xlnx-versal-virt.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. /*
  2. * Xilinx Versal Virtual board.
  3. *
  4. * Copyright (c) 2018 Xilinx Inc.
  5. * Written by Edgar E. Iglesias
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 or
  9. * (at your option) any later version.
  10. */
  11. #include "qemu/osdep.h"
  12. #include "qemu/log.h"
  13. #include "qemu/error-report.h"
  14. #include "qapi/error.h"
  15. #include "sysemu/device_tree.h"
  16. #include "exec/address-spaces.h"
  17. #include "hw/boards.h"
  18. #include "hw/sysbus.h"
  19. #include "hw/arm/sysbus-fdt.h"
  20. #include "hw/arm/fdt.h"
  21. #include "cpu.h"
  22. #include "hw/qdev-properties.h"
  23. #include "hw/arm/xlnx-versal.h"
  24. #define TYPE_XLNX_VERSAL_VIRT_MACHINE MACHINE_TYPE_NAME("xlnx-versal-virt")
  25. #define XLNX_VERSAL_VIRT_MACHINE(obj) \
  26. OBJECT_CHECK(VersalVirt, (obj), TYPE_XLNX_VERSAL_VIRT_MACHINE)
  27. typedef struct VersalVirt {
  28. MachineState parent_obj;
  29. Versal soc;
  30. void *fdt;
  31. int fdt_size;
  32. struct {
  33. uint32_t gic;
  34. uint32_t ethernet_phy[2];
  35. uint32_t clk_125Mhz;
  36. uint32_t clk_25Mhz;
  37. } phandle;
  38. struct arm_boot_info binfo;
  39. struct {
  40. bool secure;
  41. } cfg;
  42. } VersalVirt;
  43. static void fdt_create(VersalVirt *s)
  44. {
  45. MachineClass *mc = MACHINE_GET_CLASS(s);
  46. int i;
  47. s->fdt = create_device_tree(&s->fdt_size);
  48. if (!s->fdt) {
  49. error_report("create_device_tree() failed");
  50. exit(1);
  51. }
  52. /* Allocate all phandles. */
  53. s->phandle.gic = qemu_fdt_alloc_phandle(s->fdt);
  54. for (i = 0; i < ARRAY_SIZE(s->phandle.ethernet_phy); i++) {
  55. s->phandle.ethernet_phy[i] = qemu_fdt_alloc_phandle(s->fdt);
  56. }
  57. s->phandle.clk_25Mhz = qemu_fdt_alloc_phandle(s->fdt);
  58. s->phandle.clk_125Mhz = qemu_fdt_alloc_phandle(s->fdt);
  59. /* Create /chosen node for load_dtb. */
  60. qemu_fdt_add_subnode(s->fdt, "/chosen");
  61. /* Header */
  62. qemu_fdt_setprop_cell(s->fdt, "/", "interrupt-parent", s->phandle.gic);
  63. qemu_fdt_setprop_cell(s->fdt, "/", "#size-cells", 0x2);
  64. qemu_fdt_setprop_cell(s->fdt, "/", "#address-cells", 0x2);
  65. qemu_fdt_setprop_string(s->fdt, "/", "model", mc->desc);
  66. qemu_fdt_setprop_string(s->fdt, "/", "compatible", "xlnx-versal-virt");
  67. }
  68. static void fdt_add_clk_node(VersalVirt *s, const char *name,
  69. unsigned int freq_hz, uint32_t phandle)
  70. {
  71. qemu_fdt_add_subnode(s->fdt, name);
  72. qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
  73. qemu_fdt_setprop_cell(s->fdt, name, "clock-frequency", freq_hz);
  74. qemu_fdt_setprop_cell(s->fdt, name, "#clock-cells", 0x0);
  75. qemu_fdt_setprop_string(s->fdt, name, "compatible", "fixed-clock");
  76. qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
  77. }
  78. static void fdt_add_cpu_nodes(VersalVirt *s, uint32_t psci_conduit)
  79. {
  80. int i;
  81. qemu_fdt_add_subnode(s->fdt, "/cpus");
  82. qemu_fdt_setprop_cell(s->fdt, "/cpus", "#size-cells", 0x0);
  83. qemu_fdt_setprop_cell(s->fdt, "/cpus", "#address-cells", 1);
  84. for (i = XLNX_VERSAL_NR_ACPUS - 1; i >= 0; i--) {
  85. char *name = g_strdup_printf("/cpus/cpu@%d", i);
  86. ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
  87. qemu_fdt_add_subnode(s->fdt, name);
  88. qemu_fdt_setprop_cell(s->fdt, name, "reg", armcpu->mp_affinity);
  89. if (psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
  90. qemu_fdt_setprop_string(s->fdt, name, "enable-method", "psci");
  91. }
  92. qemu_fdt_setprop_string(s->fdt, name, "device_type", "cpu");
  93. qemu_fdt_setprop_string(s->fdt, name, "compatible",
  94. armcpu->dtb_compatible);
  95. g_free(name);
  96. }
  97. }
  98. static void fdt_add_gic_nodes(VersalVirt *s)
  99. {
  100. char *nodename;
  101. nodename = g_strdup_printf("/gic@%x", MM_GIC_APU_DIST_MAIN);
  102. qemu_fdt_add_subnode(s->fdt, nodename);
  103. qemu_fdt_setprop_cell(s->fdt, nodename, "phandle", s->phandle.gic);
  104. qemu_fdt_setprop_cells(s->fdt, nodename, "interrupts",
  105. GIC_FDT_IRQ_TYPE_PPI, VERSAL_GIC_MAINT_IRQ,
  106. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  107. qemu_fdt_setprop(s->fdt, nodename, "interrupt-controller", NULL, 0);
  108. qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg",
  109. 2, MM_GIC_APU_DIST_MAIN,
  110. 2, MM_GIC_APU_DIST_MAIN_SIZE,
  111. 2, MM_GIC_APU_REDIST_0,
  112. 2, MM_GIC_APU_REDIST_0_SIZE);
  113. qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3);
  114. qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3");
  115. g_free(nodename);
  116. }
  117. static void fdt_add_timer_nodes(VersalVirt *s)
  118. {
  119. const char compat[] = "arm,armv8-timer";
  120. uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
  121. qemu_fdt_add_subnode(s->fdt, "/timer");
  122. qemu_fdt_setprop_cells(s->fdt, "/timer", "interrupts",
  123. GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_S_EL1_IRQ, irqflags,
  124. GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL1_IRQ, irqflags,
  125. GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_VIRT_IRQ, irqflags,
  126. GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL2_IRQ, irqflags);
  127. qemu_fdt_setprop(s->fdt, "/timer", "compatible",
  128. compat, sizeof(compat));
  129. }
  130. static void fdt_add_uart_nodes(VersalVirt *s)
  131. {
  132. uint64_t addrs[] = { MM_UART1, MM_UART0 };
  133. unsigned int irqs[] = { VERSAL_UART1_IRQ_0, VERSAL_UART0_IRQ_0 };
  134. const char compat[] = "arm,pl011\0arm,sbsa-uart";
  135. const char clocknames[] = "uartclk\0apb_pclk";
  136. int i;
  137. for (i = 0; i < ARRAY_SIZE(addrs); i++) {
  138. char *name = g_strdup_printf("/uart@%" PRIx64, addrs[i]);
  139. qemu_fdt_add_subnode(s->fdt, name);
  140. qemu_fdt_setprop_cell(s->fdt, name, "current-speed", 115200);
  141. qemu_fdt_setprop_cells(s->fdt, name, "clocks",
  142. s->phandle.clk_125Mhz, s->phandle.clk_125Mhz);
  143. qemu_fdt_setprop(s->fdt, name, "clock-names",
  144. clocknames, sizeof(clocknames));
  145. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  146. GIC_FDT_IRQ_TYPE_SPI, irqs[i],
  147. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  148. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  149. 2, addrs[i], 2, 0x1000);
  150. qemu_fdt_setprop(s->fdt, name, "compatible",
  151. compat, sizeof(compat));
  152. qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
  153. if (addrs[i] == MM_UART0) {
  154. /* Select UART0. */
  155. qemu_fdt_setprop_string(s->fdt, "/chosen", "stdout-path", name);
  156. }
  157. g_free(name);
  158. }
  159. }
  160. static void fdt_add_fixed_link_nodes(VersalVirt *s, char *gemname,
  161. uint32_t phandle)
  162. {
  163. char *name = g_strdup_printf("%s/fixed-link", gemname);
  164. qemu_fdt_add_subnode(s->fdt, name);
  165. qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
  166. qemu_fdt_setprop(s->fdt, name, "full-duplex", NULL, 0);
  167. qemu_fdt_setprop_cell(s->fdt, name, "speed", 1000);
  168. g_free(name);
  169. }
  170. static void fdt_add_gem_nodes(VersalVirt *s)
  171. {
  172. uint64_t addrs[] = { MM_GEM1, MM_GEM0 };
  173. unsigned int irqs[] = { VERSAL_GEM1_IRQ_0, VERSAL_GEM0_IRQ_0 };
  174. const char clocknames[] = "pclk\0hclk\0tx_clk\0rx_clk";
  175. const char compat_gem[] = "cdns,zynqmp-gem\0cdns,gem";
  176. int i;
  177. for (i = 0; i < ARRAY_SIZE(addrs); i++) {
  178. char *name = g_strdup_printf("/ethernet@%" PRIx64, addrs[i]);
  179. qemu_fdt_add_subnode(s->fdt, name);
  180. fdt_add_fixed_link_nodes(s, name, s->phandle.ethernet_phy[i]);
  181. qemu_fdt_setprop_string(s->fdt, name, "phy-mode", "rgmii-id");
  182. qemu_fdt_setprop_cell(s->fdt, name, "phy-handle",
  183. s->phandle.ethernet_phy[i]);
  184. qemu_fdt_setprop_cells(s->fdt, name, "clocks",
  185. s->phandle.clk_25Mhz, s->phandle.clk_25Mhz,
  186. s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
  187. qemu_fdt_setprop(s->fdt, name, "clock-names",
  188. clocknames, sizeof(clocknames));
  189. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  190. GIC_FDT_IRQ_TYPE_SPI, irqs[i],
  191. GIC_FDT_IRQ_FLAGS_LEVEL_HI,
  192. GIC_FDT_IRQ_TYPE_SPI, irqs[i],
  193. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  194. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  195. 2, addrs[i], 2, 0x1000);
  196. qemu_fdt_setprop(s->fdt, name, "compatible",
  197. compat_gem, sizeof(compat_gem));
  198. qemu_fdt_setprop_cell(s->fdt, name, "#address-cells", 1);
  199. qemu_fdt_setprop_cell(s->fdt, name, "#size-cells", 0);
  200. g_free(name);
  201. }
  202. }
  203. static void fdt_add_zdma_nodes(VersalVirt *s)
  204. {
  205. const char clocknames[] = "clk_main\0clk_apb";
  206. const char compat[] = "xlnx,zynqmp-dma-1.0";
  207. int i;
  208. for (i = XLNX_VERSAL_NR_ADMAS - 1; i >= 0; i--) {
  209. uint64_t addr = MM_ADMA_CH0 + MM_ADMA_CH0_SIZE * i;
  210. char *name = g_strdup_printf("/dma@%" PRIx64, addr);
  211. qemu_fdt_add_subnode(s->fdt, name);
  212. qemu_fdt_setprop_cell(s->fdt, name, "xlnx,bus-width", 64);
  213. qemu_fdt_setprop_cells(s->fdt, name, "clocks",
  214. s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
  215. qemu_fdt_setprop(s->fdt, name, "clock-names",
  216. clocknames, sizeof(clocknames));
  217. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  218. GIC_FDT_IRQ_TYPE_SPI, VERSAL_ADMA_IRQ_0 + i,
  219. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  220. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  221. 2, addr, 2, 0x1000);
  222. qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat));
  223. g_free(name);
  224. }
  225. }
  226. static void fdt_add_sd_nodes(VersalVirt *s)
  227. {
  228. const char clocknames[] = "clk_xin\0clk_ahb";
  229. const char compat[] = "arasan,sdhci-8.9a";
  230. int i;
  231. for (i = ARRAY_SIZE(s->soc.pmc.iou.sd) - 1; i >= 0; i--) {
  232. uint64_t addr = MM_PMC_SD0 + MM_PMC_SD0_SIZE * i;
  233. char *name = g_strdup_printf("/sdhci@%" PRIx64, addr);
  234. qemu_fdt_add_subnode(s->fdt, name);
  235. qemu_fdt_setprop_cells(s->fdt, name, "clocks",
  236. s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
  237. qemu_fdt_setprop(s->fdt, name, "clock-names",
  238. clocknames, sizeof(clocknames));
  239. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  240. GIC_FDT_IRQ_TYPE_SPI, VERSAL_SD0_IRQ_0 + i * 2,
  241. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  242. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  243. 2, addr, 2, MM_PMC_SD0_SIZE);
  244. qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat));
  245. g_free(name);
  246. }
  247. }
  248. static void fdt_add_rtc_node(VersalVirt *s)
  249. {
  250. const char compat[] = "xlnx,zynqmp-rtc";
  251. const char interrupt_names[] = "alarm\0sec";
  252. char *name = g_strdup_printf("/rtc@%x", MM_PMC_RTC);
  253. qemu_fdt_add_subnode(s->fdt, name);
  254. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  255. GIC_FDT_IRQ_TYPE_SPI, VERSAL_RTC_ALARM_IRQ,
  256. GIC_FDT_IRQ_FLAGS_LEVEL_HI,
  257. GIC_FDT_IRQ_TYPE_SPI, VERSAL_RTC_SECONDS_IRQ,
  258. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  259. qemu_fdt_setprop(s->fdt, name, "interrupt-names",
  260. interrupt_names, sizeof(interrupt_names));
  261. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  262. 2, MM_PMC_RTC, 2, MM_PMC_RTC_SIZE);
  263. qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat));
  264. g_free(name);
  265. }
  266. static void fdt_nop_memory_nodes(void *fdt, Error **errp)
  267. {
  268. Error *err = NULL;
  269. char **node_path;
  270. int n = 0;
  271. node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
  272. if (err) {
  273. error_propagate(errp, err);
  274. return;
  275. }
  276. while (node_path[n]) {
  277. if (g_str_has_prefix(node_path[n], "/memory")) {
  278. qemu_fdt_nop_node(fdt, node_path[n]);
  279. }
  280. n++;
  281. }
  282. g_strfreev(node_path);
  283. }
  284. static void fdt_add_memory_nodes(VersalVirt *s, void *fdt, uint64_t ram_size)
  285. {
  286. /* Describes the various split DDR access regions. */
  287. static const struct {
  288. uint64_t base;
  289. uint64_t size;
  290. } addr_ranges[] = {
  291. { MM_TOP_DDR, MM_TOP_DDR_SIZE },
  292. { MM_TOP_DDR_2, MM_TOP_DDR_2_SIZE },
  293. { MM_TOP_DDR_3, MM_TOP_DDR_3_SIZE },
  294. { MM_TOP_DDR_4, MM_TOP_DDR_4_SIZE }
  295. };
  296. uint64_t mem_reg_prop[8] = {0};
  297. uint64_t size = ram_size;
  298. Error *err = NULL;
  299. char *name;
  300. int i;
  301. fdt_nop_memory_nodes(fdt, &err);
  302. if (err) {
  303. error_report_err(err);
  304. return;
  305. }
  306. name = g_strdup_printf("/memory@%x", MM_TOP_DDR);
  307. for (i = 0; i < ARRAY_SIZE(addr_ranges) && size; i++) {
  308. uint64_t mapsize;
  309. mapsize = size < addr_ranges[i].size ? size : addr_ranges[i].size;
  310. mem_reg_prop[i * 2] = addr_ranges[i].base;
  311. mem_reg_prop[i * 2 + 1] = mapsize;
  312. size -= mapsize;
  313. }
  314. qemu_fdt_add_subnode(fdt, name);
  315. qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
  316. switch (i) {
  317. case 1:
  318. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  319. 2, mem_reg_prop[0],
  320. 2, mem_reg_prop[1]);
  321. break;
  322. case 2:
  323. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  324. 2, mem_reg_prop[0],
  325. 2, mem_reg_prop[1],
  326. 2, mem_reg_prop[2],
  327. 2, mem_reg_prop[3]);
  328. break;
  329. case 3:
  330. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  331. 2, mem_reg_prop[0],
  332. 2, mem_reg_prop[1],
  333. 2, mem_reg_prop[2],
  334. 2, mem_reg_prop[3],
  335. 2, mem_reg_prop[4],
  336. 2, mem_reg_prop[5]);
  337. break;
  338. case 4:
  339. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  340. 2, mem_reg_prop[0],
  341. 2, mem_reg_prop[1],
  342. 2, mem_reg_prop[2],
  343. 2, mem_reg_prop[3],
  344. 2, mem_reg_prop[4],
  345. 2, mem_reg_prop[5],
  346. 2, mem_reg_prop[6],
  347. 2, mem_reg_prop[7]);
  348. break;
  349. default:
  350. g_assert_not_reached();
  351. }
  352. g_free(name);
  353. }
  354. static void versal_virt_modify_dtb(const struct arm_boot_info *binfo,
  355. void *fdt)
  356. {
  357. VersalVirt *s = container_of(binfo, VersalVirt, binfo);
  358. fdt_add_memory_nodes(s, fdt, binfo->ram_size);
  359. }
  360. static void *versal_virt_get_dtb(const struct arm_boot_info *binfo,
  361. int *fdt_size)
  362. {
  363. const VersalVirt *board = container_of(binfo, VersalVirt, binfo);
  364. *fdt_size = board->fdt_size;
  365. return board->fdt;
  366. }
  367. #define NUM_VIRTIO_TRANSPORT 8
  368. static void create_virtio_regions(VersalVirt *s)
  369. {
  370. int virtio_mmio_size = 0x200;
  371. int i;
  372. for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
  373. char *name = g_strdup_printf("virtio%d", i);
  374. hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
  375. int irq = VERSAL_RSVD_IRQ_FIRST + i;
  376. MemoryRegion *mr;
  377. DeviceState *dev;
  378. qemu_irq pic_irq;
  379. pic_irq = qdev_get_gpio_in(DEVICE(&s->soc.fpd.apu.gic), irq);
  380. dev = qdev_new("virtio-mmio");
  381. object_property_add_child(OBJECT(&s->soc), name, OBJECT(dev));
  382. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  383. sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq);
  384. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
  385. memory_region_add_subregion(&s->soc.mr_ps, base, mr);
  386. g_free(name);
  387. }
  388. for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
  389. hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
  390. int irq = VERSAL_RSVD_IRQ_FIRST + i;
  391. char *name = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
  392. qemu_fdt_add_subnode(s->fdt, name);
  393. qemu_fdt_setprop(s->fdt, name, "dma-coherent", NULL, 0);
  394. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  395. GIC_FDT_IRQ_TYPE_SPI, irq,
  396. GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
  397. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  398. 2, base, 2, virtio_mmio_size);
  399. qemu_fdt_setprop_string(s->fdt, name, "compatible", "virtio,mmio");
  400. g_free(name);
  401. }
  402. }
  403. static void sd_plugin_card(SDHCIState *sd, DriveInfo *di)
  404. {
  405. BlockBackend *blk = di ? blk_by_legacy_dinfo(di) : NULL;
  406. DeviceState *card;
  407. card = qdev_new(TYPE_SD_CARD);
  408. object_property_add_child(OBJECT(sd), "card[*]", OBJECT(card));
  409. qdev_prop_set_drive_err(card, "drive", blk, &error_fatal);
  410. qdev_realize_and_unref(card, qdev_get_child_bus(DEVICE(sd), "sd-bus"),
  411. &error_fatal);
  412. }
  413. static void versal_virt_init(MachineState *machine)
  414. {
  415. VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine);
  416. int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
  417. int i;
  418. /*
  419. * If the user provides an Operating System to be loaded, we expect them
  420. * to use the -kernel command line option.
  421. *
  422. * Users can load firmware or boot-loaders with the -device loader options.
  423. *
  424. * When loading an OS, we generate a dtb and let arm_load_kernel() select
  425. * where it gets loaded. This dtb will be passed to the kernel in x0.
  426. *
  427. * If there's no -kernel option, we generate a DTB and place it at 0x1000
  428. * for the bootloaders or firmware to pick up.
  429. *
  430. * If users want to provide their own DTB, they can use the -dtb option.
  431. * These dtb's will have their memory nodes modified to match QEMU's
  432. * selected ram_size option before they get passed to the kernel or fw.
  433. *
  434. * When loading an OS, we turn on QEMU's PSCI implementation with SMC
  435. * as the PSCI conduit. When there's no -kernel, we assume the user
  436. * provides EL3 firmware to handle PSCI.
  437. */
  438. if (machine->kernel_filename) {
  439. psci_conduit = QEMU_PSCI_CONDUIT_SMC;
  440. }
  441. object_initialize_child(OBJECT(machine), "xlnx-versal", &s->soc,
  442. TYPE_XLNX_VERSAL);
  443. object_property_set_link(OBJECT(&s->soc), "ddr", OBJECT(machine->ram),
  444. &error_abort);
  445. object_property_set_int(OBJECT(&s->soc), "psci-conduit", psci_conduit,
  446. &error_abort);
  447. sysbus_realize(SYS_BUS_DEVICE(&s->soc), &error_fatal);
  448. fdt_create(s);
  449. create_virtio_regions(s);
  450. fdt_add_gem_nodes(s);
  451. fdt_add_uart_nodes(s);
  452. fdt_add_gic_nodes(s);
  453. fdt_add_timer_nodes(s);
  454. fdt_add_zdma_nodes(s);
  455. fdt_add_sd_nodes(s);
  456. fdt_add_rtc_node(s);
  457. fdt_add_cpu_nodes(s, psci_conduit);
  458. fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz);
  459. fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz);
  460. /* Make the APU cpu address space visible to virtio and other
  461. * modules unaware of muliple address-spaces. */
  462. memory_region_add_subregion_overlap(get_system_memory(),
  463. 0, &s->soc.fpd.apu.mr, 0);
  464. /* Plugin SD cards. */
  465. for (i = 0; i < ARRAY_SIZE(s->soc.pmc.iou.sd); i++) {
  466. sd_plugin_card(&s->soc.pmc.iou.sd[i], drive_get_next(IF_SD));
  467. }
  468. s->binfo.ram_size = machine->ram_size;
  469. s->binfo.loader_start = 0x0;
  470. s->binfo.get_dtb = versal_virt_get_dtb;
  471. s->binfo.modify_dtb = versal_virt_modify_dtb;
  472. if (machine->kernel_filename) {
  473. arm_load_kernel(&s->soc.fpd.apu.cpu[0], machine, &s->binfo);
  474. } else {
  475. AddressSpace *as = arm_boot_address_space(&s->soc.fpd.apu.cpu[0],
  476. &s->binfo);
  477. /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL).
  478. * Offset things by 4K. */
  479. s->binfo.loader_start = 0x1000;
  480. s->binfo.dtb_limit = 0x1000000;
  481. if (arm_load_dtb(s->binfo.loader_start,
  482. &s->binfo, s->binfo.dtb_limit, as, machine) < 0) {
  483. exit(EXIT_FAILURE);
  484. }
  485. }
  486. }
  487. static void versal_virt_machine_instance_init(Object *obj)
  488. {
  489. }
  490. static void versal_virt_machine_class_init(ObjectClass *oc, void *data)
  491. {
  492. MachineClass *mc = MACHINE_CLASS(oc);
  493. mc->desc = "Xilinx Versal Virtual development board";
  494. mc->init = versal_virt_init;
  495. mc->max_cpus = XLNX_VERSAL_NR_ACPUS;
  496. mc->default_cpus = XLNX_VERSAL_NR_ACPUS;
  497. mc->no_cdrom = true;
  498. mc->default_ram_id = "ddr";
  499. }
  500. static const TypeInfo versal_virt_machine_init_typeinfo = {
  501. .name = TYPE_XLNX_VERSAL_VIRT_MACHINE,
  502. .parent = TYPE_MACHINE,
  503. .class_init = versal_virt_machine_class_init,
  504. .instance_init = versal_virt_machine_instance_init,
  505. .instance_size = sizeof(VersalVirt),
  506. };
  507. static void versal_virt_machine_init_register_types(void)
  508. {
  509. type_register_static(&versal_virt_machine_init_typeinfo);
  510. }
  511. type_init(versal_virt_machine_init_register_types)