELD_EX8(sci->scr, SCR, RIE)) {
  164. qemu_set_irq(sci->irq[ERI], 0);
  165. }
  166. break;
  167. case A_TDR:
  168. sci->tdr = val;
  169. if (FIELD_EX8(sci->ssr, SSR, TEND)) {
  170. send_byte(sci);
  171. } else {
  172. sci->ssr = FIELD_DP8(sci->ssr, SSR, TDRE, 0);
  173. }
  174. break;
  175. case A_SSR:
  176. sci->ssr = FIELD_DP8(sci->ssr, SSR, MPBT,
  177. FIELD_EX8(val, SSR, MPBT));
  178. sci->ssr = FIELD_DP8(sci->ssr, SSR, ERR,
  179. FIELD_EX8(val, SSR, ERR) & 0x07);
  180. if (FIELD_EX8(sci->read_ssr, SSR, ERR) &&
  181. FIELD_EX8(sci->ssr, SSR, ERR) == 0) {
  182. qemu_set_irq(sci->irq[ERI], 0);
  183. }
  184. break;
  185. case A_RDR:
  186. qemu_log_mask(LOG_GUEST_ERROR, "reneas_sci: RDR is read only.\n");
  187. break;
  188. case A_SCMR:
  189. sci->scmr = val; break;
  190. case A_SEMR: /* SEMR */
  191. sci->semr = val; break;
  192. default:
  193. qemu_log_mask(LOG_UNIMP, "renesas_sci: Register 0x%" HWADDR_PRIX " "
  194. "not implemented\n",
  195. offset);
  196. }
  197. }
  198. static uint64_t sci_read(void *opaque, hwaddr offset, unsigned size)
  199. {
  200. RSCIState *sci = RSCI(opaque);
  201. switch (offset) {
  202. case A_SMR:
  203. return sci->smr;
  204. case A_BRR:
  205. return sci->brr;
  206. case A_SCR:
  207. return sci->scr;
  208. case A_TDR:
  209. return sci->tdr;
  210. case A_SSR:
  211. sci->read_ssr = sci->ssr;
  212. return sci->ssr;
  213. case A_RDR:
  214. sci->ssr = FIELD_DP8(sci->ssr, SSR, RDRF, 0);
  215. return sci->rdr;
  216. case A_SCMR:
  217. return sci->scmr;
  218. case A_SEMR:
  219. return sci->semr;
  220. default:
  221. qemu_log_mask(LOG_UNIMP, "renesas_sci: Register 0x%" HWADDR_PRIX
  222. " not implemented.\n", offset);
  223. }
  224. return UINT64_MAX;
  225. }
  226. static const MemoryRegionOps sci_ops = {
  227. .write = sci_write,
  228. .read = sci_read,
  229. .endianness = DEVICE_NATIVE_ENDIAN,
  230. .impl.max_access_size = 1,
  231. .valid.max_access_size = 1,
  232. };
  233. static void rsci_reset(DeviceState *dev)
  234. {
  235. RSCIState *sci = RSCI(dev);
  236. sci->smr = sci->scr = 0x00;
  237. sci->brr = 0xff;
  238. sci->tdr = 0xff;
  239. sci->rdr = 0x00;
  240. sci->ssr = 0x84;
  241. sci->scmr = 0x00;
  242. sci->semr = 0x00;
  243. sci->rx_next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  244. }
  245. static void sci_event(void *opaque, QEMUChrEvent event)
  246. {
  247. RSCIState *sci = RSCI(opaque);
  248. if (event == CHR_EVENT_BREAK) {
  249. sci->ssr = FIELD_DP8(sci->ssr, SSR, FER, 1);
  250. if (FIELD_EX8(sci->scr, SCR, RIE)) {
  251. qemu_set_irq(sci->irq[ERI], 1);
  252. }
  253. }
  254. }
  255. static void rsci_realize(DeviceState *dev, Error **errp)
  256. {
  257. RSCIState *sci = RSCI(dev);
  258. if (sci->input_freq == 0) {
  259. qemu_log_mask(LOG_GUEST_ERROR,
  260. "renesas_sci: input-freq property must be set.");
  261. return;
  262. }
  263. qemu_chr_fe_set_handlers(&sci->chr, can_receive, receive,
  264. sci_event, NULL, sci, NULL, true);
  265. }
  266. static void rsci_init(Object *obj)
  267. {
  268. SysBusDevice *d = SYS_BUS_DEVICE(obj);
  269. RSCIState *sci = RSCI(obj);
  270. int i;
  271. memory_region_init_io(&sci->memory, OBJECT(sci), &sci_ops,
  272. sci, "renesas-sci", 0x8);
  273. sysbus_init_mmio(d, &sci->memory);
  274. for (i = 0; i < SCI_NR_IRQ; i++) {
  275. sysbus_init_irq(d, &sci->irq[i]);
  276. }
  277. timer_init_ns(&sci->timer, QEMU_CLOCK_VIRTUAL, txend, sci);
  278. }
  279. static const VMStateDescription vmstate_rsci = {
  280. .name = "renesas-sci",
  281. .version_id = 1,
  282. .minimum_version_id = 1,
  283. .fields = (VMStateField[]) {
  284. VMSTATE_INT64(trtime, RSCIState),
  285. VMSTATE_INT64(rx_next, RSCIState),
  286. VMSTATE_UINT8(smr, RSCIState),
  287. VMSTATE_UINT8(brr, RSCIState),
  288. VMSTATE_UINT8(scr, RSCIState),
  289. VMSTATE_UINT8(tdr, RSCIState),
  290. VMSTATE_UINT8(ssr, RSCIState),
  291. VMSTATE_UINT8(rdr, RSCIState),
  292. VMSTATE_UINT8(scmr, RSCIState),
  293. VMSTATE_UINT8(semr, RSCIState),
  294. VMSTATE_UINT8(read_ssr, RSCIState),
  295. VMSTATE_TIMER(timer, RSCIState),
  296. VMSTATE_END_OF_LIST()
  297. }
  298. };
  299. static Property rsci_properties[] = {
  300. DEFINE_PROP_UINT64("input-freq", RSCIState, input_freq, 0),
  301. DEFINE_PROP_CHR("chardev", RSCIState, chr),
  302. DEFINE_PROP_END_OF_LIST(),
  303. };
  304. static void rsci_class_init(ObjectClass *klass, void *data)
  305. {
  306. DeviceClass *dc = DEVICE_CLASS(klass);
  307. dc->realize = rsci_realize;
  308. dc->vmsd = &vmstate_rsci;
  309. dc->reset = rsci_reset;
  310. device_class_set_props(dc, rsci_properties);
  311. }
  312. static const TypeInfo rsci_info = {
  313. .name = TYPE_RENESAS_SCI,
  314. .parent = TYPE_SYS_BUS_DEVICE,
  315. .instance_size = sizeof(RSCIState),
  316. .instance_init = rsci_init,
  317. .class_init = rsci_class_init,
  318. };
  319. static void rsci_register_types(void)
  320. {
  321. type_register_static(&rsci_info);
  322. }
  323. type_init(rsci_register_types)