cadence_uart.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. /*
  2. * Device model for Cadence UART
  3. *
  4. * Reference: Xilinx Zynq 7000 reference manual
  5. * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
  6. * - Chapter 19 UART Controller
  7. * - Appendix B for Register details
  8. *
  9. * Copyright (c) 2010 Xilinx Inc.
  10. * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
  11. * Copyright (c) 2012 PetaLogix Pty Ltd.
  12. * Written by Haibing Ma
  13. * M.Habib
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. * You should have received a copy of the GNU General Public License along
  21. * with this program; if not, see <http://www.gnu.org/licenses/>.
  22. */
  23. #include "qemu/osdep.h"
  24. #include "hw/sysbus.h"
  25. #include "migration/vmstate.h"
  26. #include "chardev/char-fe.h"
  27. #include "chardev/char-serial.h"
  28. #include "qemu/timer.h"
  29. #include "qemu/log.h"
  30. #include "qemu/module.h"
  31. #include "hw/char/cadence_uart.h"
  32. #include "hw/irq.h"
  33. #include "hw/qdev-clock.h"
  34. #include "trace.h"
  35. #ifdef CADENCE_UART_ERR_DEBUG
  36. #define DB_PRINT(...) do { \
  37. fprintf(stderr, ": %s: ", __func__); \
  38. fprintf(stderr, ## __VA_ARGS__); \
  39. } while (0)
  40. #else
  41. #define DB_PRINT(...)
  42. #endif
  43. #define UART_SR_INTR_RTRIG 0x00000001
  44. #define UART_SR_INTR_REMPTY 0x00000002
  45. #define UART_SR_INTR_RFUL 0x00000004
  46. #define UART_SR_INTR_TEMPTY 0x00000008
  47. #define UART_SR_INTR_TFUL 0x00000010
  48. /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  49. #define UART_SR_TTRIG 0x00002000
  50. #define UART_INTR_TTRIG 0x00000400
  51. /* bits fields in CSR that correlate to CISR. If any of these bits are set in
  52. * SR, then the same bit in CISR is set high too */
  53. #define UART_SR_TO_CISR_MASK 0x0000001F
  54. #define UART_INTR_ROVR 0x00000020
  55. #define UART_INTR_FRAME 0x00000040
  56. #define UART_INTR_PARE 0x00000080
  57. #define UART_INTR_TIMEOUT 0x00000100
  58. #define UART_INTR_DMSI 0x00000200
  59. #define UART_INTR_TOVR 0x00001000
  60. #define UART_SR_RACTIVE 0x00000400
  61. #define UART_SR_TACTIVE 0x00000800
  62. #define UART_SR_FDELT 0x00001000
  63. #define UART_CR_RXRST 0x00000001
  64. #define UART_CR_TXRST 0x00000002
  65. #define UART_CR_RX_EN 0x00000004
  66. #define UART_CR_RX_DIS 0x00000008
  67. #define UART_CR_TX_EN 0x00000010
  68. #define UART_CR_TX_DIS 0x00000020
  69. #define UART_CR_RST_TO 0x00000040
  70. #define UART_CR_STARTBRK 0x00000080
  71. #define UART_CR_STOPBRK 0x00000100
  72. #define UART_MR_CLKS 0x00000001
  73. #define UART_MR_CHRL 0x00000006
  74. #define UART_MR_CHRL_SH 1
  75. #define UART_MR_PAR 0x00000038
  76. #define UART_MR_PAR_SH 3
  77. #define UART_MR_NBSTOP 0x000000C0
  78. #define UART_MR_NBSTOP_SH 6
  79. #define UART_MR_CHMODE 0x00000300
  80. #define UART_MR_CHMODE_SH 8
  81. #define UART_MR_UCLKEN 0x00000400
  82. #define UART_MR_IRMODE 0x00000800
  83. #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
  84. #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
  85. #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
  86. #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
  87. #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
  88. #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
  89. #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
  90. #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
  91. #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
  92. #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
  93. #define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
  94. #define R_CR (0x00/4)
  95. #define R_MR (0x04/4)
  96. #define R_IER (0x08/4)
  97. #define R_IDR (0x0C/4)
  98. #define R_IMR (0x10/4)
  99. #define R_CISR (0x14/4)
  100. #define R_BRGR (0x18/4)
  101. #define R_RTOR (0x1C/4)
  102. #define R_RTRIG (0x20/4)
  103. #define R_MCR (0x24/4)
  104. #define R_MSR (0x28/4)
  105. #define R_SR (0x2C/4)
  106. #define R_TX_RX (0x30/4)
  107. #define R_BDIV (0x34/4)
  108. #define R_FDEL (0x38/4)
  109. #define R_PMIN (0x3C/4)
  110. #define R_PWID (0x40/4)
  111. #define R_TTRIG (0x44/4)
  112. static void uart_update_status(CadenceUARTState *s)
  113. {
  114. s->r[R_SR] = 0;
  115. s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
  116. : 0;
  117. s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
  118. s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
  119. s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
  120. : 0;
  121. s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
  122. s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
  123. s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
  124. s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
  125. qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
  126. }
  127. static void fifo_trigger_update(void *opaque)
  128. {
  129. CadenceUARTState *s = opaque;
  130. if (s->r[R_RTOR]) {
  131. s->r[R_CISR] |= UART_INTR_TIMEOUT;
  132. uart_update_status(s);
  133. }
  134. }
  135. static void uart_rx_reset(CadenceUARTState *s)
  136. {
  137. s->rx_wpos = 0;
  138. s->rx_count = 0;
  139. qemu_chr_fe_accept_input(&s->chr);
  140. }
  141. static void uart_tx_reset(CadenceUARTState *s)
  142. {
  143. s->tx_count = 0;
  144. }
  145. static void uart_send_breaks(CadenceUARTState *s)
  146. {
  147. int break_enabled = 1;
  148. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  149. &break_enabled);
  150. }
  151. static void uart_parameters_setup(CadenceUARTState *s)
  152. {
  153. QEMUSerialSetParams ssp;
  154. unsigned int baud_rate, packet_size, input_clk;
  155. input_clk = clock_get_hz(s->refclk);
  156. baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
  157. baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
  158. trace_cadence_uart_baudrate(baud_rate);
  159. ssp.speed = baud_rate;
  160. packet_size = 1;
  161. switch (s->r[R_MR] & UART_MR_PAR) {
  162. case UART_PARITY_EVEN:
  163. ssp.parity = 'E';
  164. packet_size++;
  165. break;
  166. case UART_PARITY_ODD:
  167. ssp.parity = 'O';
  168. packet_size++;
  169. break;
  170. default:
  171. ssp.parity = 'N';
  172. break;
  173. }
  174. switch (s->r[R_MR] & UART_MR_CHRL) {
  175. case UART_DATA_BITS_6:
  176. ssp.data_bits = 6;
  177. break;
  178. case UART_DATA_BITS_7:
  179. ssp.data_bits = 7;
  180. break;
  181. default:
  182. ssp.data_bits = 8;
  183. break;
  184. }
  185. switch (s->r[R_MR] & UART_MR_NBSTOP) {
  186. case UART_STOP_BITS_1:
  187. ssp.stop_bits = 1;
  188. break;
  189. default:
  190. ssp.stop_bits = 2;
  191. break;
  192. }
  193. packet_size += ssp.data_bits + ssp.stop_bits;
  194. if (ssp.speed == 0) {
  195. /*
  196. * Avoid division-by-zero below.
  197. * TODO: find something better
  198. */
  199. ssp.speed = 1;
  200. }
  201. s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
  202. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  203. }
  204. static int uart_can_receive(void *opaque)
  205. {
  206. CadenceUARTState *s = opaque;
  207. int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
  208. uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
  209. if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
  210. ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
  211. }
  212. if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
  213. ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
  214. }
  215. return ret;
  216. }
  217. static void uart_ctrl_update(CadenceUARTState *s)
  218. {
  219. if (s->r[R_CR] & UART_CR_TXRST) {
  220. uart_tx_reset(s);
  221. }
  222. if (s->r[R_CR] & UART_CR_RXRST) {
  223. uart_rx_reset(s);
  224. }
  225. s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
  226. if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
  227. uart_send_breaks(s);
  228. }
  229. }
  230. static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
  231. {
  232. CadenceUARTState *s = opaque;
  233. uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  234. int i;
  235. if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
  236. return;
  237. }
  238. if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
  239. s->r[R_CISR] |= UART_INTR_ROVR;
  240. } else {
  241. for (i = 0; i < size; i++) {
  242. s->rx_fifo[s->rx_wpos] = buf[i];
  243. s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
  244. s->rx_count++;
  245. }
  246. timer_mod(s->fifo_trigger_handle, new_rx_time +
  247. (s->char_tx_time * 4));
  248. }
  249. uart_update_status(s);
  250. }
  251. static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
  252. void *opaque)
  253. {
  254. CadenceUARTState *s = opaque;
  255. int ret;
  256. /* instant drain the fifo when there's no back-end */
  257. if (!qemu_chr_fe_backend_connected(&s->chr)) {
  258. s->tx_count = 0;
  259. return FALSE;
  260. }
  261. if (!s->tx_count) {
  262. return FALSE;
  263. }
  264. ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
  265. if (ret >= 0) {
  266. s->tx_count -= ret;
  267. memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
  268. }
  269. if (s->tx_count) {
  270. guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  271. cadence_uart_xmit, s);
  272. if (!r) {
  273. s->tx_count = 0;
  274. return FALSE;
  275. }
  276. }
  277. uart_update_status(s);
  278. return FALSE;
  279. }
  280. static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
  281. int size)
  282. {
  283. if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
  284. return;
  285. }
  286. if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
  287. size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
  288. /*
  289. * This can only be a guest error via a bad tx fifo register push,
  290. * as can_receive() should stop remote loop and echo modes ever getting
  291. * us to here.
  292. */
  293. qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
  294. s->r[R_CISR] |= UART_INTR_ROVR;
  295. }
  296. memcpy(s->tx_fifo + s->tx_count, buf, size);
  297. s->tx_count += size;
  298. cadence_uart_xmit(NULL, G_IO_OUT, s);
  299. }
  300. static void uart_receive(void *opaque, const uint8_t *buf, int size)
  301. {
  302. CadenceUARTState *s = opaque;
  303. uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
  304. /* ignore characters when unclocked or in reset */
  305. if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
  306. return;
  307. }
  308. if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
  309. uart_write_rx_fifo(opaque, buf, size);
  310. }
  311. if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
  312. uart_write_tx_fifo(s, buf, size);
  313. }
  314. }
  315. static void uart_event(void *opaque, QEMUChrEvent event)
  316. {
  317. CadenceUARTState *s = opaque;
  318. uint8_t buf = '\0';
  319. /* ignore characters when unclocked or in reset */
  320. if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
  321. return;
  322. }
  323. if (event == CHR_EVENT_BREAK) {
  324. uart_write_rx_fifo(opaque, &buf, 1);
  325. }
  326. uart_update_status(s);
  327. }
  328. static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
  329. {
  330. if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
  331. return;
  332. }
  333. if (s->rx_count) {
  334. uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
  335. s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
  336. *c = s->rx_fifo[rx_rpos];
  337. s->rx_count--;
  338. qemu_chr_fe_accept_input(&s->chr);
  339. } else {
  340. *c = 0;
  341. }
  342. uart_update_status(s);
  343. }
  344. static void uart_write(void *opaque, hwaddr offset,
  345. uint64_t value, unsigned size)
  346. {
  347. CadenceUARTState *s = opaque;
  348. DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
  349. offset >>= 2;
  350. if (offset >= CADENCE_UART_R_MAX) {
  351. return;
  352. }
  353. switch (offset) {
  354. case R_IER: /* ier (wts imr) */
  355. s->r[R_IMR] |= value;
  356. break;
  357. case R_IDR: /* idr (wtc imr) */
  358. s->r[R_IMR] &= ~value;
  359. break;
  360. case R_IMR: /* imr (read only) */
  361. break;
  362. case R_CISR: /* cisr (wtc) */
  363. s->r[R_CISR] &= ~value;
  364. break;
  365. case R_TX_RX: /* UARTDR */
  366. switch (s->r[R_MR] & UART_MR_CHMODE) {
  367. case NORMAL_MODE:
  368. uart_write_tx_fifo(s, (uint8_t *) &value, 1);
  369. break;
  370. case LOCAL_LOOPBACK:
  371. uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
  372. break;
  373. }
  374. break;
  375. case R_BRGR: /* Baud rate generator */
  376. if (value >= 0x01) {
  377. s->r[offset] = value & 0xFFFF;
  378. }
  379. break;
  380. case R_BDIV: /* Baud rate divider */
  381. if (value >= 0x04) {
  382. s->r[offset] = value & 0xFF;
  383. }
  384. break;
  385. default:
  386. s->r[offset] = value;
  387. }
  388. switch (offset) {
  389. case R_CR:
  390. uart_ctrl_update(s);
  391. break;
  392. case R_MR:
  393. uart_parameters_setup(s);
  394. break;
  395. }
  396. uart_update_status(s);
  397. }
  398. static uint64_t uart_read(void *opaque, hwaddr offset,
  399. unsigned size)
  400. {
  401. CadenceUARTState *s = opaque;
  402. uint32_t c = 0;
  403. offset >>= 2;
  404. if (offset >= CADENCE_UART_R_MAX) {
  405. c = 0;
  406. } else if (offset == R_TX_RX) {
  407. uart_read_rx_fifo(s, &c);
  408. } else {
  409. c = s->r[offset];
  410. }
  411. DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
  412. return c;
  413. }
  414. static const MemoryRegionOps uart_ops = {
  415. .read = uart_read,
  416. .write = uart_write,
  417. .endianness = DEVICE_NATIVE_ENDIAN,
  418. };
  419. static void cadence_uart_reset_init(Object *obj, ResetType type)
  420. {
  421. CadenceUARTState *s = CADENCE_UART(obj);
  422. s->r[R_CR] = 0x00000128;
  423. s->r[R_IMR] = 0;
  424. s->r[R_CISR] = 0;
  425. s->r[R_RTRIG] = 0x00000020;
  426. s->r[R_BRGR] = 0x0000028B;
  427. s->r[R_BDIV] = 0x0000000F;
  428. s->r[R_TTRIG] = 0x00000020;
  429. }
  430. static void cadence_uart_reset_hold(Object *obj)
  431. {
  432. CadenceUARTState *s = CADENCE_UART(obj);
  433. uart_rx_reset(s);
  434. uart_tx_reset(s);
  435. uart_update_status(s);
  436. }
  437. static void cadence_uart_realize(DeviceState *dev, Error **errp)
  438. {
  439. CadenceUARTState *s = CADENCE_UART(dev);
  440. s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
  441. fifo_trigger_update, s);
  442. qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
  443. uart_event, NULL, s, NULL, true);
  444. }
  445. static void cadence_uart_refclk_update(void *opaque)
  446. {
  447. CadenceUARTState *s = opaque;
  448. /* recompute uart's speed on clock change */
  449. uart_parameters_setup(s);
  450. }
  451. static void cadence_uart_init(Object *obj)
  452. {
  453. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  454. CadenceUARTState *s = CADENCE_UART(obj);
  455. memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
  456. sysbus_init_mmio(sbd, &s->iomem);
  457. sysbus_init_irq(sbd, &s->irq);
  458. s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
  459. cadence_uart_refclk_update, s);
  460. /* initialize the frequency in case the clock remains unconnected */
  461. clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
  462. s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
  463. }
  464. static int cadence_uart_pre_load(void *opaque)
  465. {
  466. CadenceUARTState *s = opaque;
  467. /* the frequency will be overriden if the refclk field is present */
  468. clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
  469. return 0;
  470. }
  471. static int cadence_uart_post_load(void *opaque, int version_id)
  472. {
  473. CadenceUARTState *s = opaque;
  474. /* Ensure these two aren't invalid numbers */
  475. if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
  476. s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
  477. /* Value is invalid, abort */
  478. return 1;
  479. }
  480. uart_parameters_setup(s);
  481. uart_update_status(s);
  482. return 0;
  483. }
  484. static const VMStateDescription vmstate_cadence_uart = {
  485. .name = "cadence_uart",
  486. .version_id = 3,
  487. .minimum_version_id = 2,
  488. .pre_load = cadence_uart_pre_load,
  489. .post_load = cadence_uart_post_load,
  490. .fields = (VMStateField[]) {
  491. VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
  492. VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
  493. CADENCE_UART_RX_FIFO_SIZE),
  494. VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
  495. CADENCE_UART_TX_FIFO_SIZE),
  496. VMSTATE_UINT32(rx_count, CadenceUARTState),
  497. VMSTATE_UINT32(tx_count, CadenceUARTState),
  498. VMSTATE_UINT32(rx_wpos, CadenceUARTState),
  499. VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
  500. VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
  501. VMSTATE_END_OF_LIST()
  502. },
  503. };
  504. static Property cadence_uart_properties[] = {
  505. DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
  506. DEFINE_PROP_END_OF_LIST(),
  507. };
  508. static void cadence_uart_class_init(ObjectClass *klass, void *data)
  509. {
  510. DeviceClass *dc = DEVICE_CLASS(klass);
  511. ResettableClass *rc = RESETTABLE_CLASS(klass);
  512. dc->realize = cadence_uart_realize;
  513. dc->vmsd = &vmstate_cadence_uart;
  514. rc->phases.enter = cadence_uart_reset_init;
  515. rc->phases.hold = cadence_uart_reset_hold;
  516. device_class_set_props(dc, cadence_uart_properties);
  517. }
  518. static const TypeInfo cadence_uart_info = {
  519. .name = TYPE_CADENCE_UART,
  520. .parent = TYPE_SYS_BUS_DEVICE,
  521. .instance_size = sizeof(CadenceUARTState),
  522. .instance_init = cadence_uart_init,
  523. .class_init = cadence_uart_class_init,
  524. };
  525. static void cadence_uart_register_types(void)
  526. {
  527. type_register_static(&cadence_uart_info);
  528. }
  529. type_init(cadence_uart_register_types)