2
0

hpet.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. /*
  2. * High Precision Event Timer emulation
  3. *
  4. * Copyright (c) 2007 Alexander Graf
  5. * Copyright (c) 2008 IBM Corporation
  6. *
  7. * Authors: Beth Kon <bkon@us.ibm.com>
  8. *
  9. * This library is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2 of the License, or (at your option) any later version.
  13. *
  14. * This library is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  21. *
  22. * *****************************************************************
  23. *
  24. * This driver attempts to emulate an HPET device in software.
  25. */
  26. #include "qemu/osdep.h"
  27. #include "hw/i386/pc.h"
  28. #include "hw/irq.h"
  29. #include "ui/console.h"
  30. #include "qapi/error.h"
  31. #include "qemu/error-report.h"
  32. #include "qemu/timer.h"
  33. #include "hw/timer/hpet.h"
  34. #include "hw/sysbus.h"
  35. #include "hw/rtc/mc146818rtc.h"
  36. #include "hw/rtc/mc146818rtc_regs.h"
  37. #include "migration/vmstate.h"
  38. #include "hw/timer/i8254.h"
  39. //#define HPET_DEBUG
  40. #ifdef HPET_DEBUG
  41. #define DPRINTF printf
  42. #else
  43. #define DPRINTF(...)
  44. #endif
  45. #define HPET_MSI_SUPPORT 0
  46. #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
  47. struct HPETState;
  48. typedef struct HPETTimer { /* timers */
  49. uint8_t tn; /*timer number*/
  50. QEMUTimer *qemu_timer;
  51. struct HPETState *state;
  52. /* Memory-mapped, software visible timer registers */
  53. uint64_t config; /* configuration/cap */
  54. uint64_t cmp; /* comparator */
  55. uint64_t fsb; /* FSB route */
  56. /* Hidden register state */
  57. uint64_t period; /* Last value written to comparator */
  58. uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
  59. * mode. Next pop will be actual timer expiration.
  60. */
  61. } HPETTimer;
  62. typedef struct HPETState {
  63. /*< private >*/
  64. SysBusDevice parent_obj;
  65. /*< public >*/
  66. MemoryRegion iomem;
  67. uint64_t hpet_offset;
  68. bool hpet_offset_saved;
  69. qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
  70. uint32_t flags;
  71. uint8_t rtc_irq_level;
  72. qemu_irq pit_enabled;
  73. uint8_t num_timers;
  74. uint32_t intcap;
  75. HPETTimer timer[HPET_MAX_TIMERS];
  76. /* Memory-mapped, software visible registers */
  77. uint64_t capability; /* capabilities */
  78. uint64_t config; /* configuration */
  79. uint64_t isr; /* interrupt status reg */
  80. uint64_t hpet_counter; /* main counter */
  81. uint8_t hpet_id; /* instance id */
  82. } HPETState;
  83. static uint32_t hpet_in_legacy_mode(HPETState *s)
  84. {
  85. return s->config & HPET_CFG_LEGACY;
  86. }
  87. static uint32_t timer_int_route(struct HPETTimer *timer)
  88. {
  89. return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
  90. }
  91. static uint32_t timer_fsb_route(HPETTimer *t)
  92. {
  93. return t->config & HPET_TN_FSB_ENABLE;
  94. }
  95. static uint32_t hpet_enabled(HPETState *s)
  96. {
  97. return s->config & HPET_CFG_ENABLE;
  98. }
  99. static uint32_t timer_is_periodic(HPETTimer *t)
  100. {
  101. return t->config & HPET_TN_PERIODIC;
  102. }
  103. static uint32_t timer_enabled(HPETTimer *t)
  104. {
  105. return t->config & HPET_TN_ENABLE;
  106. }
  107. static uint32_t hpet_time_after(uint64_t a, uint64_t b)
  108. {
  109. return ((int32_t)(b - a) < 0);
  110. }
  111. static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
  112. {
  113. return ((int64_t)(b - a) < 0);
  114. }
  115. static uint64_t ticks_to_ns(uint64_t value)
  116. {
  117. return value * HPET_CLK_PERIOD;
  118. }
  119. static uint64_t ns_to_ticks(uint64_t value)
  120. {
  121. return value / HPET_CLK_PERIOD;
  122. }
  123. static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
  124. {
  125. new &= mask;
  126. new |= old & ~mask;
  127. return new;
  128. }
  129. static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
  130. {
  131. return (!(old & mask) && (new & mask));
  132. }
  133. static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
  134. {
  135. return ((old & mask) && !(new & mask));
  136. }
  137. static uint64_t hpet_get_ticks(HPETState *s)
  138. {
  139. return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
  140. }
  141. /*
  142. * calculate diff between comparator value and current ticks
  143. */
  144. static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
  145. {
  146. if (t->config & HPET_TN_32BIT) {
  147. uint32_t diff, cmp;
  148. cmp = (uint32_t)t->cmp;
  149. diff = cmp - (uint32_t)current;
  150. diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
  151. return (uint64_t)diff;
  152. } else {
  153. uint64_t diff, cmp;
  154. cmp = t->cmp;
  155. diff = cmp - current;
  156. diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
  157. return diff;
  158. }
  159. }
  160. static void update_irq(struct HPETTimer *timer, int set)
  161. {
  162. uint64_t mask;
  163. HPETState *s;
  164. int route;
  165. if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
  166. /* if LegacyReplacementRoute bit is set, HPET specification requires
  167. * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
  168. * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
  169. */
  170. route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
  171. } else {
  172. route = timer_int_route(timer);
  173. }
  174. s = timer->state;
  175. mask = 1 << timer->tn;
  176. if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
  177. s->isr &= ~mask;
  178. if (!timer_fsb_route(timer)) {
  179. qemu_irq_lower(s->irqs[route]);
  180. }
  181. } else if (timer_fsb_route(timer)) {
  182. address_space_stl_le(&address_space_memory, timer->fsb >> 32,
  183. timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
  184. NULL);
  185. } else if (timer->config & HPET_TN_TYPE_LEVEL) {
  186. s->isr |= mask;
  187. qemu_irq_raise(s->irqs[route]);
  188. } else {
  189. s->isr &= ~mask;
  190. qemu_irq_pulse(s->irqs[route]);
  191. }
  192. }
  193. static int hpet_pre_save(void *opaque)
  194. {
  195. HPETState *s = opaque;
  196. /* save current counter value */
  197. if (hpet_enabled(s)) {
  198. s->hpet_counter = hpet_get_ticks(s);
  199. }
  200. return 0;
  201. }
  202. static int hpet_pre_load(void *opaque)
  203. {
  204. HPETState *s = opaque;
  205. /* version 1 only supports 3, later versions will load the actual value */
  206. s->num_timers = HPET_MIN_TIMERS;
  207. return 0;
  208. }
  209. static bool hpet_validate_num_timers(void *opaque, int version_id)
  210. {
  211. HPETState *s = opaque;
  212. if (s->num_timers < HPET_MIN_TIMERS) {
  213. return false;
  214. } else if (s->num_timers > HPET_MAX_TIMERS) {
  215. return false;
  216. }
  217. return true;
  218. }
  219. static int hpet_post_load(void *opaque, int version_id)
  220. {
  221. HPETState *s = opaque;
  222. /* Recalculate the offset between the main counter and guest time */
  223. if (!s->hpet_offset_saved) {
  224. s->hpet_offset = ticks_to_ns(s->hpet_counter)
  225. - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  226. }
  227. /* Push number of timers into capability returned via HPET_ID */
  228. s->capability &= ~HPET_ID_NUM_TIM_MASK;
  229. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  230. hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  231. /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
  232. s->flags &= ~(1 << HPET_MSI_SUPPORT);
  233. if (s->timer[0].config & HPET_TN_FSB_CAP) {
  234. s->flags |= 1 << HPET_MSI_SUPPORT;
  235. }
  236. return 0;
  237. }
  238. static bool hpet_offset_needed(void *opaque)
  239. {
  240. HPETState *s = opaque;
  241. return hpet_enabled(s) && s->hpet_offset_saved;
  242. }
  243. static bool hpet_rtc_irq_level_needed(void *opaque)
  244. {
  245. HPETState *s = opaque;
  246. return s->rtc_irq_level != 0;
  247. }
  248. static const VMStateDescription vmstate_hpet_rtc_irq_level = {
  249. .name = "hpet/rtc_irq_level",
  250. .version_id = 1,
  251. .minimum_version_id = 1,
  252. .needed = hpet_rtc_irq_level_needed,
  253. .fields = (VMStateField[]) {
  254. VMSTATE_UINT8(rtc_irq_level, HPETState),
  255. VMSTATE_END_OF_LIST()
  256. }
  257. };
  258. static const VMStateDescription vmstate_hpet_offset = {
  259. .name = "hpet/offset",
  260. .version_id = 1,
  261. .minimum_version_id = 1,
  262. .needed = hpet_offset_needed,
  263. .fields = (VMStateField[]) {
  264. VMSTATE_UINT64(hpet_offset, HPETState),
  265. VMSTATE_END_OF_LIST()
  266. }
  267. };
  268. static const VMStateDescription vmstate_hpet_timer = {
  269. .name = "hpet_timer",
  270. .version_id = 1,
  271. .minimum_version_id = 1,
  272. .fields = (VMStateField[]) {
  273. VMSTATE_UINT8(tn, HPETTimer),
  274. VMSTATE_UINT64(config, HPETTimer),
  275. VMSTATE_UINT64(cmp, HPETTimer),
  276. VMSTATE_UINT64(fsb, HPETTimer),
  277. VMSTATE_UINT64(period, HPETTimer),
  278. VMSTATE_UINT8(wrap_flag, HPETTimer),
  279. VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
  280. VMSTATE_END_OF_LIST()
  281. }
  282. };
  283. static const VMStateDescription vmstate_hpet = {
  284. .name = "hpet",
  285. .version_id = 2,
  286. .minimum_version_id = 1,
  287. .pre_save = hpet_pre_save,
  288. .pre_load = hpet_pre_load,
  289. .post_load = hpet_post_load,
  290. .fields = (VMStateField[]) {
  291. VMSTATE_UINT64(config, HPETState),
  292. VMSTATE_UINT64(isr, HPETState),
  293. VMSTATE_UINT64(hpet_counter, HPETState),
  294. VMSTATE_UINT8_V(num_timers, HPETState, 2),
  295. VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
  296. VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
  297. vmstate_hpet_timer, HPETTimer),
  298. VMSTATE_END_OF_LIST()
  299. },
  300. .subsections = (const VMStateDescription*[]) {
  301. &vmstate_hpet_rtc_irq_level,
  302. &vmstate_hpet_offset,
  303. NULL
  304. }
  305. };
  306. /*
  307. * timer expiration callback
  308. */
  309. static void hpet_timer(void *opaque)
  310. {
  311. HPETTimer *t = opaque;
  312. uint64_t diff;
  313. uint64_t period = t->period;
  314. uint64_t cur_tick = hpet_get_ticks(t->state);
  315. if (timer_is_periodic(t) && period != 0) {
  316. if (t->config & HPET_TN_32BIT) {
  317. while (hpet_time_after(cur_tick, t->cmp)) {
  318. t->cmp = (uint32_t)(t->cmp + t->period);
  319. }
  320. } else {
  321. while (hpet_time_after64(cur_tick, t->cmp)) {
  322. t->cmp += period;
  323. }
  324. }
  325. diff = hpet_calculate_diff(t, cur_tick);
  326. timer_mod(t->qemu_timer,
  327. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
  328. } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
  329. if (t->wrap_flag) {
  330. diff = hpet_calculate_diff(t, cur_tick);
  331. timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  332. (int64_t)ticks_to_ns(diff));
  333. t->wrap_flag = 0;
  334. }
  335. }
  336. update_irq(t, 1);
  337. }
  338. static void hpet_set_timer(HPETTimer *t)
  339. {
  340. uint64_t diff;
  341. uint32_t wrap_diff; /* how many ticks until we wrap? */
  342. uint64_t cur_tick = hpet_get_ticks(t->state);
  343. /* whenever new timer is being set up, make sure wrap_flag is 0 */
  344. t->wrap_flag = 0;
  345. diff = hpet_calculate_diff(t, cur_tick);
  346. /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
  347. * counter wraps in addition to an interrupt with comparator match.
  348. */
  349. if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
  350. wrap_diff = 0xffffffff - (uint32_t)cur_tick;
  351. if (wrap_diff < (uint32_t)diff) {
  352. diff = wrap_diff;
  353. t->wrap_flag = 1;
  354. }
  355. }
  356. timer_mod(t->qemu_timer,
  357. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
  358. }
  359. static void hpet_del_timer(HPETTimer *t)
  360. {
  361. timer_del(t->qemu_timer);
  362. update_irq(t, 0);
  363. }
  364. #ifdef HPET_DEBUG
  365. static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
  366. {
  367. printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
  368. return 0;
  369. }
  370. static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
  371. {
  372. printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
  373. return 0;
  374. }
  375. #endif
  376. static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
  377. unsigned size)
  378. {
  379. HPETState *s = opaque;
  380. uint64_t cur_tick, index;
  381. DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
  382. index = addr;
  383. /*address range of all TN regs*/
  384. if (index >= 0x100 && index <= 0x3ff) {
  385. uint8_t timer_id = (addr - 0x100) / 0x20;
  386. HPETTimer *timer = &s->timer[timer_id];
  387. if (timer_id > s->num_timers) {
  388. DPRINTF("qemu: timer id out of range\n");
  389. return 0;
  390. }
  391. switch ((addr - 0x100) % 0x20) {
  392. case HPET_TN_CFG:
  393. return timer->config;
  394. case HPET_TN_CFG + 4: // Interrupt capabilities
  395. return timer->config >> 32;
  396. case HPET_TN_CMP: // comparator register
  397. return timer->cmp;
  398. case HPET_TN_CMP + 4:
  399. return timer->cmp >> 32;
  400. case HPET_TN_ROUTE:
  401. return timer->fsb;
  402. case HPET_TN_ROUTE + 4:
  403. return timer->fsb >> 32;
  404. default:
  405. DPRINTF("qemu: invalid hpet_ram_readl\n");
  406. break;
  407. }
  408. } else {
  409. switch (index) {
  410. case HPET_ID:
  411. return s->capability;
  412. case HPET_PERIOD:
  413. return s->capability >> 32;
  414. case HPET_CFG:
  415. return s->config;
  416. case HPET_CFG + 4:
  417. DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
  418. return 0;
  419. case HPET_COUNTER:
  420. if (hpet_enabled(s)) {
  421. cur_tick = hpet_get_ticks(s);
  422. } else {
  423. cur_tick = s->hpet_counter;
  424. }
  425. DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
  426. return cur_tick;
  427. case HPET_COUNTER + 4:
  428. if (hpet_enabled(s)) {
  429. cur_tick = hpet_get_ticks(s);
  430. } else {
  431. cur_tick = s->hpet_counter;
  432. }
  433. DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
  434. return cur_tick >> 32;
  435. case HPET_STATUS:
  436. return s->isr;
  437. default:
  438. DPRINTF("qemu: invalid hpet_ram_readl\n");
  439. break;
  440. }
  441. }
  442. return 0;
  443. }
  444. static void hpet_ram_write(void *opaque, hwaddr addr,
  445. uint64_t value, unsigned size)
  446. {
  447. int i;
  448. HPETState *s = opaque;
  449. uint64_t old_val, new_val, val, index;
  450. DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
  451. index = addr;
  452. old_val = hpet_ram_read(opaque, addr, 4);
  453. new_val = value;
  454. /*address range of all TN regs*/
  455. if (index >= 0x100 && index <= 0x3ff) {
  456. uint8_t timer_id = (addr - 0x100) / 0x20;
  457. HPETTimer *timer = &s->timer[timer_id];
  458. DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
  459. if (timer_id > s->num_timers) {
  460. DPRINTF("qemu: timer id out of range\n");
  461. return;
  462. }
  463. switch ((addr - 0x100) % 0x20) {
  464. case HPET_TN_CFG:
  465. DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
  466. if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
  467. update_irq(timer, 0);
  468. }
  469. val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
  470. timer->config = (timer->config & 0xffffffff00000000ULL) | val;
  471. if (new_val & HPET_TN_32BIT) {
  472. timer->cmp = (uint32_t)timer->cmp;
  473. timer->period = (uint32_t)timer->period;
  474. }
  475. if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
  476. hpet_enabled(s)) {
  477. hpet_set_timer(timer);
  478. } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
  479. hpet_del_timer(timer);
  480. }
  481. break;
  482. case HPET_TN_CFG + 4: // Interrupt capabilities
  483. DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
  484. break;
  485. case HPET_TN_CMP: // comparator register
  486. DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
  487. if (timer->config & HPET_TN_32BIT) {
  488. new_val = (uint32_t)new_val;
  489. }
  490. if (!timer_is_periodic(timer)
  491. || (timer->config & HPET_TN_SETVAL)) {
  492. timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
  493. }
  494. if (timer_is_periodic(timer)) {
  495. /*
  496. * FIXME: Clamp period to reasonable min value?
  497. * Clamp period to reasonable max value
  498. */
  499. new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
  500. timer->period =
  501. (timer->period & 0xffffffff00000000ULL) | new_val;
  502. }
  503. timer->config &= ~HPET_TN_SETVAL;
  504. if (hpet_enabled(s)) {
  505. hpet_set_timer(timer);
  506. }
  507. break;
  508. case HPET_TN_CMP + 4: // comparator register high order
  509. DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
  510. if (!timer_is_periodic(timer)
  511. || (timer->config & HPET_TN_SETVAL)) {
  512. timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
  513. } else {
  514. /*
  515. * FIXME: Clamp period to reasonable min value?
  516. * Clamp period to reasonable max value
  517. */
  518. new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
  519. timer->period =
  520. (timer->period & 0xffffffffULL) | new_val << 32;
  521. }
  522. timer->config &= ~HPET_TN_SETVAL;
  523. if (hpet_enabled(s)) {
  524. hpet_set_timer(timer);
  525. }
  526. break;
  527. case HPET_TN_ROUTE:
  528. timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
  529. break;
  530. case HPET_TN_ROUTE + 4:
  531. timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
  532. break;
  533. default:
  534. DPRINTF("qemu: invalid hpet_ram_writel\n");
  535. break;
  536. }
  537. return;
  538. } else {
  539. switch (index) {
  540. case HPET_ID:
  541. return;
  542. case HPET_CFG:
  543. val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
  544. s->config = (s->config & 0xffffffff00000000ULL) | val;
  545. if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  546. /* Enable main counter and interrupt generation. */
  547. s->hpet_offset =
  548. ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  549. for (i = 0; i < s->num_timers; i++) {
  550. if ((&s->timer[i])->cmp != ~0ULL) {
  551. hpet_set_timer(&s->timer[i]);
  552. }
  553. }
  554. } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  555. /* Halt main counter and disable interrupt generation. */
  556. s->hpet_counter = hpet_get_ticks(s);
  557. for (i = 0; i < s->num_timers; i++) {
  558. hpet_del_timer(&s->timer[i]);
  559. }
  560. }
  561. /* i8254 and RTC output pins are disabled
  562. * when HPET is in legacy mode */
  563. if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  564. qemu_set_irq(s->pit_enabled, 0);
  565. qemu_irq_lower(s->irqs[0]);
  566. qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
  567. } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  568. qemu_irq_lower(s->irqs[0]);
  569. qemu_set_irq(s->pit_enabled, 1);
  570. qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
  571. }
  572. break;
  573. case HPET_CFG + 4:
  574. DPRINTF("qemu: invalid HPET_CFG+4 write\n");
  575. break;
  576. case HPET_STATUS:
  577. val = new_val & s->isr;
  578. for (i = 0; i < s->num_timers; i++) {
  579. if (val & (1 << i)) {
  580. update_irq(&s->timer[i], 0);
  581. }
  582. }
  583. break;
  584. case HPET_COUNTER:
  585. if (hpet_enabled(s)) {
  586. DPRINTF("qemu: Writing counter while HPET enabled!\n");
  587. }
  588. s->hpet_counter =
  589. (s->hpet_counter & 0xffffffff00000000ULL) | value;
  590. DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
  591. value, s->hpet_counter);
  592. break;
  593. case HPET_COUNTER + 4:
  594. if (hpet_enabled(s)) {
  595. DPRINTF("qemu: Writing counter while HPET enabled!\n");
  596. }
  597. s->hpet_counter =
  598. (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
  599. DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
  600. value, s->hpet_counter);
  601. break;
  602. default:
  603. DPRINTF("qemu: invalid hpet_ram_writel\n");
  604. break;
  605. }
  606. }
  607. }
  608. static const MemoryRegionOps hpet_ram_ops = {
  609. .read = hpet_ram_read,
  610. .write = hpet_ram_write,
  611. .valid = {
  612. .min_access_size = 4,
  613. .max_access_size = 4,
  614. },
  615. .endianness = DEVICE_NATIVE_ENDIAN,
  616. };
  617. static void hpet_reset(DeviceState *d)
  618. {
  619. HPETState *s = HPET(d);
  620. SysBusDevice *sbd = SYS_BUS_DEVICE(d);
  621. int i;
  622. for (i = 0; i < s->num_timers; i++) {
  623. HPETTimer *timer = &s->timer[i];
  624. hpet_del_timer(timer);
  625. timer->cmp = ~0ULL;
  626. timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
  627. if (s->flags & (1 << HPET_MSI_SUPPORT)) {
  628. timer->config |= HPET_TN_FSB_CAP;
  629. }
  630. /* advertise availability of ioapic int */
  631. timer->config |= (uint64_t)s->intcap << 32;
  632. timer->period = 0ULL;
  633. timer->wrap_flag = 0;
  634. }
  635. qemu_set_irq(s->pit_enabled, 1);
  636. s->hpet_counter = 0ULL;
  637. s->hpet_offset = 0ULL;
  638. s->config = 0ULL;
  639. hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  640. hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
  641. /* to document that the RTC lowers its output on reset as well */
  642. s->rtc_irq_level = 0;
  643. }
  644. static void hpet_handle_legacy_irq(void *opaque, int n, int level)
  645. {
  646. HPETState *s = HPET(opaque);
  647. if (n == HPET_LEGACY_PIT_INT) {
  648. if (!hpet_in_legacy_mode(s)) {
  649. qemu_set_irq(s->irqs[0], level);
  650. }
  651. } else {
  652. s->rtc_irq_level = level;
  653. if (!hpet_in_legacy_mode(s)) {
  654. qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
  655. }
  656. }
  657. }
  658. static void hpet_init(Object *obj)
  659. {
  660. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  661. HPETState *s = HPET(obj);
  662. /* HPET Area */
  663. memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
  664. sysbus_init_mmio(sbd, &s->iomem);
  665. }
  666. static void hpet_realize(DeviceState *dev, Error **errp)
  667. {
  668. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  669. HPETState *s = HPET(dev);
  670. int i;
  671. HPETTimer *timer;
  672. if (!s->intcap) {
  673. warn_report("Hpet's intcap not initialized");
  674. }
  675. if (hpet_cfg.count == UINT8_MAX) {
  676. /* first instance */
  677. hpet_cfg.count = 0;
  678. }
  679. if (hpet_cfg.count == 8) {
  680. error_setg(errp, "Only 8 instances of HPET is allowed");
  681. return;
  682. }
  683. s->hpet_id = hpet_cfg.count++;
  684. for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
  685. sysbus_init_irq(sbd, &s->irqs[i]);
  686. }
  687. if (s->num_timers < HPET_MIN_TIMERS) {
  688. s->num_timers = HPET_MIN_TIMERS;
  689. } else if (s->num_timers > HPET_MAX_TIMERS) {
  690. s->num_timers = HPET_MAX_TIMERS;
  691. }
  692. for (i = 0; i < HPET_MAX_TIMERS; i++) {
  693. timer = &s->timer[i];
  694. timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
  695. timer->tn = i;
  696. timer->state = s;
  697. }
  698. /* 64-bit main counter; LegacyReplacementRoute. */
  699. s->capability = 0x8086a001ULL;
  700. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  701. s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
  702. qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
  703. qdev_init_gpio_out(dev, &s->pit_enabled, 1);
  704. }
  705. static Property hpet_device_properties[] = {
  706. DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
  707. DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
  708. DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
  709. DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
  710. DEFINE_PROP_END_OF_LIST(),
  711. };
  712. static void hpet_device_class_init(ObjectClass *klass, void *data)
  713. {
  714. DeviceClass *dc = DEVICE_CLASS(klass);
  715. dc->realize = hpet_realize;
  716. dc->reset = hpet_reset;
  717. dc->vmsd = &vmstate_hpet;
  718. dc->props = hpet_device_properties;
  719. }
  720. static const TypeInfo hpet_device_info = {
  721. .name = TYPE_HPET,
  722. .parent = TYPE_SYS_BUS_DEVICE,
  723. .instance_size = sizeof(HPETState),
  724. .instance_init = hpet_init,
  725. .class_init = hpet_device_class_init,
  726. };
  727. static void hpet_register_types(void)
  728. {
  729. type_register_static(&hpet_device_info);
  730. }
  731. type_init(hpet_register_types)