vexpress.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847
  1. /*
  2. * ARM Versatile Express emulation.
  3. *
  4. * Copyright (c) 2010 - 2011 B Labs Ltd.
  5. * Copyright (c) 2011 Linaro Limited
  6. * Written by Bahadir Balban, Amit Mahajan, Peter Maydell
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * Contributions after 2012-01-13 are licensed under the terms of the
  21. * GNU GPL, version 2 or (at your option) any later version.
  22. */
  23. #include "qemu/osdep.h"
  24. #include "qapi/error.h"
  25. #include "qemu-common.h"
  26. #include "cpu.h"
  27. #include "hw/sysbus.h"
  28. #include "hw/arm/boot.h"
  29. #include "hw/arm/primecell.h"
  30. #include "hw/net/lan9118.h"
  31. #include "hw/i2c/i2c.h"
  32. #include "net/net.h"
  33. #include "sysemu/sysemu.h"
  34. #include "hw/boards.h"
  35. #include "hw/loader.h"
  36. #include "exec/address-spaces.h"
  37. #include "hw/block/flash.h"
  38. #include "sysemu/device_tree.h"
  39. #include "qemu/error-report.h"
  40. #include <libfdt.h>
  41. #include "hw/char/pl011.h"
  42. #include "hw/cpu/a9mpcore.h"
  43. #include "hw/cpu/a15mpcore.h"
  44. #include "hw/i2c/arm_sbcon_i2c.h"
  45. #define VEXPRESS_BOARD_ID 0x8e0
  46. #define VEXPRESS_FLASH_SIZE (64 * 1024 * 1024)
  47. #define VEXPRESS_FLASH_SECT_SIZE (256 * 1024)
  48. /* Number of virtio transports to create (0..8; limited by
  49. * number of available IRQ lines).
  50. */
  51. #define NUM_VIRTIO_TRANSPORTS 4
  52. /* Address maps for peripherals:
  53. * the Versatile Express motherboard has two possible maps,
  54. * the "legacy" one (used for A9) and the "Cortex-A Series"
  55. * map (used for newer cores).
  56. * Individual daughterboards can also have different maps for
  57. * their peripherals.
  58. */
  59. enum {
  60. VE_SYSREGS,
  61. VE_SP810,
  62. VE_SERIALPCI,
  63. VE_PL041,
  64. VE_MMCI,
  65. VE_KMI0,
  66. VE_KMI1,
  67. VE_UART0,
  68. VE_UART1,
  69. VE_UART2,
  70. VE_UART3,
  71. VE_WDT,
  72. VE_TIMER01,
  73. VE_TIMER23,
  74. VE_SERIALDVI,
  75. VE_RTC,
  76. VE_COMPACTFLASH,
  77. VE_CLCD,
  78. VE_NORFLASH0,
  79. VE_NORFLASH1,
  80. VE_NORFLASHALIAS,
  81. VE_SRAM,
  82. VE_VIDEORAM,
  83. VE_ETHERNET,
  84. VE_USB,
  85. VE_DAPROM,
  86. VE_VIRTIO,
  87. };
  88. static hwaddr motherboard_legacy_map[] = {
  89. [VE_NORFLASHALIAS] = 0,
  90. /* CS7: 0x10000000 .. 0x10020000 */
  91. [VE_SYSREGS] = 0x10000000,
  92. [VE_SP810] = 0x10001000,
  93. [VE_SERIALPCI] = 0x10002000,
  94. [VE_PL041] = 0x10004000,
  95. [VE_MMCI] = 0x10005000,
  96. [VE_KMI0] = 0x10006000,
  97. [VE_KMI1] = 0x10007000,
  98. [VE_UART0] = 0x10009000,
  99. [VE_UART1] = 0x1000a000,
  100. [VE_UART2] = 0x1000b000,
  101. [VE_UART3] = 0x1000c000,
  102. [VE_WDT] = 0x1000f000,
  103. [VE_TIMER01] = 0x10011000,
  104. [VE_TIMER23] = 0x10012000,
  105. [VE_VIRTIO] = 0x10013000,
  106. [VE_SERIALDVI] = 0x10016000,
  107. [VE_RTC] = 0x10017000,
  108. [VE_COMPACTFLASH] = 0x1001a000,
  109. [VE_CLCD] = 0x1001f000,
  110. /* CS0: 0x40000000 .. 0x44000000 */
  111. [VE_NORFLASH0] = 0x40000000,
  112. /* CS1: 0x44000000 .. 0x48000000 */
  113. [VE_NORFLASH1] = 0x44000000,
  114. /* CS2: 0x48000000 .. 0x4a000000 */
  115. [VE_SRAM] = 0x48000000,
  116. /* CS3: 0x4c000000 .. 0x50000000 */
  117. [VE_VIDEORAM] = 0x4c000000,
  118. [VE_ETHERNET] = 0x4e000000,
  119. [VE_USB] = 0x4f000000,
  120. };
  121. static hwaddr motherboard_aseries_map[] = {
  122. [VE_NORFLASHALIAS] = 0,
  123. /* CS0: 0x08000000 .. 0x0c000000 */
  124. [VE_NORFLASH0] = 0x08000000,
  125. /* CS4: 0x0c000000 .. 0x10000000 */
  126. [VE_NORFLASH1] = 0x0c000000,
  127. /* CS5: 0x10000000 .. 0x14000000 */
  128. /* CS1: 0x14000000 .. 0x18000000 */
  129. [VE_SRAM] = 0x14000000,
  130. /* CS2: 0x18000000 .. 0x1c000000 */
  131. [VE_VIDEORAM] = 0x18000000,
  132. [VE_ETHERNET] = 0x1a000000,
  133. [VE_USB] = 0x1b000000,
  134. /* CS3: 0x1c000000 .. 0x20000000 */
  135. [VE_DAPROM] = 0x1c000000,
  136. [VE_SYSREGS] = 0x1c010000,
  137. [VE_SP810] = 0x1c020000,
  138. [VE_SERIALPCI] = 0x1c030000,
  139. [VE_PL041] = 0x1c040000,
  140. [VE_MMCI] = 0x1c050000,
  141. [VE_KMI0] = 0x1c060000,
  142. [VE_KMI1] = 0x1c070000,
  143. [VE_UART0] = 0x1c090000,
  144. [VE_UART1] = 0x1c0a0000,
  145. [VE_UART2] = 0x1c0b0000,
  146. [VE_UART3] = 0x1c0c0000,
  147. [VE_WDT] = 0x1c0f0000,
  148. [VE_TIMER01] = 0x1c110000,
  149. [VE_TIMER23] = 0x1c120000,
  150. [VE_VIRTIO] = 0x1c130000,
  151. [VE_SERIALDVI] = 0x1c160000,
  152. [VE_RTC] = 0x1c170000,
  153. [VE_COMPACTFLASH] = 0x1c1a0000,
  154. [VE_CLCD] = 0x1c1f0000,
  155. };
  156. /* Structure defining the peculiarities of a specific daughterboard */
  157. typedef struct VEDBoardInfo VEDBoardInfo;
  158. typedef struct {
  159. MachineClass parent;
  160. VEDBoardInfo *daughterboard;
  161. } VexpressMachineClass;
  162. typedef struct {
  163. MachineState parent;
  164. bool secure;
  165. bool virt;
  166. } VexpressMachineState;
  167. #define TYPE_VEXPRESS_MACHINE "vexpress"
  168. #define TYPE_VEXPRESS_A9_MACHINE MACHINE_TYPE_NAME("vexpress-a9")
  169. #define TYPE_VEXPRESS_A15_MACHINE MACHINE_TYPE_NAME("vexpress-a15")
  170. #define VEXPRESS_MACHINE(obj) \
  171. OBJECT_CHECK(VexpressMachineState, (obj), TYPE_VEXPRESS_MACHINE)
  172. #define VEXPRESS_MACHINE_GET_CLASS(obj) \
  173. OBJECT_GET_CLASS(VexpressMachineClass, obj, TYPE_VEXPRESS_MACHINE)
  174. #define VEXPRESS_MACHINE_CLASS(klass) \
  175. OBJECT_CLASS_CHECK(VexpressMachineClass, klass, TYPE_VEXPRESS_MACHINE)
  176. typedef void DBoardInitFn(const VexpressMachineState *machine,
  177. ram_addr_t ram_size,
  178. const char *cpu_type,
  179. qemu_irq *pic);
  180. struct VEDBoardInfo {
  181. struct arm_boot_info bootinfo;
  182. const hwaddr *motherboard_map;
  183. hwaddr loader_start;
  184. const hwaddr gic_cpu_if_addr;
  185. uint32_t proc_id;
  186. uint32_t num_voltage_sensors;
  187. const uint32_t *voltages;
  188. uint32_t num_clocks;
  189. const uint32_t *clocks;
  190. DBoardInitFn *init;
  191. };
  192. static void init_cpus(MachineState *ms, const char *cpu_type,
  193. const char *privdev, hwaddr periphbase,
  194. qemu_irq *pic, bool secure, bool virt)
  195. {
  196. DeviceState *dev;
  197. SysBusDevice *busdev;
  198. int n;
  199. unsigned int smp_cpus = ms->smp.cpus;
  200. /* Create the actual CPUs */
  201. for (n = 0; n < smp_cpus; n++) {
  202. Object *cpuobj = object_new(cpu_type);
  203. if (!secure) {
  204. object_property_set_bool(cpuobj, "has_el3", false, NULL);
  205. }
  206. if (!virt) {
  207. if (object_property_find(cpuobj, "has_el2", NULL)) {
  208. object_property_set_bool(cpuobj, "has_el2", false, NULL);
  209. }
  210. }
  211. if (object_property_find(cpuobj, "reset-cbar", NULL)) {
  212. object_property_set_int(cpuobj, "reset-cbar", periphbase,
  213. &error_abort);
  214. }
  215. qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
  216. }
  217. /* Create the private peripheral devices (including the GIC);
  218. * this must happen after the CPUs are created because a15mpcore_priv
  219. * wires itself up to the CPU's generic_timer gpio out lines.
  220. */
  221. dev = qdev_new(privdev);
  222. qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
  223. busdev = SYS_BUS_DEVICE(dev);
  224. sysbus_realize_and_unref(busdev, &error_fatal);
  225. sysbus_mmio_map(busdev, 0, periphbase);
  226. /* Interrupts [42:0] are from the motherboard;
  227. * [47:43] are reserved; [63:48] are daughterboard
  228. * peripherals. Note that some documentation numbers
  229. * external interrupts starting from 32 (because there
  230. * are internal interrupts 0..31).
  231. */
  232. for (n = 0; n < 64; n++) {
  233. pic[n] = qdev_get_gpio_in(dev, n);
  234. }
  235. /* Connect the CPUs to the GIC */
  236. for (n = 0; n < smp_cpus; n++) {
  237. DeviceState *cpudev = DEVICE(qemu_get_cpu(n));
  238. sysbus_connect_irq(busdev, n, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
  239. sysbus_connect_irq(busdev, n + smp_cpus,
  240. qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
  241. sysbus_connect_irq(busdev, n + 2 * smp_cpus,
  242. qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
  243. sysbus_connect_irq(busdev, n + 3 * smp_cpus,
  244. qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
  245. }
  246. }
  247. static void a9_daughterboard_init(const VexpressMachineState *vms,
  248. ram_addr_t ram_size,
  249. const char *cpu_type,
  250. qemu_irq *pic)
  251. {
  252. MachineState *machine = MACHINE(vms);
  253. MemoryRegion *sysmem = get_system_memory();
  254. MemoryRegion *lowram = g_new(MemoryRegion, 1);
  255. ram_addr_t low_ram_size;
  256. if (ram_size > 0x40000000) {
  257. /* 1GB is the maximum the address space permits */
  258. error_report("vexpress-a9: cannot model more than 1GB RAM");
  259. exit(1);
  260. }
  261. low_ram_size = ram_size;
  262. if (low_ram_size > 0x4000000) {
  263. low_ram_size = 0x4000000;
  264. }
  265. /* RAM is from 0x60000000 upwards. The bottom 64MB of the
  266. * address space should in theory be remappable to various
  267. * things including ROM or RAM; we always map the RAM there.
  268. */
  269. memory_region_init_alias(lowram, NULL, "vexpress.lowmem", machine->ram,
  270. 0, low_ram_size);
  271. memory_region_add_subregion(sysmem, 0x0, lowram);
  272. memory_region_add_subregion(sysmem, 0x60000000, machine->ram);
  273. /* 0x1e000000 A9MPCore (SCU) private memory region */
  274. init_cpus(machine, cpu_type, TYPE_A9MPCORE_PRIV, 0x1e000000, pic,
  275. vms->secure, vms->virt);
  276. /* Daughterboard peripherals : 0x10020000 .. 0x20000000 */
  277. /* 0x10020000 PL111 CLCD (daughterboard) */
  278. sysbus_create_simple("pl111", 0x10020000, pic[44]);
  279. /* 0x10060000 AXI RAM */
  280. /* 0x100e0000 PL341 Dynamic Memory Controller */
  281. /* 0x100e1000 PL354 Static Memory Controller */
  282. /* 0x100e2000 System Configuration Controller */
  283. sysbus_create_simple("sp804", 0x100e4000, pic[48]);
  284. /* 0x100e5000 SP805 Watchdog module */
  285. /* 0x100e6000 BP147 TrustZone Protection Controller */
  286. /* 0x100e9000 PL301 'Fast' AXI matrix */
  287. /* 0x100ea000 PL301 'Slow' AXI matrix */
  288. /* 0x100ec000 TrustZone Address Space Controller */
  289. /* 0x10200000 CoreSight debug APB */
  290. /* 0x1e00a000 PL310 L2 Cache Controller */
  291. sysbus_create_varargs("l2x0", 0x1e00a000, NULL);
  292. }
  293. /* Voltage values for SYS_CFG_VOLT daughterboard registers;
  294. * values are in microvolts.
  295. */
  296. static const uint32_t a9_voltages[] = {
  297. 1000000, /* VD10 : 1.0V : SoC internal logic voltage */
  298. 1000000, /* VD10_S2 : 1.0V : PL310, L2 cache, RAM, non-PL310 logic */
  299. 1000000, /* VD10_S3 : 1.0V : Cortex-A9, cores, MPEs, SCU, PL310 logic */
  300. 1800000, /* VCC1V8 : 1.8V : DDR2 SDRAM, test chip DDR2 I/O supply */
  301. 900000, /* DDR2VTT : 0.9V : DDR2 SDRAM VTT termination voltage */
  302. 3300000, /* VCC3V3 : 3.3V : local board supply for misc external logic */
  303. };
  304. /* Reset values for daughterboard oscillators (in Hz) */
  305. static const uint32_t a9_clocks[] = {
  306. 45000000, /* AMBA AXI ACLK: 45MHz */
  307. 23750000, /* daughterboard CLCD clock: 23.75MHz */
  308. 66670000, /* Test chip reference clock: 66.67MHz */
  309. };
  310. static VEDBoardInfo a9_daughterboard = {
  311. .motherboard_map = motherboard_legacy_map,
  312. .loader_start = 0x60000000,
  313. .gic_cpu_if_addr = 0x1e000100,
  314. .proc_id = 0x0c000191,
  315. .num_voltage_sensors = ARRAY_SIZE(a9_voltages),
  316. .voltages = a9_voltages,
  317. .num_clocks = ARRAY_SIZE(a9_clocks),
  318. .clocks = a9_clocks,
  319. .init = a9_daughterboard_init,
  320. };
  321. static void a15_daughterboard_init(const VexpressMachineState *vms,
  322. ram_addr_t ram_size,
  323. const char *cpu_type,
  324. qemu_irq *pic)
  325. {
  326. MachineState *machine = MACHINE(vms);
  327. MemoryRegion *sysmem = get_system_memory();
  328. MemoryRegion *sram = g_new(MemoryRegion, 1);
  329. {
  330. /* We have to use a separate 64 bit variable here to avoid the gcc
  331. * "comparison is always false due to limited range of data type"
  332. * warning if we are on a host where ram_addr_t is 32 bits.
  333. */
  334. uint64_t rsz = ram_size;
  335. if (rsz > (30ULL * 1024 * 1024 * 1024)) {
  336. error_report("vexpress-a15: cannot model more than 30GB RAM");
  337. exit(1);
  338. }
  339. }
  340. /* RAM is from 0x80000000 upwards; there is no low-memory alias for it. */
  341. memory_region_add_subregion(sysmem, 0x80000000, machine->ram);
  342. /* 0x2c000000 A15MPCore private memory region (GIC) */
  343. init_cpus(machine, cpu_type, TYPE_A15MPCORE_PRIV,
  344. 0x2c000000, pic, vms->secure, vms->virt);
  345. /* A15 daughterboard peripherals: */
  346. /* 0x20000000: CoreSight interfaces: not modelled */
  347. /* 0x2a000000: PL301 AXI interconnect: not modelled */
  348. /* 0x2a420000: SCC: not modelled */
  349. /* 0x2a430000: system counter: not modelled */
  350. /* 0x2b000000: HDLCD controller: not modelled */
  351. /* 0x2b060000: SP805 watchdog: not modelled */
  352. /* 0x2b0a0000: PL341 dynamic memory controller: not modelled */
  353. /* 0x2e000000: system SRAM */
  354. memory_region_init_ram(sram, NULL, "vexpress.a15sram", 0x10000,
  355. &error_fatal);
  356. memory_region_add_subregion(sysmem, 0x2e000000, sram);
  357. /* 0x7ffb0000: DMA330 DMA controller: not modelled */
  358. /* 0x7ffd0000: PL354 static memory controller: not modelled */
  359. }
  360. static const uint32_t a15_voltages[] = {
  361. 900000, /* Vcore: 0.9V : CPU core voltage */
  362. };
  363. static const uint32_t a15_clocks[] = {
  364. 60000000, /* OSCCLK0: 60MHz : CPU_CLK reference */
  365. 0, /* OSCCLK1: reserved */
  366. 0, /* OSCCLK2: reserved */
  367. 0, /* OSCCLK3: reserved */
  368. 40000000, /* OSCCLK4: 40MHz : external AXI master clock */
  369. 23750000, /* OSCCLK5: 23.75MHz : HDLCD PLL reference */
  370. 50000000, /* OSCCLK6: 50MHz : static memory controller clock */
  371. 60000000, /* OSCCLK7: 60MHz : SYSCLK reference */
  372. 40000000, /* OSCCLK8: 40MHz : DDR2 PLL reference */
  373. };
  374. static VEDBoardInfo a15_daughterboard = {
  375. .motherboard_map = motherboard_aseries_map,
  376. .loader_start = 0x80000000,
  377. .gic_cpu_if_addr = 0x2c002000,
  378. .proc_id = 0x14000237,
  379. .num_voltage_sensors = ARRAY_SIZE(a15_voltages),
  380. .voltages = a15_voltages,
  381. .num_clocks = ARRAY_SIZE(a15_clocks),
  382. .clocks = a15_clocks,
  383. .init = a15_daughterboard_init,
  384. };
  385. static int add_virtio_mmio_node(void *fdt, uint32_t acells, uint32_t scells,
  386. hwaddr addr, hwaddr size, uint32_t intc,
  387. int irq)
  388. {
  389. /* Add a virtio_mmio node to the device tree blob:
  390. * virtio_mmio@ADDRESS {
  391. * compatible = "virtio,mmio";
  392. * reg = <ADDRESS, SIZE>;
  393. * interrupt-parent = <&intc>;
  394. * interrupts = <0, irq, 1>;
  395. * }
  396. * (Note that the format of the interrupts property is dependent on the
  397. * interrupt controller that interrupt-parent points to; these are for
  398. * the ARM GIC and indicate an SPI interrupt, rising-edge-triggered.)
  399. */
  400. int rc;
  401. char *nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, addr);
  402. rc = qemu_fdt_add_subnode(fdt, nodename);
  403. rc |= qemu_fdt_setprop_string(fdt, nodename,
  404. "compatible", "virtio,mmio");
  405. rc |= qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
  406. acells, addr, scells, size);
  407. qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", intc);
  408. qemu_fdt_setprop_cells(fdt, nodename, "interrupts", 0, irq, 1);
  409. qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0);
  410. g_free(nodename);
  411. if (rc) {
  412. return -1;
  413. }
  414. return 0;
  415. }
  416. static uint32_t find_int_controller(void *fdt)
  417. {
  418. /* Find the FDT node corresponding to the interrupt controller
  419. * for virtio-mmio devices. We do this by scanning the fdt for
  420. * a node with the right compatibility, since we know there is
  421. * only one GIC on a vexpress board.
  422. * We return the phandle of the node, or 0 if none was found.
  423. */
  424. const char *compat = "arm,cortex-a9-gic";
  425. int offset;
  426. offset = fdt_node_offset_by_compatible(fdt, -1, compat);
  427. if (offset >= 0) {
  428. return fdt_get_phandle(fdt, offset);
  429. }
  430. return 0;
  431. }
  432. static void vexpress_modify_dtb(const struct arm_boot_info *info, void *fdt)
  433. {
  434. uint32_t acells, scells, intc;
  435. const VEDBoardInfo *daughterboard = (const VEDBoardInfo *)info;
  436. acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
  437. NULL, &error_fatal);
  438. scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
  439. NULL, &error_fatal);
  440. intc = find_int_controller(fdt);
  441. if (!intc) {
  442. /* Not fatal, we just won't provide virtio. This will
  443. * happen with older device tree blobs.
  444. */
  445. warn_report("couldn't find interrupt controller in "
  446. "dtb; will not include virtio-mmio devices in the dtb");
  447. } else {
  448. int i;
  449. const hwaddr *map = daughterboard->motherboard_map;
  450. /* We iterate backwards here because adding nodes
  451. * to the dtb puts them in last-first.
  452. */
  453. for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
  454. add_virtio_mmio_node(fdt, acells, scells,
  455. map[VE_VIRTIO] + 0x200 * i,
  456. 0x200, intc, 40 + i);
  457. }
  458. }
  459. }
  460. /* Open code a private version of pflash registration since we
  461. * need to set non-default device width for VExpress platform.
  462. */
  463. static PFlashCFI01 *ve_pflash_cfi01_register(hwaddr base, const char *name,
  464. DriveInfo *di)
  465. {
  466. DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
  467. if (di) {
  468. qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(di));
  469. }
  470. qdev_prop_set_uint32(dev, "num-blocks",
  471. VEXPRESS_FLASH_SIZE / VEXPRESS_FLASH_SECT_SIZE);
  472. qdev_prop_set_uint64(dev, "sector-length", VEXPRESS_FLASH_SECT_SIZE);
  473. qdev_prop_set_uint8(dev, "width", 4);
  474. qdev_prop_set_uint8(dev, "device-width", 2);
  475. qdev_prop_set_bit(dev, "big-endian", false);
  476. qdev_prop_set_uint16(dev, "id0", 0x89);
  477. qdev_prop_set_uint16(dev, "id1", 0x18);
  478. qdev_prop_set_uint16(dev, "id2", 0x00);
  479. qdev_prop_set_uint16(dev, "id3", 0x00);
  480. qdev_prop_set_string(dev, "name", name);
  481. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  482. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
  483. return PFLASH_CFI01(dev);
  484. }
  485. static void vexpress_common_init(MachineState *machine)
  486. {
  487. VexpressMachineState *vms = VEXPRESS_MACHINE(machine);
  488. VexpressMachineClass *vmc = VEXPRESS_MACHINE_GET_CLASS(machine);
  489. VEDBoardInfo *daughterboard = vmc->daughterboard;
  490. DeviceState *dev, *sysctl, *pl041;
  491. qemu_irq pic[64];
  492. uint32_t sys_id;
  493. DriveInfo *dinfo;
  494. PFlashCFI01 *pflash0;
  495. I2CBus *i2c;
  496. ram_addr_t vram_size, sram_size;
  497. MemoryRegion *sysmem = get_system_memory();
  498. MemoryRegion *vram = g_new(MemoryRegion, 1);
  499. MemoryRegion *sram = g_new(MemoryRegion, 1);
  500. MemoryRegion *flashalias = g_new(MemoryRegion, 1);
  501. MemoryRegion *flash0mem;
  502. const hwaddr *map = daughterboard->motherboard_map;
  503. int i;
  504. daughterboard->init(vms, machine->ram_size, machine->cpu_type, pic);
  505. /*
  506. * If a bios file was provided, attempt to map it into memory
  507. */
  508. if (bios_name) {
  509. char *fn;
  510. int image_size;
  511. if (drive_get(IF_PFLASH, 0, 0)) {
  512. error_report("The contents of the first flash device may be "
  513. "specified with -bios or with -drive if=pflash... "
  514. "but you cannot use both options at once");
  515. exit(1);
  516. }
  517. fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  518. if (!fn) {
  519. error_report("Could not find ROM image '%s'", bios_name);
  520. exit(1);
  521. }
  522. image_size = load_image_targphys(fn, map[VE_NORFLASH0],
  523. VEXPRESS_FLASH_SIZE);
  524. g_free(fn);
  525. if (image_size < 0) {
  526. error_report("Could not load ROM image '%s'", bios_name);
  527. exit(1);
  528. }
  529. }
  530. /* Motherboard peripherals: the wiring is the same but the
  531. * addresses vary between the legacy and A-Series memory maps.
  532. */
  533. sys_id = 0x1190f500;
  534. sysctl = qdev_new("realview_sysctl");
  535. qdev_prop_set_uint32(sysctl, "sys_id", sys_id);
  536. qdev_prop_set_uint32(sysctl, "proc_id", daughterboard->proc_id);
  537. qdev_prop_set_uint32(sysctl, "len-db-voltage",
  538. daughterboard->num_voltage_sensors);
  539. for (i = 0; i < daughterboard->num_voltage_sensors; i++) {
  540. char *propname = g_strdup_printf("db-voltage[%d]", i);
  541. qdev_prop_set_uint32(sysctl, propname, daughterboard->voltages[i]);
  542. g_free(propname);
  543. }
  544. qdev_prop_set_uint32(sysctl, "len-db-clock",
  545. daughterboard->num_clocks);
  546. for (i = 0; i < daughterboard->num_clocks; i++) {
  547. char *propname = g_strdup_printf("db-clock[%d]", i);
  548. qdev_prop_set_uint32(sysctl, propname, daughterboard->clocks[i]);
  549. g_free(propname);
  550. }
  551. sysbus_realize_and_unref(SYS_BUS_DEVICE(sysctl), &error_fatal);
  552. sysbus_mmio_map(SYS_BUS_DEVICE(sysctl), 0, map[VE_SYSREGS]);
  553. /* VE_SP810: not modelled */
  554. /* VE_SERIALPCI: not modelled */
  555. pl041 = qdev_new("pl041");
  556. qdev_prop_set_uint32(pl041, "nc_fifo_depth", 512);
  557. sysbus_realize_and_unref(SYS_BUS_DEVICE(pl041), &error_fatal);
  558. sysbus_mmio_map(SYS_BUS_DEVICE(pl041), 0, map[VE_PL041]);
  559. sysbus_connect_irq(SYS_BUS_DEVICE(pl041), 0, pic[11]);
  560. dev = sysbus_create_varargs("pl181", map[VE_MMCI], pic[9], pic[10], NULL);
  561. /* Wire up MMC card detect and read-only signals */
  562. qdev_connect_gpio_out(dev, 0,
  563. qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_WPROT));
  564. qdev_connect_gpio_out(dev, 1,
  565. qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_CARDIN));
  566. sysbus_create_simple("pl050_keyboard", map[VE_KMI0], pic[12]);
  567. sysbus_create_simple("pl050_mouse", map[VE_KMI1], pic[13]);
  568. pl011_create(map[VE_UART0], pic[5], serial_hd(0));
  569. pl011_create(map[VE_UART1], pic[6], serial_hd(1));
  570. pl011_create(map[VE_UART2], pic[7], serial_hd(2));
  571. pl011_create(map[VE_UART3], pic[8], serial_hd(3));
  572. sysbus_create_simple("sp804", map[VE_TIMER01], pic[2]);
  573. sysbus_create_simple("sp804", map[VE_TIMER23], pic[3]);
  574. dev = sysbus_create_simple(TYPE_VERSATILE_I2C, map[VE_SERIALDVI], NULL);
  575. i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
  576. i2c_slave_create_simple(i2c, "sii9022", 0x39);
  577. sysbus_create_simple("pl031", map[VE_RTC], pic[4]); /* RTC */
  578. /* VE_COMPACTFLASH: not modelled */
  579. sysbus_create_simple("pl111", map[VE_CLCD], pic[14]);
  580. dinfo = drive_get_next(IF_PFLASH);
  581. pflash0 = ve_pflash_cfi01_register(map[VE_NORFLASH0], "vexpress.flash0",
  582. dinfo);
  583. if (!pflash0) {
  584. error_report("vexpress: error registering flash 0");
  585. exit(1);
  586. }
  587. if (map[VE_NORFLASHALIAS] != -1) {
  588. /* Map flash 0 as an alias into low memory */
  589. flash0mem = sysbus_mmio_get_region(SYS_BUS_DEVICE(pflash0), 0);
  590. memory_region_init_alias(flashalias, NULL, "vexpress.flashalias",
  591. flash0mem, 0, VEXPRESS_FLASH_SIZE);
  592. memory_region_add_subregion(sysmem, map[VE_NORFLASHALIAS], flashalias);
  593. }
  594. dinfo = drive_get_next(IF_PFLASH);
  595. if (!ve_pflash_cfi01_register(map[VE_NORFLASH1], "vexpress.flash1",
  596. dinfo)) {
  597. error_report("vexpress: error registering flash 1");
  598. exit(1);
  599. }
  600. sram_size = 0x2000000;
  601. memory_region_init_ram(sram, NULL, "vexpress.sram", sram_size,
  602. &error_fatal);
  603. memory_region_add_subregion(sysmem, map[VE_SRAM], sram);
  604. vram_size = 0x800000;
  605. memory_region_init_ram(vram, NULL, "vexpress.vram", vram_size,
  606. &error_fatal);
  607. memory_region_add_subregion(sysmem, map[VE_VIDEORAM], vram);
  608. /* 0x4e000000 LAN9118 Ethernet */
  609. if (nd_table[0].used) {
  610. lan9118_init(&nd_table[0], map[VE_ETHERNET], pic[15]);
  611. }
  612. /* VE_USB: not modelled */
  613. /* VE_DAPROM: not modelled */
  614. /* Create mmio transports, so the user can create virtio backends
  615. * (which will be automatically plugged in to the transports). If
  616. * no backend is created the transport will just sit harmlessly idle.
  617. */
  618. for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
  619. sysbus_create_simple("virtio-mmio", map[VE_VIRTIO] + 0x200 * i,
  620. pic[40 + i]);
  621. }
  622. daughterboard->bootinfo.ram_size = machine->ram_size;
  623. daughterboard->bootinfo.nb_cpus = machine->smp.cpus;
  624. daughterboard->bootinfo.board_id = VEXPRESS_BOARD_ID;
  625. daughterboard->bootinfo.loader_start = daughterboard->loader_start;
  626. daughterboard->bootinfo.smp_loader_start = map[VE_SRAM];
  627. daughterboard->bootinfo.smp_bootreg_addr = map[VE_SYSREGS] + 0x30;
  628. daughterboard->bootinfo.gic_cpu_if_addr = daughterboard->gic_cpu_if_addr;
  629. daughterboard->bootinfo.modify_dtb = vexpress_modify_dtb;
  630. /* When booting Linux we should be in secure state if the CPU has one. */
  631. daughterboard->bootinfo.secure_boot = vms->secure;
  632. arm_load_kernel(ARM_CPU(first_cpu), machine, &daughterboard->bootinfo);
  633. }
  634. static bool vexpress_get_secure(Object *obj, Error **errp)
  635. {
  636. VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
  637. return vms->secure;
  638. }
  639. static void vexpress_set_secure(Object *obj, bool value, Error **errp)
  640. {
  641. VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
  642. vms->secure = value;
  643. }
  644. static bool vexpress_get_virt(Object *obj, Error **errp)
  645. {
  646. VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
  647. return vms->virt;
  648. }
  649. static void vexpress_set_virt(Object *obj, bool value, Error **errp)
  650. {
  651. VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
  652. vms->virt = value;
  653. }
  654. static void vexpress_instance_init(Object *obj)
  655. {
  656. VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
  657. /* EL3 is enabled by default on vexpress */
  658. vms->secure = true;
  659. object_property_add_bool(obj, "secure", vexpress_get_secure,
  660. vexpress_set_secure);
  661. object_property_set_description(obj, "secure",
  662. "Set on/off to enable/disable the ARM "
  663. "Security Extensions (TrustZone)");
  664. }
  665. static void vexpress_a15_instance_init(Object *obj)
  666. {
  667. VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
  668. /*
  669. * For the vexpress-a15, EL2 is by default enabled if EL3 is,
  670. * but can also be specifically set to on or off.
  671. */
  672. vms->virt = true;
  673. object_property_add_bool(obj, "virtualization", vexpress_get_virt,
  674. vexpress_set_virt);
  675. object_property_set_description(obj, "virtualization",
  676. "Set on/off to enable/disable the ARM "
  677. "Virtualization Extensions "
  678. "(defaults to same as 'secure')");
  679. }
  680. static void vexpress_a9_instance_init(Object *obj)
  681. {
  682. VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
  683. /* The A9 doesn't have the virt extensions */
  684. vms->virt = false;
  685. }
  686. static void vexpress_class_init(ObjectClass *oc, void *data)
  687. {
  688. MachineClass *mc = MACHINE_CLASS(oc);
  689. mc->desc = "ARM Versatile Express";
  690. mc->init = vexpress_common_init;
  691. mc->max_cpus = 4;
  692. mc->ignore_memory_transaction_failures = true;
  693. mc->default_ram_id = "vexpress.highmem";
  694. }
  695. static void vexpress_a9_class_init(ObjectClass *oc, void *data)
  696. {
  697. MachineClass *mc = MACHINE_CLASS(oc);
  698. VexpressMachineClass *vmc = VEXPRESS_MACHINE_CLASS(oc);
  699. mc->desc = "ARM Versatile Express for Cortex-A9";
  700. mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a9");
  701. vmc->daughterboard = &a9_daughterboard;
  702. }
  703. static void vexpress_a15_class_init(ObjectClass *oc, void *data)
  704. {
  705. MachineClass *mc = MACHINE_CLASS(oc);
  706. VexpressMachineClass *vmc = VEXPRESS_MACHINE_CLASS(oc);
  707. mc->desc = "ARM Versatile Express for Cortex-A15";
  708. mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
  709. vmc->daughterboard = &a15_daughterboard;
  710. }
  711. static const TypeInfo vexpress_info = {
  712. .name = TYPE_VEXPRESS_MACHINE,
  713. .parent = TYPE_MACHINE,
  714. .abstract = true,
  715. .instance_size = sizeof(VexpressMachineState),
  716. .instance_init = vexpress_instance_init,
  717. .class_size = sizeof(VexpressMachineClass),
  718. .class_init = vexpress_class_init,
  719. };
  720. static const TypeInfo vexpress_a9_info = {
  721. .name = TYPE_VEXPRESS_A9_MACHINE,
  722. .parent = TYPE_VEXPRESS_MACHINE,
  723. .class_init = vexpress_a9_class_init,
  724. .instance_init = vexpress_a9_instance_init,
  725. };
  726. static const TypeInfo vexpress_a15_info = {
  727. .name = TYPE_VEXPRESS_A15_MACHINE,
  728. .parent = TYPE_VEXPRESS_MACHINE,
  729. .class_init = vexpress_a15_class_init,
  730. .instance_init = vexpress_a15_instance_init,
  731. };
  732. static void vexpress_machine_init(void)
  733. {
  734. type_register_static(&vexpress_info);
  735. type_register_static(&vexpress_a9_info);
  736. type_register_static(&vexpress_a15_info);
  737. }
  738. type_init(vexpress_machine_init);