nrf51_soc.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. /*
  2. * Nordic Semiconductor nRF51 SoC
  3. * http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.1.pdf
  4. *
  5. * Copyright 2018 Joel Stanley <joel@jms.id.au>
  6. *
  7. * This code is licensed under the GPL version 2 or later. See
  8. * the COPYING file in the top-level directory.
  9. */
  10. #include "qemu/osdep.h"
  11. #include "qapi/error.h"
  12. #include "hw/arm/boot.h"
  13. #include "hw/sysbus.h"
  14. #include "hw/misc/unimp.h"
  15. #include "exec/address-spaces.h"
  16. #include "qemu/log.h"
  17. #include "cpu.h"
  18. #include "hw/arm/nrf51.h"
  19. #include "hw/arm/nrf51_soc.h"
  20. /*
  21. * The size and base is for the NRF51822 part. If other parts
  22. * are supported in the future, add a sub-class of NRF51SoC for
  23. * the specific variants
  24. */
  25. #define NRF51822_FLASH_PAGES 256
  26. #define NRF51822_SRAM_PAGES 16
  27. #define NRF51822_FLASH_SIZE (NRF51822_FLASH_PAGES * NRF51_PAGE_SIZE)
  28. #define NRF51822_SRAM_SIZE (NRF51822_SRAM_PAGES * NRF51_PAGE_SIZE)
  29. #define BASE_TO_IRQ(base) ((base >> 12) & 0x1F)
  30. /* HCLK (the main CPU clock) on this SoC is always 16MHz */
  31. #define HCLK_FRQ 16000000
  32. static uint64_t clock_read(void *opaque, hwaddr addr, unsigned int size)
  33. {
  34. qemu_log_mask(LOG_UNIMP, "%s: 0x%" HWADDR_PRIx " [%u]\n",
  35. __func__, addr, size);
  36. return 1;
  37. }
  38. static void clock_write(void *opaque, hwaddr addr, uint64_t data,
  39. unsigned int size)
  40. {
  41. qemu_log_mask(LOG_UNIMP, "%s: 0x%" HWADDR_PRIx " <- 0x%" PRIx64 " [%u]\n",
  42. __func__, addr, data, size);
  43. }
  44. static const MemoryRegionOps clock_ops = {
  45. .read = clock_read,
  46. .write = clock_write
  47. };
  48. static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp)
  49. {
  50. NRF51State *s = NRF51_SOC(dev_soc);
  51. MemoryRegion *mr;
  52. Error *err = NULL;
  53. uint8_t i = 0;
  54. hwaddr base_addr = 0;
  55. if (!s->board_memory) {
  56. error_setg(errp, "memory property was not set");
  57. return;
  58. }
  59. system_clock_scale = NANOSECONDS_PER_SECOND / HCLK_FRQ;
  60. object_property_set_link(OBJECT(&s->cpu), "memory", OBJECT(&s->container),
  61. &error_abort);
  62. if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu), errp)) {
  63. return;
  64. }
  65. memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
  66. memory_region_init_ram(&s->sram, OBJECT(s), "nrf51.sram", s->sram_size,
  67. &err);
  68. if (err) {
  69. error_propagate(errp, err);
  70. return;
  71. }
  72. memory_region_add_subregion(&s->container, NRF51_SRAM_BASE, &s->sram);
  73. /* UART */
  74. if (!sysbus_realize(SYS_BUS_DEVICE(&s->uart), errp)) {
  75. return;
  76. }
  77. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->uart), 0);
  78. memory_region_add_subregion_overlap(&s->container, NRF51_UART_BASE, mr, 0);
  79. sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart), 0,
  80. qdev_get_gpio_in(DEVICE(&s->cpu),
  81. BASE_TO_IRQ(NRF51_UART_BASE)));
  82. /* RNG */
  83. if (!sysbus_realize(SYS_BUS_DEVICE(&s->rng), errp)) {
  84. return;
  85. }
  86. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->rng), 0);
  87. memory_region_add_subregion_overlap(&s->container, NRF51_RNG_BASE, mr, 0);
  88. sysbus_connect_irq(SYS_BUS_DEVICE(&s->rng), 0,
  89. qdev_get_gpio_in(DEVICE(&s->cpu),
  90. BASE_TO_IRQ(NRF51_RNG_BASE)));
  91. /* UICR, FICR, NVMC, FLASH */
  92. if (!object_property_set_uint(OBJECT(&s->nvm), "flash-size",
  93. s->flash_size, errp)) {
  94. return;
  95. }
  96. if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvm), errp)) {
  97. return;
  98. }
  99. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->nvm), 0);
  100. memory_region_add_subregion_overlap(&s->container, NRF51_NVMC_BASE, mr, 0);
  101. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->nvm), 1);
  102. memory_region_add_subregion_overlap(&s->container, NRF51_FICR_BASE, mr, 0);
  103. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->nvm), 2);
  104. memory_region_add_subregion_overlap(&s->container, NRF51_UICR_BASE, mr, 0);
  105. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->nvm), 3);
  106. memory_region_add_subregion_overlap(&s->container, NRF51_FLASH_BASE, mr, 0);
  107. /* GPIO */
  108. if (!sysbus_realize(SYS_BUS_DEVICE(&s->gpio), errp)) {
  109. return;
  110. }
  111. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->gpio), 0);
  112. memory_region_add_subregion_overlap(&s->container, NRF51_GPIO_BASE, mr, 0);
  113. /* Pass all GPIOs to the SOC layer so they are available to the board */
  114. qdev_pass_gpios(DEVICE(&s->gpio), dev_soc, NULL);
  115. /* TIMER */
  116. for (i = 0; i < NRF51_NUM_TIMERS; i++) {
  117. if (!object_property_set_uint(OBJECT(&s->timer[i]), "id", i, errp)) {
  118. return;
  119. }
  120. if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer[i]), errp)) {
  121. return;
  122. }
  123. base_addr = NRF51_TIMER_BASE + i * NRF51_PERIPHERAL_SIZE;
  124. sysbus_mmio_map(SYS_BUS_DEVICE(&s->timer[i]), 0, base_addr);
  125. sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer[i]), 0,
  126. qdev_get_gpio_in(DEVICE(&s->cpu),
  127. BASE_TO_IRQ(base_addr)));
  128. }
  129. /* STUB Peripherals */
  130. memory_region_init_io(&s->clock, OBJECT(dev_soc), &clock_ops, NULL,
  131. "nrf51_soc.clock", NRF51_PERIPHERAL_SIZE);
  132. memory_region_add_subregion_overlap(&s->container,
  133. NRF51_IOMEM_BASE, &s->clock, -1);
  134. create_unimplemented_device("nrf51_soc.io", NRF51_IOMEM_BASE,
  135. NRF51_IOMEM_SIZE);
  136. create_unimplemented_device("nrf51_soc.private",
  137. NRF51_PRIVATE_BASE, NRF51_PRIVATE_SIZE);
  138. }
  139. static void nrf51_soc_init(Object *obj)
  140. {
  141. uint8_t i = 0;
  142. NRF51State *s = NRF51_SOC(obj);
  143. memory_region_init(&s->container, obj, "nrf51-container", UINT64_MAX);
  144. object_initialize_child(OBJECT(s), "armv6m", &s->cpu, TYPE_ARMV7M);
  145. qdev_prop_set_string(DEVICE(&s->cpu), "cpu-type",
  146. ARM_CPU_TYPE_NAME("cortex-m0"));
  147. qdev_prop_set_uint32(DEVICE(&s->cpu), "num-irq", 32);
  148. object_initialize_child(obj, "uart", &s->uart, TYPE_NRF51_UART);
  149. object_property_add_alias(obj, "serial0", OBJECT(&s->uart), "chardev");
  150. object_initialize_child(obj, "rng", &s->rng, TYPE_NRF51_RNG);
  151. object_initialize_child(obj, "nvm", &s->nvm, TYPE_NRF51_NVM);
  152. object_initialize_child(obj, "gpio", &s->gpio, TYPE_NRF51_GPIO);
  153. for (i = 0; i < NRF51_NUM_TIMERS; i++) {
  154. object_initialize_child(obj, "timer[*]", &s->timer[i],
  155. TYPE_NRF51_TIMER);
  156. }
  157. }
  158. static Property nrf51_soc_properties[] = {
  159. DEFINE_PROP_LINK("memory", NRF51State, board_memory, TYPE_MEMORY_REGION,
  160. MemoryRegion *),
  161. DEFINE_PROP_UINT32("sram-size", NRF51State, sram_size, NRF51822_SRAM_SIZE),
  162. DEFINE_PROP_UINT32("flash-size", NRF51State, flash_size,
  163. NRF51822_FLASH_SIZE),
  164. DEFINE_PROP_END_OF_LIST(),
  165. };
  166. static void nrf51_soc_class_init(ObjectClass *klass, void *data)
  167. {
  168. DeviceClass *dc = DEVICE_CLASS(klass);
  169. dc->realize = nrf51_soc_realize;
  170. device_class_set_props(dc, nrf51_soc_properties);
  171. }
  172. static const TypeInfo nrf51_soc_info = {
  173. .name = TYPE_NRF51_SOC,
  174. .parent = TYPE_SYS_BUS_DEVICE,
  175. .instance_size = sizeof(NRF51State),
  176. .instance_init = nrf51_soc_init,
  177. .class_init = nrf51_soc_class_init,
  178. };
  179. static void nrf51_soc_types(void)
  180. {
  181. type_register_static(&nrf51_soc_info);
  182. }
  183. type_init(nrf51_soc_types)