virt-acpi-build.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018
  1. /* Support for generating ACPI tables and passing them to Guests
  2. *
  3. * ARM virt ACPI generation
  4. *
  5. * Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
  6. * Copyright (C) 2006 Fabrice Bellard
  7. * Copyright (C) 2013 Red Hat Inc
  8. *
  9. * Author: Michael S. Tsirkin <mst@redhat.com>
  10. *
  11. * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
  12. *
  13. * Author: Shannon Zhao <zhaoshenglong@huawei.com>
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, see <http://www.gnu.org/licenses/>.
  25. */
  26. #include "qemu/osdep.h"
  27. #include "qapi/error.h"
  28. #include "qemu/bitmap.h"
  29. #include "trace.h"
  30. #include "hw/core/cpu.h"
  31. #include "target/arm/cpu.h"
  32. #include "hw/acpi/acpi-defs.h"
  33. #include "hw/acpi/acpi.h"
  34. #include "hw/nvram/fw_cfg.h"
  35. #include "hw/acpi/bios-linker-loader.h"
  36. #include "hw/acpi/aml-build.h"
  37. #include "hw/acpi/utils.h"
  38. #include "hw/acpi/pci.h"
  39. #include "hw/acpi/memory_hotplug.h"
  40. #include "hw/acpi/generic_event_device.h"
  41. #include "hw/acpi/tpm.h"
  42. #include "hw/pci/pcie_host.h"
  43. #include "hw/pci/pci.h"
  44. #include "hw/arm/virt.h"
  45. #include "hw/mem/nvdimm.h"
  46. #include "hw/platform-bus.h"
  47. #include "sysemu/numa.h"
  48. #include "sysemu/reset.h"
  49. #include "sysemu/tpm.h"
  50. #include "kvm_arm.h"
  51. #include "migration/vmstate.h"
  52. #include "hw/acpi/ghes.h"
  53. #define ARM_SPI_BASE 32
  54. static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
  55. {
  56. uint16_t i;
  57. for (i = 0; i < smp_cpus; i++) {
  58. Aml *dev = aml_device("C%.03X", i);
  59. aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
  60. aml_append(dev, aml_name_decl("_UID", aml_int(i)));
  61. aml_append(scope, dev);
  62. }
  63. }
  64. static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
  65. uint32_t uart_irq)
  66. {
  67. Aml *dev = aml_device("COM0");
  68. aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
  69. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  70. Aml *crs = aml_resource_template();
  71. aml_append(crs, aml_memory32_fixed(uart_memmap->base,
  72. uart_memmap->size, AML_READ_WRITE));
  73. aml_append(crs,
  74. aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  75. AML_EXCLUSIVE, &uart_irq, 1));
  76. aml_append(dev, aml_name_decl("_CRS", crs));
  77. aml_append(scope, dev);
  78. }
  79. static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
  80. {
  81. Aml *dev = aml_device("FWCF");
  82. aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
  83. /* device present, functioning, decoding, not shown in UI */
  84. aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
  85. aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
  86. Aml *crs = aml_resource_template();
  87. aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
  88. fw_cfg_memmap->size, AML_READ_WRITE));
  89. aml_append(dev, aml_name_decl("_CRS", crs));
  90. aml_append(scope, dev);
  91. }
  92. static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
  93. {
  94. Aml *dev, *crs;
  95. hwaddr base = flash_memmap->base;
  96. hwaddr size = flash_memmap->size / 2;
  97. dev = aml_device("FLS0");
  98. aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
  99. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  100. crs = aml_resource_template();
  101. aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
  102. aml_append(dev, aml_name_decl("_CRS", crs));
  103. aml_append(scope, dev);
  104. dev = aml_device("FLS1");
  105. aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
  106. aml_append(dev, aml_name_decl("_UID", aml_int(1)));
  107. crs = aml_resource_template();
  108. aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
  109. aml_append(dev, aml_name_decl("_CRS", crs));
  110. aml_append(scope, dev);
  111. }
  112. static void acpi_dsdt_add_virtio(Aml *scope,
  113. const MemMapEntry *virtio_mmio_memmap,
  114. uint32_t mmio_irq, int num)
  115. {
  116. hwaddr base = virtio_mmio_memmap->base;
  117. hwaddr size = virtio_mmio_memmap->size;
  118. int i;
  119. for (i = 0; i < num; i++) {
  120. uint32_t irq = mmio_irq + i;
  121. Aml *dev = aml_device("VR%02u", i);
  122. aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
  123. aml_append(dev, aml_name_decl("_UID", aml_int(i)));
  124. aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
  125. Aml *crs = aml_resource_template();
  126. aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
  127. aml_append(crs,
  128. aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  129. AML_EXCLUSIVE, &irq, 1));
  130. aml_append(dev, aml_name_decl("_CRS", crs));
  131. aml_append(scope, dev);
  132. base += size;
  133. }
  134. }
  135. static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
  136. uint32_t irq, bool use_highmem, bool highmem_ecam)
  137. {
  138. int ecam_id = VIRT_ECAM_ID(highmem_ecam);
  139. Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf;
  140. int i, slot_no;
  141. hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base;
  142. hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size;
  143. hwaddr base_pio = memmap[VIRT_PCIE_PIO].base;
  144. hwaddr size_pio = memmap[VIRT_PCIE_PIO].size;
  145. hwaddr base_ecam = memmap[ecam_id].base;
  146. hwaddr size_ecam = memmap[ecam_id].size;
  147. int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
  148. Aml *dev = aml_device("%s", "PCI0");
  149. aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08")));
  150. aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03")));
  151. aml_append(dev, aml_name_decl("_SEG", aml_int(0)));
  152. aml_append(dev, aml_name_decl("_BBN", aml_int(0)));
  153. aml_append(dev, aml_name_decl("_UID", aml_string("PCI0")));
  154. aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
  155. aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
  156. /* Declare the PCI Routing Table. */
  157. Aml *rt_pkg = aml_varpackage(PCI_SLOT_MAX * PCI_NUM_PINS);
  158. for (slot_no = 0; slot_no < PCI_SLOT_MAX; slot_no++) {
  159. for (i = 0; i < PCI_NUM_PINS; i++) {
  160. int gsi = (i + slot_no) % PCI_NUM_PINS;
  161. Aml *pkg = aml_package(4);
  162. aml_append(pkg, aml_int((slot_no << 16) | 0xFFFF));
  163. aml_append(pkg, aml_int(i));
  164. aml_append(pkg, aml_name("GSI%d", gsi));
  165. aml_append(pkg, aml_int(0));
  166. aml_append(rt_pkg, pkg);
  167. }
  168. }
  169. aml_append(dev, aml_name_decl("_PRT", rt_pkg));
  170. /* Create GSI link device */
  171. for (i = 0; i < PCI_NUM_PINS; i++) {
  172. uint32_t irqs = irq + i;
  173. Aml *dev_gsi = aml_device("GSI%d", i);
  174. aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F")));
  175. aml_append(dev_gsi, aml_name_decl("_UID", aml_int(i)));
  176. crs = aml_resource_template();
  177. aml_append(crs,
  178. aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  179. AML_EXCLUSIVE, &irqs, 1));
  180. aml_append(dev_gsi, aml_name_decl("_PRS", crs));
  181. crs = aml_resource_template();
  182. aml_append(crs,
  183. aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  184. AML_EXCLUSIVE, &irqs, 1));
  185. aml_append(dev_gsi, aml_name_decl("_CRS", crs));
  186. method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
  187. aml_append(dev_gsi, method);
  188. aml_append(dev, dev_gsi);
  189. }
  190. method = aml_method("_CBA", 0, AML_NOTSERIALIZED);
  191. aml_append(method, aml_return(aml_int(base_ecam)));
  192. aml_append(dev, method);
  193. method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
  194. Aml *rbuf = aml_resource_template();
  195. aml_append(rbuf,
  196. aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
  197. 0x0000, 0x0000, nr_pcie_buses - 1, 0x0000,
  198. nr_pcie_buses));
  199. aml_append(rbuf,
  200. aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
  201. AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio,
  202. base_mmio + size_mmio - 1, 0x0000, size_mmio));
  203. aml_append(rbuf,
  204. aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
  205. AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio,
  206. size_pio));
  207. if (use_highmem) {
  208. hwaddr base_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].base;
  209. hwaddr size_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].size;
  210. aml_append(rbuf,
  211. aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
  212. AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000,
  213. base_mmio_high,
  214. base_mmio_high + size_mmio_high - 1, 0x0000,
  215. size_mmio_high));
  216. }
  217. aml_append(method, aml_return(rbuf));
  218. aml_append(dev, method);
  219. /* Declare an _OSC (OS Control Handoff) method */
  220. aml_append(dev, aml_name_decl("SUPP", aml_int(0)));
  221. aml_append(dev, aml_name_decl("CTRL", aml_int(0)));
  222. method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
  223. aml_append(method,
  224. aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
  225. /* PCI Firmware Specification 3.0
  226. * 4.5.1. _OSC Interface for PCI Host Bridge Devices
  227. * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
  228. * identified by the Universal Unique IDentifier (UUID)
  229. * 33DB4D5B-1FF7-401C-9657-7441C03DD766
  230. */
  231. UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
  232. ifctx = aml_if(aml_equal(aml_arg(0), UUID));
  233. aml_append(ifctx,
  234. aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
  235. aml_append(ifctx,
  236. aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
  237. aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP")));
  238. aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL")));
  239. /*
  240. * Allow OS control for all 5 features:
  241. * PCIeHotplug SHPCHotplug PME AER PCIeCapability.
  242. */
  243. aml_append(ifctx, aml_and(aml_name("CTRL"), aml_int(0x1F),
  244. aml_name("CTRL")));
  245. ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
  246. aml_append(ifctx1, aml_or(aml_name("CDW1"), aml_int(0x08),
  247. aml_name("CDW1")));
  248. aml_append(ifctx, ifctx1);
  249. ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
  250. aml_append(ifctx1, aml_or(aml_name("CDW1"), aml_int(0x10),
  251. aml_name("CDW1")));
  252. aml_append(ifctx, ifctx1);
  253. aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3")));
  254. aml_append(ifctx, aml_return(aml_arg(3)));
  255. aml_append(method, ifctx);
  256. elsectx = aml_else();
  257. aml_append(elsectx, aml_or(aml_name("CDW1"), aml_int(4),
  258. aml_name("CDW1")));
  259. aml_append(elsectx, aml_return(aml_arg(3)));
  260. aml_append(method, elsectx);
  261. aml_append(dev, method);
  262. method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
  263. /* PCI Firmware Specification 3.0
  264. * 4.6.1. _DSM for PCI Express Slot Information
  265. * The UUID in _DSM in this context is
  266. * {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
  267. */
  268. UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
  269. ifctx = aml_if(aml_equal(aml_arg(0), UUID));
  270. ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0)));
  271. uint8_t byte_list[1] = {1};
  272. buf = aml_buffer(1, byte_list);
  273. aml_append(ifctx1, aml_return(buf));
  274. aml_append(ifctx, ifctx1);
  275. aml_append(method, ifctx);
  276. byte_list[0] = 0;
  277. buf = aml_buffer(1, byte_list);
  278. aml_append(method, aml_return(buf));
  279. aml_append(dev, method);
  280. Aml *dev_res0 = aml_device("%s", "RES0");
  281. aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02")));
  282. crs = aml_resource_template();
  283. aml_append(crs,
  284. aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
  285. AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam,
  286. base_ecam + size_ecam - 1, 0x0000, size_ecam));
  287. aml_append(dev_res0, aml_name_decl("_CRS", crs));
  288. aml_append(dev, dev_res0);
  289. aml_append(scope, dev);
  290. }
  291. static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
  292. uint32_t gpio_irq)
  293. {
  294. Aml *dev = aml_device("GPO0");
  295. aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
  296. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  297. Aml *crs = aml_resource_template();
  298. aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
  299. AML_READ_WRITE));
  300. aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
  301. AML_EXCLUSIVE, &gpio_irq, 1));
  302. aml_append(dev, aml_name_decl("_CRS", crs));
  303. Aml *aei = aml_resource_template();
  304. /* Pin 3 for power button */
  305. const uint32_t pin_list[1] = {3};
  306. aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
  307. AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
  308. "GPO0", NULL, 0));
  309. aml_append(dev, aml_name_decl("_AEI", aei));
  310. /* _E03 is handle for power button */
  311. Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
  312. aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
  313. aml_int(0x80)));
  314. aml_append(dev, method);
  315. aml_append(scope, dev);
  316. }
  317. static void acpi_dsdt_add_power_button(Aml *scope)
  318. {
  319. Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE);
  320. aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C")));
  321. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  322. aml_append(scope, dev);
  323. }
  324. static void acpi_dsdt_add_tpm(Aml *scope, VirtMachineState *vms)
  325. {
  326. PlatformBusDevice *pbus = PLATFORM_BUS_DEVICE(vms->platform_bus_dev);
  327. hwaddr pbus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
  328. SysBusDevice *sbdev = SYS_BUS_DEVICE(tpm_find());
  329. MemoryRegion *sbdev_mr;
  330. hwaddr tpm_base;
  331. if (!sbdev) {
  332. return;
  333. }
  334. tpm_base = platform_bus_get_mmio_addr(pbus, sbdev, 0);
  335. assert(tpm_base != -1);
  336. tpm_base += pbus_base;
  337. sbdev_mr = sysbus_mmio_get_region(sbdev, 0);
  338. Aml *dev = aml_device("TPM0");
  339. aml_append(dev, aml_name_decl("_HID", aml_string("MSFT0101")));
  340. aml_append(dev, aml_name_decl("_UID", aml_int(0)));
  341. Aml *crs = aml_resource_template();
  342. aml_append(crs,
  343. aml_memory32_fixed(tpm_base,
  344. (uint32_t)memory_region_size(sbdev_mr),
  345. AML_READ_WRITE));
  346. aml_append(dev, aml_name_decl("_CRS", crs));
  347. aml_append(scope, dev);
  348. }
  349. static void
  350. build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  351. {
  352. int nb_nodes, iort_start = table_data->len;
  353. AcpiIortIdMapping *idmap;
  354. AcpiIortItsGroup *its;
  355. AcpiIortTable *iort;
  356. AcpiIortSmmu3 *smmu;
  357. size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
  358. AcpiIortRC *rc;
  359. iort = acpi_data_push(table_data, sizeof(*iort));
  360. if (vms->iommu == VIRT_IOMMU_SMMUV3) {
  361. nb_nodes = 3; /* RC, ITS, SMMUv3 */
  362. } else {
  363. nb_nodes = 2; /* RC, ITS */
  364. }
  365. iort_length = sizeof(*iort);
  366. iort->node_count = cpu_to_le32(nb_nodes);
  367. /*
  368. * Use a copy in case table_data->data moves during acpi_data_push
  369. * operations.
  370. */
  371. iort_node_offset = sizeof(*iort);
  372. iort->node_offset = cpu_to_le32(iort_node_offset);
  373. /* ITS group node */
  374. node_size = sizeof(*its) + sizeof(uint32_t);
  375. iort_length += node_size;
  376. its = acpi_data_push(table_data, node_size);
  377. its->type = ACPI_IORT_NODE_ITS_GROUP;
  378. its->length = cpu_to_le16(node_size);
  379. its->its_count = cpu_to_le32(1);
  380. its->identifiers[0] = 0; /* MADT translation_id */
  381. if (vms->iommu == VIRT_IOMMU_SMMUV3) {
  382. int irq = vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE;
  383. /* SMMUv3 node */
  384. smmu_offset = iort_node_offset + node_size;
  385. node_size = sizeof(*smmu) + sizeof(*idmap);
  386. iort_length += node_size;
  387. smmu = acpi_data_push(table_data, node_size);
  388. smmu->type = ACPI_IORT_NODE_SMMU_V3;
  389. smmu->length = cpu_to_le16(node_size);
  390. smmu->mapping_count = cpu_to_le32(1);
  391. smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
  392. smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
  393. smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
  394. smmu->event_gsiv = cpu_to_le32(irq);
  395. smmu->pri_gsiv = cpu_to_le32(irq + 1);
  396. smmu->gerr_gsiv = cpu_to_le32(irq + 2);
  397. smmu->sync_gsiv = cpu_to_le32(irq + 3);
  398. /* Identity RID mapping covering the whole input RID range */
  399. idmap = &smmu->id_mapping_array[0];
  400. idmap->input_base = 0;
  401. idmap->id_count = cpu_to_le32(0xFFFF);
  402. idmap->output_base = 0;
  403. /* output IORT node is the ITS group node (the first node) */
  404. idmap->output_reference = cpu_to_le32(iort_node_offset);
  405. }
  406. /* Root Complex Node */
  407. node_size = sizeof(*rc) + sizeof(*idmap);
  408. iort_length += node_size;
  409. rc = acpi_data_push(table_data, node_size);
  410. rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
  411. rc->length = cpu_to_le16(node_size);
  412. rc->mapping_count = cpu_to_le32(1);
  413. rc->mapping_offset = cpu_to_le32(sizeof(*rc));
  414. /* fully coherent device */
  415. rc->memory_properties.cache_coherency = cpu_to_le32(1);
  416. rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
  417. rc->pci_segment_number = 0; /* MCFG pci_segment */
  418. /* Identity RID mapping covering the whole input RID range */
  419. idmap = &rc->id_mapping_array[0];
  420. idmap->input_base = 0;
  421. idmap->id_count = cpu_to_le32(0xFFFF);
  422. idmap->output_base = 0;
  423. if (vms->iommu == VIRT_IOMMU_SMMUV3) {
  424. /* output IORT node is the smmuv3 node */
  425. idmap->output_reference = cpu_to_le32(smmu_offset);
  426. } else {
  427. /* output IORT node is the ITS group node (the first node) */
  428. idmap->output_reference = cpu_to_le32(iort_node_offset);
  429. }
  430. /*
  431. * Update the pointer address in case table_data->data moves during above
  432. * acpi_data_push operations.
  433. */
  434. iort = (AcpiIortTable *)(table_data->data + iort_start);
  435. iort->length = cpu_to_le32(iort_length);
  436. build_header(linker, table_data, (void *)(table_data->data + iort_start),
  437. "IORT", table_data->len - iort_start, 0, NULL, NULL);
  438. }
  439. static void
  440. build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  441. {
  442. AcpiSerialPortConsoleRedirection *spcr;
  443. const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
  444. int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
  445. int spcr_start = table_data->len;
  446. spcr = acpi_data_push(table_data, sizeof(*spcr));
  447. spcr->interface_type = 0x3; /* ARM PL011 UART */
  448. spcr->base_address.space_id = AML_SYSTEM_MEMORY;
  449. spcr->base_address.bit_width = 8;
  450. spcr->base_address.bit_offset = 0;
  451. spcr->base_address.access_width = 1;
  452. spcr->base_address.address = cpu_to_le64(uart_memmap->base);
  453. spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
  454. spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */
  455. spcr->baud = 3; /* Baud Rate: 3 = 9600 */
  456. spcr->parity = 0; /* No Parity */
  457. spcr->stopbits = 1; /* 1 Stop bit */
  458. spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */
  459. spcr->term_type = 0; /* Terminal Type: 0 = VT100 */
  460. spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */
  461. spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */
  462. build_header(linker, table_data, (void *)(table_data->data + spcr_start),
  463. "SPCR", table_data->len - spcr_start, 2, NULL, NULL);
  464. }
  465. static void
  466. build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  467. {
  468. AcpiSystemResourceAffinityTable *srat;
  469. AcpiSratProcessorGiccAffinity *core;
  470. AcpiSratMemoryAffinity *numamem;
  471. int i, srat_start;
  472. uint64_t mem_base;
  473. MachineClass *mc = MACHINE_GET_CLASS(vms);
  474. MachineState *ms = MACHINE(vms);
  475. const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(ms);
  476. srat_start = table_data->len;
  477. srat = acpi_data_push(table_data, sizeof(*srat));
  478. srat->reserved1 = cpu_to_le32(1);
  479. for (i = 0; i < cpu_list->len; ++i) {
  480. core = acpi_data_push(table_data, sizeof(*core));
  481. core->type = ACPI_SRAT_PROCESSOR_GICC;
  482. core->length = sizeof(*core);
  483. core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
  484. core->acpi_processor_uid = cpu_to_le32(i);
  485. core->flags = cpu_to_le32(1);
  486. }
  487. mem_base = vms->memmap[VIRT_MEM].base;
  488. for (i = 0; i < ms->numa_state->num_nodes; ++i) {
  489. if (ms->numa_state->nodes[i].node_mem > 0) {
  490. numamem = acpi_data_push(table_data, sizeof(*numamem));
  491. build_srat_memory(numamem, mem_base,
  492. ms->numa_state->nodes[i].node_mem, i,
  493. MEM_AFFINITY_ENABLED);
  494. mem_base += ms->numa_state->nodes[i].node_mem;
  495. }
  496. }
  497. if (ms->nvdimms_state->is_enabled) {
  498. nvdimm_build_srat(table_data);
  499. }
  500. if (ms->device_memory) {
  501. numamem = acpi_data_push(table_data, sizeof *numamem);
  502. build_srat_memory(numamem, ms->device_memory->base,
  503. memory_region_size(&ms->device_memory->mr),
  504. ms->numa_state->num_nodes - 1,
  505. MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED);
  506. }
  507. build_header(linker, table_data, (void *)(table_data->data + srat_start),
  508. "SRAT", table_data->len - srat_start, 3, NULL, NULL);
  509. }
  510. /* GTDT */
  511. static void
  512. build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  513. {
  514. VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
  515. int gtdt_start = table_data->len;
  516. AcpiGenericTimerTable *gtdt;
  517. uint32_t irqflags;
  518. if (vmc->claim_edge_triggered_timers) {
  519. irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
  520. } else {
  521. irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
  522. }
  523. gtdt = acpi_data_push(table_data, sizeof *gtdt);
  524. /* The interrupt values are the same with the device tree when adding 16 */
  525. gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
  526. gtdt->secure_el1_flags = cpu_to_le32(irqflags);
  527. gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
  528. gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
  529. ACPI_GTDT_CAP_ALWAYS_ON);
  530. gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
  531. gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
  532. gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
  533. gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
  534. build_header(linker, table_data,
  535. (void *)(table_data->data + gtdt_start), "GTDT",
  536. table_data->len - gtdt_start, 2, NULL, NULL);
  537. }
  538. /* MADT */
  539. static void
  540. build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  541. {
  542. VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
  543. int madt_start = table_data->len;
  544. const MemMapEntry *memmap = vms->memmap;
  545. const int *irqmap = vms->irqmap;
  546. AcpiMultipleApicTable *madt;
  547. AcpiMadtGenericDistributor *gicd;
  548. AcpiMadtGenericMsiFrame *gic_msi;
  549. int i;
  550. madt = acpi_data_push(table_data, sizeof *madt);
  551. gicd = acpi_data_push(table_data, sizeof *gicd);
  552. gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
  553. gicd->length = sizeof(*gicd);
  554. gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
  555. gicd->version = vms->gic_version;
  556. for (i = 0; i < vms->smp_cpus; i++) {
  557. AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
  558. sizeof(*gicc));
  559. ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
  560. gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
  561. gicc->length = sizeof(*gicc);
  562. if (vms->gic_version == 2) {
  563. gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
  564. gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
  565. gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
  566. }
  567. gicc->cpu_interface_number = cpu_to_le32(i);
  568. gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
  569. gicc->uid = cpu_to_le32(i);
  570. gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
  571. if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
  572. gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
  573. }
  574. if (vms->virt) {
  575. gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
  576. }
  577. }
  578. if (vms->gic_version == 3) {
  579. AcpiMadtGenericTranslator *gic_its;
  580. int nb_redist_regions = virt_gicv3_redist_region_count(vms);
  581. AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
  582. sizeof *gicr);
  583. gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
  584. gicr->length = sizeof(*gicr);
  585. gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
  586. gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
  587. if (nb_redist_regions == 2) {
  588. gicr = acpi_data_push(table_data, sizeof(*gicr));
  589. gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
  590. gicr->length = sizeof(*gicr);
  591. gicr->base_address =
  592. cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base);
  593. gicr->range_length =
  594. cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size);
  595. }
  596. if (its_class_name() && !vmc->no_its) {
  597. gic_its = acpi_data_push(table_data, sizeof *gic_its);
  598. gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
  599. gic_its->length = sizeof(*gic_its);
  600. gic_its->translation_id = 0;
  601. gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
  602. }
  603. } else {
  604. gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
  605. gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
  606. gic_msi->length = sizeof(*gic_msi);
  607. gic_msi->gic_msi_frame_id = 0;
  608. gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
  609. gic_msi->flags = cpu_to_le32(1);
  610. gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
  611. gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
  612. }
  613. build_header(linker, table_data,
  614. (void *)(table_data->data + madt_start), "APIC",
  615. table_data->len - madt_start, 3, NULL, NULL);
  616. }
  617. /* FADT */
  618. static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
  619. VirtMachineState *vms, unsigned dsdt_tbl_offset)
  620. {
  621. /* ACPI v5.1 */
  622. AcpiFadtData fadt = {
  623. .rev = 5,
  624. .minor_ver = 1,
  625. .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
  626. .xdsdt_tbl_offset = &dsdt_tbl_offset,
  627. };
  628. switch (vms->psci_conduit) {
  629. case QEMU_PSCI_CONDUIT_DISABLED:
  630. fadt.arm_boot_arch = 0;
  631. break;
  632. case QEMU_PSCI_CONDUIT_HVC:
  633. fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
  634. ACPI_FADT_ARM_PSCI_USE_HVC;
  635. break;
  636. case QEMU_PSCI_CONDUIT_SMC:
  637. fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
  638. break;
  639. default:
  640. g_assert_not_reached();
  641. }
  642. build_fadt(table_data, linker, &fadt, NULL, NULL);
  643. }
  644. /* DSDT */
  645. static void
  646. build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
  647. {
  648. VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
  649. Aml *scope, *dsdt;
  650. MachineState *ms = MACHINE(vms);
  651. const MemMapEntry *memmap = vms->memmap;
  652. const int *irqmap = vms->irqmap;
  653. dsdt = init_aml_allocator();
  654. /* Reserve space for header */
  655. acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
  656. /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
  657. * While UEFI can use libfdt to disable the RTC device node in the DTB that
  658. * it passes to the OS, it cannot modify AML. Therefore, we won't generate
  659. * the RTC ACPI device at all when using UEFI.
  660. */
  661. scope = aml_scope("\\_SB");
  662. acpi_dsdt_add_cpus(scope, vms->smp_cpus);
  663. acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
  664. (irqmap[VIRT_UART] + ARM_SPI_BASE));
  665. if (vmc->acpi_expose_flash) {
  666. acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
  667. }
  668. acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
  669. acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
  670. (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
  671. acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
  672. vms->highmem, vms->highmem_ecam);
  673. if (vms->acpi_dev) {
  674. build_ged_aml(scope, "\\_SB."GED_DEVICE,
  675. HOTPLUG_HANDLER(vms->acpi_dev),
  676. irqmap[VIRT_ACPI_GED] + ARM_SPI_BASE, AML_SYSTEM_MEMORY,
  677. memmap[VIRT_ACPI_GED].base);
  678. } else {
  679. acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
  680. (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
  681. }
  682. if (vms->acpi_dev) {
  683. uint32_t event = object_property_get_uint(OBJECT(vms->acpi_dev),
  684. "ged-event", &error_abort);
  685. if (event & ACPI_GED_MEM_HOTPLUG_EVT) {
  686. build_memory_hotplug_aml(scope, ms->ram_slots, "\\_SB", NULL,
  687. AML_SYSTEM_MEMORY,
  688. memmap[VIRT_PCDIMM_ACPI].base);
  689. }
  690. }
  691. acpi_dsdt_add_power_button(scope);
  692. acpi_dsdt_add_tpm(scope, vms);
  693. aml_append(dsdt, scope);
  694. /* copy AML table into ACPI tables blob and patch header there */
  695. g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
  696. build_header(linker, table_data,
  697. (void *)(table_data->data + table_data->len - dsdt->buf->len),
  698. "DSDT", dsdt->buf->len, 2, NULL, NULL);
  699. free_aml_allocator();
  700. }
  701. typedef
  702. struct AcpiBuildState {
  703. /* Copy of table in RAM (for patching). */
  704. MemoryRegion *table_mr;
  705. MemoryRegion *rsdp_mr;
  706. MemoryRegion *linker_mr;
  707. /* Is table patched? */
  708. bool patched;
  709. } AcpiBuildState;
  710. static
  711. void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
  712. {
  713. VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
  714. GArray *table_offsets;
  715. unsigned dsdt, xsdt;
  716. GArray *tables_blob = tables->table_data;
  717. MachineState *ms = MACHINE(vms);
  718. table_offsets = g_array_new(false, true /* clear */,
  719. sizeof(uint32_t));
  720. bios_linker_loader_alloc(tables->linker,
  721. ACPI_BUILD_TABLE_FILE, tables_blob,
  722. 64, false /* high memory */);
  723. /* DSDT is pointed to by FADT */
  724. dsdt = tables_blob->len;
  725. build_dsdt(tables_blob, tables->linker, vms);
  726. /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
  727. acpi_add_table(table_offsets, tables_blob);
  728. build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
  729. acpi_add_table(table_offsets, tables_blob);
  730. build_madt(tables_blob, tables->linker, vms);
  731. acpi_add_table(table_offsets, tables_blob);
  732. build_gtdt(tables_blob, tables->linker, vms);
  733. acpi_add_table(table_offsets, tables_blob);
  734. {
  735. AcpiMcfgInfo mcfg = {
  736. .base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base,
  737. .size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size,
  738. };
  739. build_mcfg(tables_blob, tables->linker, &mcfg);
  740. }
  741. acpi_add_table(table_offsets, tables_blob);
  742. build_spcr(tables_blob, tables->linker, vms);
  743. if (vms->ras) {
  744. build_ghes_error_table(tables->hardware_errors, tables->linker);
  745. acpi_add_table(table_offsets, tables_blob);
  746. acpi_build_hest(tables_blob, tables->linker);
  747. }
  748. if (ms->numa_state->num_nodes > 0) {
  749. acpi_add_table(table_offsets, tables_blob);
  750. build_srat(tables_blob, tables->linker, vms);
  751. if (ms->numa_state->have_numa_distance) {
  752. acpi_add_table(table_offsets, tables_blob);
  753. build_slit(tables_blob, tables->linker, ms);
  754. }
  755. }
  756. if (ms->nvdimms_state->is_enabled) {
  757. nvdimm_build_acpi(table_offsets, tables_blob, tables->linker,
  758. ms->nvdimms_state, ms->ram_slots);
  759. }
  760. if (its_class_name() && !vmc->no_its) {
  761. acpi_add_table(table_offsets, tables_blob);
  762. build_iort(tables_blob, tables->linker, vms);
  763. }
  764. if (tpm_get_version(tpm_find()) == TPM_VERSION_2_0) {
  765. acpi_add_table(table_offsets, tables_blob);
  766. build_tpm2(tables_blob, tables->linker, tables->tcpalog);
  767. }
  768. /* XSDT is pointed to by RSDP */
  769. xsdt = tables_blob->len;
  770. build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
  771. /* RSDP is in FSEG memory, so allocate it separately */
  772. {
  773. AcpiRsdpData rsdp_data = {
  774. .revision = 2,
  775. .oem_id = ACPI_BUILD_APPNAME6,
  776. .xsdt_tbl_offset = &xsdt,
  777. .rsdt_tbl_offset = NULL,
  778. };
  779. build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
  780. }
  781. /* Cleanup memory that's no longer used. */
  782. g_array_free(table_offsets, true);
  783. }
  784. static void acpi_ram_update(MemoryRegion *mr, GArray *data)
  785. {
  786. uint32_t size = acpi_data_len(data);
  787. /* Make sure RAM size is correct - in case it got changed
  788. * e.g. by migration */
  789. memory_region_ram_resize(mr, size, &error_abort);
  790. memcpy(memory_region_get_ram_ptr(mr), data->data, size);
  791. memory_region_set_dirty(mr, 0, size);
  792. }
  793. static void virt_acpi_build_update(void *build_opaque)
  794. {
  795. AcpiBuildState *build_state = build_opaque;
  796. AcpiBuildTables tables;
  797. /* No state to update or already patched? Nothing to do. */
  798. if (!build_state || build_state->patched) {
  799. return;
  800. }
  801. build_state->patched = true;
  802. acpi_build_tables_init(&tables);
  803. virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
  804. acpi_ram_update(build_state->table_mr, tables.table_data);
  805. acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
  806. acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
  807. acpi_build_tables_cleanup(&tables, true);
  808. }
  809. static void virt_acpi_build_reset(void *build_opaque)
  810. {
  811. AcpiBuildState *build_state = build_opaque;
  812. build_state->patched = false;
  813. }
  814. static const VMStateDescription vmstate_virt_acpi_build = {
  815. .name = "virt_acpi_build",
  816. .version_id = 1,
  817. .minimum_version_id = 1,
  818. .fields = (VMStateField[]) {
  819. VMSTATE_BOOL(patched, AcpiBuildState),
  820. VMSTATE_END_OF_LIST()
  821. },
  822. };
  823. void virt_acpi_setup(VirtMachineState *vms)
  824. {
  825. AcpiBuildTables tables;
  826. AcpiBuildState *build_state;
  827. AcpiGedState *acpi_ged_state;
  828. if (!vms->fw_cfg) {
  829. trace_virt_acpi_setup();
  830. return;
  831. }
  832. if (!virt_is_acpi_enabled(vms)) {
  833. trace_virt_acpi_setup();
  834. return;
  835. }
  836. build_state = g_malloc0(sizeof *build_state);
  837. acpi_build_tables_init(&tables);
  838. virt_acpi_build(vms, &tables);
  839. /* Now expose it all to Guest */
  840. build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update,
  841. build_state, tables.table_data,
  842. ACPI_BUILD_TABLE_FILE,
  843. ACPI_BUILD_TABLE_MAX_SIZE);
  844. assert(build_state->table_mr != NULL);
  845. build_state->linker_mr =
  846. acpi_add_rom_blob(virt_acpi_build_update, build_state,
  847. tables.linker->cmd_blob, ACPI_BUILD_LOADER_FILE, 0);
  848. fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
  849. acpi_data_len(tables.tcpalog));
  850. if (vms->ras) {
  851. assert(vms->acpi_dev);
  852. acpi_ged_state = ACPI_GED(vms->acpi_dev);
  853. acpi_ghes_add_fw_cfg(&acpi_ged_state->ghes_state,
  854. vms->fw_cfg, tables.hardware_errors);
  855. }
  856. build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update,
  857. build_state, tables.rsdp,
  858. ACPI_BUILD_RSDP_FILE, 0);
  859. qemu_register_reset(virt_acpi_build_reset, build_state);
  860. virt_acpi_build_reset(build_state);
  861. vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
  862. /* Cleanup tables but don't free the memory: we track it
  863. * in build_state.
  864. */
  865. acpi_build_tables_cleanup(&tables, false);
  866. }