2
0

arm_timer.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. /*
  2. * ARM PrimeCell Timer modules.
  3. *
  4. * Copyright (c) 2005-2006 CodeSourcery.
  5. * Written by Paul Brook
  6. *
  7. * This code is licensed under the GPL.
  8. */
  9. #include "qemu/osdep.h"
  10. #include "hw/sysbus.h"
  11. #include "migration/vmstate.h"
  12. #include "qemu/timer.h"
  13. #include "hw/irq.h"
  14. #include "hw/ptimer.h"
  15. #include "hw/qdev-properties.h"
  16. #include "qemu/module.h"
  17. #include "qemu/log.h"
  18. /* Common timer implementation. */
  19. #define TIMER_CTRL_ONESHOT (1 << 0)
  20. #define TIMER_CTRL_32BIT (1 << 1)
  21. #define TIMER_CTRL_DIV1 (0 << 2)
  22. #define TIMER_CTRL_DIV16 (1 << 2)
  23. #define TIMER_CTRL_DIV256 (2 << 2)
  24. #define TIMER_CTRL_IE (1 << 5)
  25. #define TIMER_CTRL_PERIODIC (1 << 6)
  26. #define TIMER_CTRL_ENABLE (1 << 7)
  27. typedef struct {
  28. ptimer_state *timer;
  29. uint32_t control;
  30. uint32_t limit;
  31. int freq;
  32. int int_level;
  33. qemu_irq irq;
  34. } arm_timer_state;
  35. /* Check all active timers, and schedule the next timer interrupt. */
  36. static void arm_timer_update(arm_timer_state *s)
  37. {
  38. /* Update interrupts. */
  39. if (s->int_level && (s->control & TIMER_CTRL_IE)) {
  40. qemu_irq_raise(s->irq);
  41. } else {
  42. qemu_irq_lower(s->irq);
  43. }
  44. }
  45. static uint32_t arm_timer_read(void *opaque, hwaddr offset)
  46. {
  47. arm_timer_state *s = (arm_timer_state *)opaque;
  48. switch (offset >> 2) {
  49. case 0: /* TimerLoad */
  50. case 6: /* TimerBGLoad */
  51. return s->limit;
  52. case 1: /* TimerValue */
  53. return ptimer_get_count(s->timer);
  54. case 2: /* TimerControl */
  55. return s->control;
  56. case 4: /* TimerRIS */
  57. return s->int_level;
  58. case 5: /* TimerMIS */
  59. if ((s->control & TIMER_CTRL_IE) == 0)
  60. return 0;
  61. return s->int_level;
  62. default:
  63. qemu_log_mask(LOG_GUEST_ERROR,
  64. "%s: Bad offset %x\n", __func__, (int)offset);
  65. return 0;
  66. }
  67. }
  68. /*
  69. * Reset the timer limit after settings have changed.
  70. * May only be called from inside a ptimer transaction block.
  71. */
  72. static void arm_timer_recalibrate(arm_timer_state *s, int reload)
  73. {
  74. uint32_t limit;
  75. if ((s->control & (TIMER_CTRL_PERIODIC | TIMER_CTRL_ONESHOT)) == 0) {
  76. /* Free running. */
  77. if (s->control & TIMER_CTRL_32BIT)
  78. limit = 0xffffffff;
  79. else
  80. limit = 0xffff;
  81. } else {
  82. /* Periodic. */
  83. limit = s->limit;
  84. }
  85. ptimer_set_limit(s->timer, limit, reload);
  86. }
  87. static void arm_timer_write(void *opaque, hwaddr offset,
  88. uint32_t value)
  89. {
  90. arm_timer_state *s = (arm_timer_state *)opaque;
  91. int freq;
  92. switch (offset >> 2) {
  93. case 0: /* TimerLoad */
  94. s->limit = value;
  95. ptimer_transaction_begin(s->timer);
  96. arm_timer_recalibrate(s, 1);
  97. ptimer_transaction_commit(s->timer);
  98. break;
  99. case 1: /* TimerValue */
  100. /* ??? Linux seems to want to write to this readonly register.
  101. Ignore it. */
  102. break;
  103. case 2: /* TimerControl */
  104. ptimer_transaction_begin(s->timer);
  105. if (s->control & TIMER_CTRL_ENABLE) {
  106. /* Pause the timer if it is running. This may cause some
  107. inaccuracy dure to rounding, but avoids a whole lot of other
  108. messyness. */
  109. ptimer_stop(s->timer);
  110. }
  111. s->control = value;
  112. freq = s->freq;
  113. /* ??? Need to recalculate expiry time after changing divisor. */
  114. switch ((value >> 2) & 3) {
  115. case 1: freq >>= 4; break;
  116. case 2: freq >>= 8; break;
  117. }
  118. arm_timer_recalibrate(s, s->control & TIMER_CTRL_ENABLE);
  119. ptimer_set_freq(s->timer, freq);
  120. if (s->control & TIMER_CTRL_ENABLE) {
  121. /* Restart the timer if still enabled. */
  122. ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
  123. }
  124. ptimer_transaction_commit(s->timer);
  125. break;
  126. case 3: /* TimerIntClr */
  127. s->int_level = 0;
  128. break;
  129. case 6: /* TimerBGLoad */
  130. s->limit = value;
  131. ptimer_transaction_begin(s->timer);
  132. arm_timer_recalibrate(s, 0);
  133. ptimer_transaction_commit(s->timer);
  134. break;
  135. default:
  136. qemu_log_mask(LOG_GUEST_ERROR,
  137. "%s: Bad offset %x\n", __func__, (int)offset);
  138. }
  139. arm_timer_update(s);
  140. }
  141. static void arm_timer_tick(void *opaque)
  142. {
  143. arm_timer_state *s = (arm_timer_state *)opaque;
  144. s->int_level = 1;
  145. arm_timer_update(s);
  146. }
  147. static const VMStateDescription vmstate_arm_timer = {
  148. .name = "arm_timer",
  149. .version_id = 1,
  150. .minimum_version_id = 1,
  151. .fields = (VMStateField[]) {
  152. VMSTATE_UINT32(control, arm_timer_state),
  153. VMSTATE_UINT32(limit, arm_timer_state),
  154. VMSTATE_INT32(int_level, arm_timer_state),
  155. VMSTATE_PTIMER(timer, arm_timer_state),
  156. VMSTATE_END_OF_LIST()
  157. }
  158. };
  159. static arm_timer_state *arm_timer_init(uint32_t freq)
  160. {
  161. arm_timer_state *s;
  162. s = (arm_timer_state *)g_malloc0(sizeof(arm_timer_state));
  163. s->freq = freq;
  164. s->control = TIMER_CTRL_IE;
  165. s->timer = ptimer_init(arm_timer_tick, s, PTIMER_POLICY_DEFAULT);
  166. vmstate_register(NULL, -1, &vmstate_arm_timer, s);
  167. return s;
  168. }
  169. /* ARM PrimeCell SP804 dual timer module.
  170. * Docs at
  171. * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0271d/index.html
  172. */
  173. #define TYPE_SP804 "sp804"
  174. #define SP804(obj) OBJECT_CHECK(SP804State, (obj), TYPE_SP804)
  175. typedef struct SP804State {
  176. SysBusDevice parent_obj;
  177. MemoryRegion iomem;
  178. arm_timer_state *timer[2];
  179. uint32_t freq0, freq1;
  180. int level[2];
  181. qemu_irq irq;
  182. } SP804State;
  183. static const uint8_t sp804_ids[] = {
  184. /* Timer ID */
  185. 0x04, 0x18, 0x14, 0,
  186. /* PrimeCell ID */
  187. 0xd, 0xf0, 0x05, 0xb1
  188. };
  189. /* Merge the IRQs from the two component devices. */
  190. static void sp804_set_irq(void *opaque, int irq, int level)
  191. {
  192. SP804State *s = (SP804State *)opaque;
  193. s->level[irq] = level;
  194. qemu_set_irq(s->irq, s->level[0] || s->level[1]);
  195. }
  196. static uint64_t sp804_read(void *opaque, hwaddr offset,
  197. unsigned size)
  198. {
  199. SP804State *s = (SP804State *)opaque;
  200. if (offset < 0x20) {
  201. return arm_timer_read(s->timer[0], offset);
  202. }
  203. if (offset < 0x40) {
  204. return arm_timer_read(s->timer[1], offset - 0x20);
  205. }
  206. /* TimerPeriphID */
  207. if (offset >= 0xfe0 && offset <= 0xffc) {
  208. return sp804_ids[(offset - 0xfe0) >> 2];
  209. }
  210. switch (offset) {
  211. /* Integration Test control registers, which we won't support */
  212. case 0xf00: /* TimerITCR */
  213. case 0xf04: /* TimerITOP (strictly write only but..) */
  214. qemu_log_mask(LOG_UNIMP,
  215. "%s: integration test registers unimplemented\n",
  216. __func__);
  217. return 0;
  218. }
  219. qemu_log_mask(LOG_GUEST_ERROR,
  220. "%s: Bad offset %x\n", __func__, (int)offset);
  221. return 0;
  222. }
  223. static void sp804_write(void *opaque, hwaddr offset,
  224. uint64_t value, unsigned size)
  225. {
  226. SP804State *s = (SP804State *)opaque;
  227. if (offset < 0x20) {
  228. arm_timer_write(s->timer[0], offset, value);
  229. return;
  230. }
  231. if (offset < 0x40) {
  232. arm_timer_write(s->timer[1], offset - 0x20, value);
  233. return;
  234. }
  235. /* Technically we could be writing to the Test Registers, but not likely */
  236. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset %x\n",
  237. __func__, (int)offset);
  238. }
  239. static const MemoryRegionOps sp804_ops = {
  240. .read = sp804_read,
  241. .write = sp804_write,
  242. .endianness = DEVICE_NATIVE_ENDIAN,
  243. };
  244. static const VMStateDescription vmstate_sp804 = {
  245. .name = "sp804",
  246. .version_id = 1,
  247. .minimum_version_id = 1,
  248. .fields = (VMStateField[]) {
  249. VMSTATE_INT32_ARRAY(level, SP804State, 2),
  250. VMSTATE_END_OF_LIST()
  251. }
  252. };
  253. static void sp804_init(Object *obj)
  254. {
  255. SP804State *s = SP804(obj);
  256. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  257. sysbus_init_irq(sbd, &s->irq);
  258. memory_region_init_io(&s->iomem, obj, &sp804_ops, s,
  259. "sp804", 0x1000);
  260. sysbus_init_mmio(sbd, &s->iomem);
  261. }
  262. static void sp804_realize(DeviceState *dev, Error **errp)
  263. {
  264. SP804State *s = SP804(dev);
  265. s->timer[0] = arm_timer_init(s->freq0);
  266. s->timer[1] = arm_timer_init(s->freq1);
  267. s->timer[0]->irq = qemu_allocate_irq(sp804_set_irq, s, 0);
  268. s->timer[1]->irq = qemu_allocate_irq(sp804_set_irq, s, 1);
  269. }
  270. /* Integrator/CP timer module. */
  271. #define TYPE_INTEGRATOR_PIT "integrator_pit"
  272. #define INTEGRATOR_PIT(obj) \
  273. OBJECT_CHECK(icp_pit_state, (obj), TYPE_INTEGRATOR_PIT)
  274. typedef struct {
  275. SysBusDevice parent_obj;
  276. MemoryRegion iomem;
  277. arm_timer_state *timer[3];
  278. } icp_pit_state;
  279. static uint64_t icp_pit_read(void *opaque, hwaddr offset,
  280. unsigned size)
  281. {
  282. icp_pit_state *s = (icp_pit_state *)opaque;
  283. int n;
  284. /* ??? Don't know the PrimeCell ID for this device. */
  285. n = offset >> 8;
  286. if (n > 2) {
  287. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n);
  288. return 0;
  289. }
  290. return arm_timer_read(s->timer[n], offset & 0xff);
  291. }
  292. static void icp_pit_write(void *opaque, hwaddr offset,
  293. uint64_t value, unsigned size)
  294. {
  295. icp_pit_state *s = (icp_pit_state *)opaque;
  296. int n;
  297. n = offset >> 8;
  298. if (n > 2) {
  299. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n);
  300. return;
  301. }
  302. arm_timer_write(s->timer[n], offset & 0xff, value);
  303. }
  304. static const MemoryRegionOps icp_pit_ops = {
  305. .read = icp_pit_read,
  306. .write = icp_pit_write,
  307. .endianness = DEVICE_NATIVE_ENDIAN,
  308. };
  309. static void icp_pit_init(Object *obj)
  310. {
  311. icp_pit_state *s = INTEGRATOR_PIT(obj);
  312. SysBusDevice *dev = SYS_BUS_DEVICE(obj);
  313. /* Timer 0 runs at the system clock speed (40MHz). */
  314. s->timer[0] = arm_timer_init(40000000);
  315. /* The other two timers run at 1MHz. */
  316. s->timer[1] = arm_timer_init(1000000);
  317. s->timer[2] = arm_timer_init(1000000);
  318. sysbus_init_irq(dev, &s->timer[0]->irq);
  319. sysbus_init_irq(dev, &s->timer[1]->irq);
  320. sysbus_init_irq(dev, &s->timer[2]->irq);
  321. memory_region_init_io(&s->iomem, obj, &icp_pit_ops, s,
  322. "icp_pit", 0x1000);
  323. sysbus_init_mmio(dev, &s->iomem);
  324. /* This device has no state to save/restore. The component timers will
  325. save themselves. */
  326. }
  327. static const TypeInfo icp_pit_info = {
  328. .name = TYPE_INTEGRATOR_PIT,
  329. .parent = TYPE_SYS_BUS_DEVICE,
  330. .instance_size = sizeof(icp_pit_state),
  331. .instance_init = icp_pit_init,
  332. };
  333. static Property sp804_properties[] = {
  334. DEFINE_PROP_UINT32("freq0", SP804State, freq0, 1000000),
  335. DEFINE_PROP_UINT32("freq1", SP804State, freq1, 1000000),
  336. DEFINE_PROP_END_OF_LIST(),
  337. };
  338. static void sp804_class_init(ObjectClass *klass, void *data)
  339. {
  340. DeviceClass *k = DEVICE_CLASS(klass);
  341. k->realize = sp804_realize;
  342. k->props = sp804_properties;
  343. k->vmsd = &vmstate_sp804;
  344. }
  345. static const TypeInfo sp804_info = {
  346. .name = TYPE_SP804,
  347. .parent = TYPE_SYS_BUS_DEVICE,
  348. .instance_size = sizeof(SP804State),
  349. .instance_init = sp804_init,
  350. .class_init = sp804_class_init,
  351. };
  352. static void arm_timer_register_types(void)
  353. {
  354. type_register_static(&icp_pit_info);
  355. type_register_static(&sp804_info);
  356. }
  357. type_init(arm_timer_register_types)