sun4u.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. /*
  2. * QEMU Sun4u/Sun4v System Emulator
  3. *
  4. * Copyright (c) 2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "qemu/error-report.h"
  27. #include "qapi/error.h"
  28. #include "qemu-common.h"
  29. #include "cpu.h"
  30. #include "hw/pci/pci.h"
  31. #include "hw/pci/pci_bridge.h"
  32. #include "hw/pci/pci_bus.h"
  33. #include "hw/pci/pci_host.h"
  34. #include "hw/qdev-properties.h"
  35. #include "hw/pci-host/sabre.h"
  36. #include "hw/char/serial.h"
  37. #include "hw/char/parallel.h"
  38. #include "hw/rtc/m48t59.h"
  39. #include "migration/vmstate.h"
  40. #include "hw/input/i8042.h"
  41. #include "hw/block/fdc.h"
  42. #include "net/net.h"
  43. #include "qemu/timer.h"
  44. #include "sysemu/runstate.h"
  45. #include "sysemu/sysemu.h"
  46. #include "hw/boards.h"
  47. #include "hw/nvram/sun_nvram.h"
  48. #include "hw/nvram/chrp_nvram.h"
  49. #include "hw/sparc/sparc64.h"
  50. #include "hw/nvram/fw_cfg.h"
  51. #include "hw/sysbus.h"
  52. #include "hw/ide.h"
  53. #include "hw/ide/pci.h"
  54. #include "hw/loader.h"
  55. #include "hw/fw-path-provider.h"
  56. #include "elf.h"
  57. #include "trace.h"
  58. #define KERNEL_LOAD_ADDR 0x00404000
  59. #define CMDLINE_ADDR 0x003ff000
  60. #define PROM_SIZE_MAX (4 * MiB)
  61. #define PROM_VADDR 0x000ffd00000ULL
  62. #define PBM_SPECIAL_BASE 0x1fe00000000ULL
  63. #define PBM_MEM_BASE 0x1ff00000000ULL
  64. #define PBM_PCI_IO_BASE (PBM_SPECIAL_BASE + 0x02000000ULL)
  65. #define PROM_FILENAME "openbios-sparc64"
  66. #define NVRAM_SIZE 0x2000
  67. #define MAX_IDE_BUS 2
  68. #define BIOS_CFG_IOPORT 0x510
  69. #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
  70. #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
  71. #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
  72. #define IVEC_MAX 0x40
  73. struct hwdef {
  74. uint16_t machine_id;
  75. uint64_t prom_addr;
  76. uint64_t console_serial_base;
  77. };
  78. typedef struct EbusState {
  79. /*< private >*/
  80. PCIDevice parent_obj;
  81. ISABus *isa_bus;
  82. qemu_irq isa_bus_irqs[ISA_NUM_IRQS];
  83. uint64_t console_serial_base;
  84. MemoryRegion bar0;
  85. MemoryRegion bar1;
  86. } EbusState;
  87. #define TYPE_EBUS "ebus"
  88. #define EBUS(obj) OBJECT_CHECK(EbusState, (obj), TYPE_EBUS)
  89. const char *fw_cfg_arch_key_name(uint16_t key)
  90. {
  91. static const struct {
  92. uint16_t key;
  93. const char *name;
  94. } fw_cfg_arch_wellknown_keys[] = {
  95. {FW_CFG_SPARC64_WIDTH, "width"},
  96. {FW_CFG_SPARC64_HEIGHT, "height"},
  97. {FW_CFG_SPARC64_DEPTH, "depth"},
  98. };
  99. for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
  100. if (fw_cfg_arch_wellknown_keys[i].key == key) {
  101. return fw_cfg_arch_wellknown_keys[i].name;
  102. }
  103. }
  104. return NULL;
  105. }
  106. static void fw_cfg_boot_set(void *opaque, const char *boot_device,
  107. Error **errp)
  108. {
  109. fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  110. }
  111. static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
  112. const char *arch, ram_addr_t RAM_size,
  113. const char *boot_devices,
  114. uint32_t kernel_image, uint32_t kernel_size,
  115. const char *cmdline,
  116. uint32_t initrd_image, uint32_t initrd_size,
  117. uint32_t NVRAM_image,
  118. int width, int height, int depth,
  119. const uint8_t *macaddr)
  120. {
  121. unsigned int i;
  122. int sysp_end;
  123. uint8_t image[0x1ff0];
  124. NvramClass *k = NVRAM_GET_CLASS(nvram);
  125. memset(image, '\0', sizeof(image));
  126. /* OpenBIOS nvram variables partition */
  127. sysp_end = chrp_nvram_create_system_partition(image, 0);
  128. /* Free space partition */
  129. chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
  130. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
  131. for (i = 0; i < sizeof(image); i++) {
  132. (k->write)(nvram, i, image[i]);
  133. }
  134. return 0;
  135. }
  136. static uint64_t sun4u_load_kernel(const char *kernel_filename,
  137. const char *initrd_filename,
  138. ram_addr_t RAM_size, uint64_t *initrd_size,
  139. uint64_t *initrd_addr, uint64_t *kernel_addr,
  140. uint64_t *kernel_entry)
  141. {
  142. int linux_boot;
  143. unsigned int i;
  144. long kernel_size;
  145. uint8_t *ptr;
  146. uint64_t kernel_top = 0;
  147. linux_boot = (kernel_filename != NULL);
  148. kernel_size = 0;
  149. if (linux_boot) {
  150. int bswap_needed;
  151. #ifdef BSWAP_NEEDED
  152. bswap_needed = 1;
  153. #else
  154. bswap_needed = 0;
  155. #endif
  156. kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, kernel_entry,
  157. kernel_addr, &kernel_top, 1, EM_SPARCV9, 0, 0);
  158. if (kernel_size < 0) {
  159. *kernel_addr = KERNEL_LOAD_ADDR;
  160. *kernel_entry = KERNEL_LOAD_ADDR;
  161. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  162. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  163. TARGET_PAGE_SIZE);
  164. }
  165. if (kernel_size < 0) {
  166. kernel_size = load_image_targphys(kernel_filename,
  167. KERNEL_LOAD_ADDR,
  168. RAM_size - KERNEL_LOAD_ADDR);
  169. }
  170. if (kernel_size < 0) {
  171. error_report("could not load kernel '%s'", kernel_filename);
  172. exit(1);
  173. }
  174. /* load initrd above kernel */
  175. *initrd_size = 0;
  176. if (initrd_filename && kernel_top) {
  177. *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
  178. *initrd_size = load_image_targphys(initrd_filename,
  179. *initrd_addr,
  180. RAM_size - *initrd_addr);
  181. if ((int)*initrd_size < 0) {
  182. error_report("could not load initial ram disk '%s'",
  183. initrd_filename);
  184. exit(1);
  185. }
  186. }
  187. if (*initrd_size > 0) {
  188. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  189. ptr = rom_ptr(*kernel_addr + i, 32);
  190. if (ptr && ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
  191. stl_p(ptr + 24, *initrd_addr + *kernel_addr);
  192. stl_p(ptr + 28, *initrd_size);
  193. break;
  194. }
  195. }
  196. }
  197. }
  198. return kernel_size;
  199. }
  200. typedef struct ResetData {
  201. SPARCCPU *cpu;
  202. uint64_t prom_addr;
  203. } ResetData;
  204. #define TYPE_SUN4U_POWER "power"
  205. #define SUN4U_POWER(obj) OBJECT_CHECK(PowerDevice, (obj), TYPE_SUN4U_POWER)
  206. typedef struct PowerDevice {
  207. SysBusDevice parent_obj;
  208. MemoryRegion power_mmio;
  209. } PowerDevice;
  210. /* Power */
  211. static uint64_t power_mem_read(void *opaque, hwaddr addr, unsigned size)
  212. {
  213. return 0;
  214. }
  215. static void power_mem_write(void *opaque, hwaddr addr,
  216. uint64_t val, unsigned size)
  217. {
  218. /* According to a real Ultra 5, bit 24 controls the power */
  219. if (val & 0x1000000) {
  220. qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
  221. }
  222. }
  223. static const MemoryRegionOps power_mem_ops = {
  224. .read = power_mem_read,
  225. .write = power_mem_write,
  226. .endianness = DEVICE_NATIVE_ENDIAN,
  227. .valid = {
  228. .min_access_size = 4,
  229. .max_access_size = 4,
  230. },
  231. };
  232. static void power_realize(DeviceState *dev, Error **errp)
  233. {
  234. PowerDevice *d = SUN4U_POWER(dev);
  235. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  236. memory_region_init_io(&d->power_mmio, OBJECT(dev), &power_mem_ops, d,
  237. "power", sizeof(uint32_t));
  238. sysbus_init_mmio(sbd, &d->power_mmio);
  239. }
  240. static void power_class_init(ObjectClass *klass, void *data)
  241. {
  242. DeviceClass *dc = DEVICE_CLASS(klass);
  243. dc->realize = power_realize;
  244. }
  245. static const TypeInfo power_info = {
  246. .name = TYPE_SUN4U_POWER,
  247. .parent = TYPE_SYS_BUS_DEVICE,
  248. .instance_size = sizeof(PowerDevice),
  249. .class_init = power_class_init,
  250. };
  251. static void ebus_isa_irq_handler(void *opaque, int n, int level)
  252. {
  253. EbusState *s = EBUS(opaque);
  254. qemu_irq irq = s->isa_bus_irqs[n];
  255. /* Pass ISA bus IRQs onto their gpio equivalent */
  256. trace_ebus_isa_irq_handler(n, level);
  257. if (irq) {
  258. qemu_set_irq(irq, level);
  259. }
  260. }
  261. /* EBUS (Eight bit bus) bridge */
  262. static void ebus_realize(PCIDevice *pci_dev, Error **errp)
  263. {
  264. EbusState *s = EBUS(pci_dev);
  265. SysBusDevice *sbd;
  266. DeviceState *dev;
  267. qemu_irq *isa_irq;
  268. DriveInfo *fd[MAX_FD];
  269. int i;
  270. s->isa_bus = isa_bus_new(DEVICE(pci_dev), get_system_memory(),
  271. pci_address_space_io(pci_dev), errp);
  272. if (!s->isa_bus) {
  273. error_setg(errp, "unable to instantiate EBUS ISA bus");
  274. return;
  275. }
  276. /* ISA bus */
  277. isa_irq = qemu_allocate_irqs(ebus_isa_irq_handler, s, ISA_NUM_IRQS);
  278. isa_bus_irqs(s->isa_bus, isa_irq);
  279. qdev_init_gpio_out_named(DEVICE(s), s->isa_bus_irqs, "isa-irq",
  280. ISA_NUM_IRQS);
  281. /* Serial ports */
  282. i = 0;
  283. if (s->console_serial_base) {
  284. serial_mm_init(pci_address_space(pci_dev), s->console_serial_base,
  285. 0, NULL, 115200, serial_hd(i), DEVICE_BIG_ENDIAN);
  286. i++;
  287. }
  288. serial_hds_isa_init(s->isa_bus, i, MAX_ISA_SERIAL_PORTS);
  289. /* Parallel ports */
  290. parallel_hds_isa_init(s->isa_bus, MAX_PARALLEL_PORTS);
  291. /* Keyboard */
  292. isa_create_simple(s->isa_bus, "i8042");
  293. /* Floppy */
  294. for (i = 0; i < MAX_FD; i++) {
  295. fd[i] = drive_get(IF_FLOPPY, 0, i);
  296. }
  297. dev = DEVICE(isa_create(s->isa_bus, TYPE_ISA_FDC));
  298. if (fd[0]) {
  299. qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fd[0]),
  300. &error_abort);
  301. }
  302. if (fd[1]) {
  303. qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fd[1]),
  304. &error_abort);
  305. }
  306. qdev_prop_set_uint32(dev, "dma", -1);
  307. qdev_init_nofail(dev);
  308. /* Power */
  309. dev = qdev_create(NULL, TYPE_SUN4U_POWER);
  310. qdev_init_nofail(dev);
  311. sbd = SYS_BUS_DEVICE(dev);
  312. memory_region_add_subregion(pci_address_space_io(pci_dev), 0x7240,
  313. sysbus_mmio_get_region(sbd, 0));
  314. /* PCI */
  315. pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
  316. pci_dev->config[0x05] = 0x00;
  317. pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
  318. pci_dev->config[0x07] = 0x03; // status = medium devsel
  319. pci_dev->config[0x09] = 0x00; // programming i/f
  320. pci_dev->config[0x0D] = 0x0a; // latency_timer
  321. memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
  322. 0, 0x1000000);
  323. pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
  324. memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
  325. 0, 0x8000);
  326. pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
  327. }
  328. static Property ebus_properties[] = {
  329. DEFINE_PROP_UINT64("console-serial-base", EbusState,
  330. console_serial_base, 0),
  331. DEFINE_PROP_END_OF_LIST(),
  332. };
  333. static void ebus_class_init(ObjectClass *klass, void *data)
  334. {
  335. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  336. DeviceClass *dc = DEVICE_CLASS(klass);
  337. k->realize = ebus_realize;
  338. k->vendor_id = PCI_VENDOR_ID_SUN;
  339. k->device_id = PCI_DEVICE_ID_SUN_EBUS;
  340. k->revision = 0x01;
  341. k->class_id = PCI_CLASS_BRIDGE_OTHER;
  342. dc->props = ebus_properties;
  343. }
  344. static const TypeInfo ebus_info = {
  345. .name = TYPE_EBUS,
  346. .parent = TYPE_PCI_DEVICE,
  347. .class_init = ebus_class_init,
  348. .instance_size = sizeof(EbusState),
  349. .interfaces = (InterfaceInfo[]) {
  350. { INTERFACE_CONVENTIONAL_PCI_DEVICE },
  351. { },
  352. },
  353. };
  354. #define TYPE_OPENPROM "openprom"
  355. #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
  356. typedef struct PROMState {
  357. SysBusDevice parent_obj;
  358. MemoryRegion prom;
  359. } PROMState;
  360. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  361. {
  362. hwaddr *base_addr = (hwaddr *)opaque;
  363. return addr + *base_addr - PROM_VADDR;
  364. }
  365. /* Boot PROM (OpenBIOS) */
  366. static void prom_init(hwaddr addr, const char *bios_name)
  367. {
  368. DeviceState *dev;
  369. SysBusDevice *s;
  370. char *filename;
  371. int ret;
  372. dev = qdev_create(NULL, TYPE_OPENPROM);
  373. qdev_init_nofail(dev);
  374. s = SYS_BUS_DEVICE(dev);
  375. sysbus_mmio_map(s, 0, addr);
  376. /* load boot prom */
  377. if (bios_name == NULL) {
  378. bios_name = PROM_FILENAME;
  379. }
  380. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  381. if (filename) {
  382. ret = load_elf(filename, NULL, translate_prom_address, &addr,
  383. NULL, NULL, NULL, 1, EM_SPARCV9, 0, 0);
  384. if (ret < 0 || ret > PROM_SIZE_MAX) {
  385. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  386. }
  387. g_free(filename);
  388. } else {
  389. ret = -1;
  390. }
  391. if (ret < 0 || ret > PROM_SIZE_MAX) {
  392. error_report("could not load prom '%s'", bios_name);
  393. exit(1);
  394. }
  395. }
  396. static void prom_realize(DeviceState *ds, Error **errp)
  397. {
  398. PROMState *s = OPENPROM(ds);
  399. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  400. Error *local_err = NULL;
  401. memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4u.prom",
  402. PROM_SIZE_MAX, &local_err);
  403. if (local_err) {
  404. error_propagate(errp, local_err);
  405. return;
  406. }
  407. vmstate_register_ram_global(&s->prom);
  408. memory_region_set_readonly(&s->prom, true);
  409. sysbus_init_mmio(dev, &s->prom);
  410. }
  411. static Property prom_properties[] = {
  412. {/* end of property list */},
  413. };
  414. static void prom_class_init(ObjectClass *klass, void *data)
  415. {
  416. DeviceClass *dc = DEVICE_CLASS(klass);
  417. dc->props = prom_properties;
  418. dc->realize = prom_realize;
  419. }
  420. static const TypeInfo prom_info = {
  421. .name = TYPE_OPENPROM,
  422. .parent = TYPE_SYS_BUS_DEVICE,
  423. .instance_size = sizeof(PROMState),
  424. .class_init = prom_class_init,
  425. };
  426. #define TYPE_SUN4U_MEMORY "memory"
  427. #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
  428. typedef struct RamDevice {
  429. SysBusDevice parent_obj;
  430. MemoryRegion ram;
  431. uint64_t size;
  432. } RamDevice;
  433. /* System RAM */
  434. static void ram_realize(DeviceState *dev, Error **errp)
  435. {
  436. RamDevice *d = SUN4U_RAM(dev);
  437. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  438. memory_region_init_ram_nomigrate(&d->ram, OBJECT(d), "sun4u.ram", d->size,
  439. &error_fatal);
  440. vmstate_register_ram_global(&d->ram);
  441. sysbus_init_mmio(sbd, &d->ram);
  442. }
  443. static void ram_init(hwaddr addr, ram_addr_t RAM_size)
  444. {
  445. DeviceState *dev;
  446. SysBusDevice *s;
  447. RamDevice *d;
  448. /* allocate RAM */
  449. dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
  450. s = SYS_BUS_DEVICE(dev);
  451. d = SUN4U_RAM(dev);
  452. d->size = RAM_size;
  453. qdev_init_nofail(dev);
  454. sysbus_mmio_map(s, 0, addr);
  455. }
  456. static Property ram_properties[] = {
  457. DEFINE_PROP_UINT64("size", RamDevice, size, 0),
  458. DEFINE_PROP_END_OF_LIST(),
  459. };
  460. static void ram_class_init(ObjectClass *klass, void *data)
  461. {
  462. DeviceClass *dc = DEVICE_CLASS(klass);
  463. dc->realize = ram_realize;
  464. dc->props = ram_properties;
  465. }
  466. static const TypeInfo ram_info = {
  467. .name = TYPE_SUN4U_MEMORY,
  468. .parent = TYPE_SYS_BUS_DEVICE,
  469. .instance_size = sizeof(RamDevice),
  470. .class_init = ram_class_init,
  471. };
  472. static void sun4uv_init(MemoryRegion *address_space_mem,
  473. MachineState *machine,
  474. const struct hwdef *hwdef)
  475. {
  476. SPARCCPU *cpu;
  477. Nvram *nvram;
  478. unsigned int i;
  479. uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
  480. SabreState *sabre;
  481. PCIBus *pci_bus, *pci_busA, *pci_busB;
  482. PCIDevice *ebus, *pci_dev;
  483. SysBusDevice *s;
  484. DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
  485. DeviceState *iommu, *dev;
  486. FWCfgState *fw_cfg;
  487. NICInfo *nd;
  488. MACAddr macaddr;
  489. bool onboard_nic;
  490. /* init CPUs */
  491. cpu = sparc64_cpu_devinit(machine->cpu_type, hwdef->prom_addr);
  492. /* IOMMU */
  493. iommu = qdev_create(NULL, TYPE_SUN4U_IOMMU);
  494. qdev_init_nofail(iommu);
  495. /* set up devices */
  496. ram_init(0, machine->ram_size);
  497. prom_init(hwdef->prom_addr, bios_name);
  498. /* Init sabre (PCI host bridge) */
  499. sabre = SABRE_DEVICE(qdev_create(NULL, TYPE_SABRE));
  500. qdev_prop_set_uint64(DEVICE(sabre), "special-base", PBM_SPECIAL_BASE);
  501. qdev_prop_set_uint64(DEVICE(sabre), "mem-base", PBM_MEM_BASE);
  502. object_property_set_link(OBJECT(sabre), OBJECT(iommu), "iommu",
  503. &error_abort);
  504. qdev_init_nofail(DEVICE(sabre));
  505. /* Wire up PCI interrupts to CPU */
  506. for (i = 0; i < IVEC_MAX; i++) {
  507. qdev_connect_gpio_out_named(DEVICE(sabre), "ivec-irq", i,
  508. qdev_get_gpio_in_named(DEVICE(cpu), "ivec-irq", i));
  509. }
  510. pci_bus = PCI_HOST_BRIDGE(sabre)->bus;
  511. pci_busA = pci_bridge_get_sec_bus(sabre->bridgeA);
  512. pci_busB = pci_bridge_get_sec_bus(sabre->bridgeB);
  513. /* Only in-built Simba APBs can exist on the root bus, slot 0 on busA is
  514. reserved (leaving no slots free after on-board devices) however slots
  515. 0-3 are free on busB */
  516. pci_bus->slot_reserved_mask = 0xfffffffc;
  517. pci_busA->slot_reserved_mask = 0xfffffff1;
  518. pci_busB->slot_reserved_mask = 0xfffffff0;
  519. ebus = pci_create_multifunction(pci_busA, PCI_DEVFN(1, 0), true, TYPE_EBUS);
  520. qdev_prop_set_uint64(DEVICE(ebus), "console-serial-base",
  521. hwdef->console_serial_base);
  522. qdev_init_nofail(DEVICE(ebus));
  523. /* Wire up "well-known" ISA IRQs to PBM legacy obio IRQs */
  524. qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 7,
  525. qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_LPT_IRQ));
  526. qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 6,
  527. qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_FDD_IRQ));
  528. qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 1,
  529. qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_KBD_IRQ));
  530. qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 12,
  531. qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_MSE_IRQ));
  532. qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 4,
  533. qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_SER_IRQ));
  534. switch (vga_interface_type) {
  535. case VGA_STD:
  536. pci_create_simple(pci_busA, PCI_DEVFN(2, 0), "VGA");
  537. break;
  538. case VGA_NONE:
  539. break;
  540. default:
  541. abort(); /* Should not happen - types are checked in vl.c already */
  542. }
  543. memset(&macaddr, 0, sizeof(MACAddr));
  544. onboard_nic = false;
  545. for (i = 0; i < nb_nics; i++) {
  546. nd = &nd_table[i];
  547. if (!nd->model || strcmp(nd->model, "sunhme") == 0) {
  548. if (!onboard_nic) {
  549. pci_dev = pci_create_multifunction(pci_busA, PCI_DEVFN(1, 1),
  550. true, "sunhme");
  551. memcpy(&macaddr, &nd->macaddr.a, sizeof(MACAddr));
  552. onboard_nic = true;
  553. } else {
  554. pci_dev = pci_create(pci_busB, -1, "sunhme");
  555. }
  556. } else {
  557. pci_dev = pci_create(pci_busB, -1, nd->model);
  558. }
  559. dev = &pci_dev->qdev;
  560. qdev_set_nic_properties(dev, nd);
  561. qdev_init_nofail(dev);
  562. }
  563. /* If we don't have an onboard NIC, grab a default MAC address so that
  564. * we have a valid machine id */
  565. if (!onboard_nic) {
  566. qemu_macaddr_default_if_unset(&macaddr);
  567. }
  568. ide_drive_get(hd, ARRAY_SIZE(hd));
  569. pci_dev = pci_create(pci_busA, PCI_DEVFN(3, 0), "cmd646-ide");
  570. qdev_prop_set_uint32(&pci_dev->qdev, "secondary", 1);
  571. qdev_init_nofail(&pci_dev->qdev);
  572. pci_ide_create_devs(pci_dev, hd);
  573. /* Map NVRAM into I/O (ebus) space */
  574. nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
  575. s = SYS_BUS_DEVICE(nvram);
  576. memory_region_add_subregion(pci_address_space_io(ebus), 0x2000,
  577. sysbus_mmio_get_region(s, 0));
  578. initrd_size = 0;
  579. initrd_addr = 0;
  580. kernel_size = sun4u_load_kernel(machine->kernel_filename,
  581. machine->initrd_filename,
  582. ram_size, &initrd_size, &initrd_addr,
  583. &kernel_addr, &kernel_entry);
  584. sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
  585. machine->boot_order,
  586. kernel_addr, kernel_size,
  587. machine->kernel_cmdline,
  588. initrd_addr, initrd_size,
  589. /* XXX: need an option to load a NVRAM image */
  590. 0,
  591. graphic_width, graphic_height, graphic_depth,
  592. (uint8_t *)&macaddr);
  593. dev = qdev_create(NULL, TYPE_FW_CFG_IO);
  594. qdev_prop_set_bit(dev, "dma_enabled", false);
  595. object_property_add_child(OBJECT(ebus), TYPE_FW_CFG, OBJECT(dev), NULL);
  596. qdev_init_nofail(dev);
  597. memory_region_add_subregion(pci_address_space_io(ebus), BIOS_CFG_IOPORT,
  598. &FW_CFG_IO(dev)->comb_iomem);
  599. fw_cfg = FW_CFG(dev);
  600. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)machine->smp.cpus);
  601. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)machine->smp.max_cpus);
  602. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
  603. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  604. fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
  605. fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  606. if (machine->kernel_cmdline) {
  607. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  608. strlen(machine->kernel_cmdline) + 1);
  609. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
  610. } else {
  611. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  612. }
  613. fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
  614. fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  615. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
  616. fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
  617. fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
  618. fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
  619. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  620. }
  621. enum {
  622. sun4u_id = 0,
  623. sun4v_id = 64,
  624. };
  625. /*
  626. * Implementation of an interface to adjust firmware path
  627. * for the bootindex property handling.
  628. */
  629. static char *sun4u_fw_dev_path(FWPathProvider *p, BusState *bus,
  630. DeviceState *dev)
  631. {
  632. PCIDevice *pci;
  633. IDEBus *ide_bus;
  634. IDEState *ide_s;
  635. int bus_id;
  636. if (!strcmp(object_get_typename(OBJECT(dev)), "pbm-bridge")) {
  637. pci = PCI_DEVICE(dev);
  638. if (PCI_FUNC(pci->devfn)) {
  639. return g_strdup_printf("pci@%x,%x", PCI_SLOT(pci->devfn),
  640. PCI_FUNC(pci->devfn));
  641. } else {
  642. return g_strdup_printf("pci@%x", PCI_SLOT(pci->devfn));
  643. }
  644. }
  645. if (!strcmp(object_get_typename(OBJECT(dev)), "ide-drive")) {
  646. ide_bus = IDE_BUS(qdev_get_parent_bus(dev));
  647. ide_s = idebus_active_if(ide_bus);
  648. bus_id = ide_bus->bus_id;
  649. if (ide_s->drive_kind == IDE_CD) {
  650. return g_strdup_printf("ide@%x/cdrom", bus_id);
  651. }
  652. return g_strdup_printf("ide@%x/disk", bus_id);
  653. }
  654. if (!strcmp(object_get_typename(OBJECT(dev)), "ide-hd")) {
  655. return g_strdup("disk");
  656. }
  657. if (!strcmp(object_get_typename(OBJECT(dev)), "ide-cd")) {
  658. return g_strdup("cdrom");
  659. }
  660. if (!strcmp(object_get_typename(OBJECT(dev)), "virtio-blk-device")) {
  661. return g_strdup("disk");
  662. }
  663. return NULL;
  664. }
  665. static const struct hwdef hwdefs[] = {
  666. /* Sun4u generic PC-like machine */
  667. {
  668. .machine_id = sun4u_id,
  669. .prom_addr = 0x1fff0000000ULL,
  670. .console_serial_base = 0,
  671. },
  672. /* Sun4v generic PC-like machine */
  673. {
  674. .machine_id = sun4v_id,
  675. .prom_addr = 0x1fff0000000ULL,
  676. .console_serial_base = 0,
  677. },
  678. };
  679. /* Sun4u hardware initialisation */
  680. static void sun4u_init(MachineState *machine)
  681. {
  682. sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
  683. }
  684. /* Sun4v hardware initialisation */
  685. static void sun4v_init(MachineState *machine)
  686. {
  687. sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
  688. }
  689. static void sun4u_class_init(ObjectClass *oc, void *data)
  690. {
  691. MachineClass *mc = MACHINE_CLASS(oc);
  692. FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
  693. mc->desc = "Sun4u platform";
  694. mc->init = sun4u_init;
  695. mc->block_default_type = IF_IDE;
  696. mc->max_cpus = 1; /* XXX for now */
  697. mc->is_default = 1;
  698. mc->default_boot_order = "c";
  699. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-UltraSparc-IIi");
  700. mc->ignore_boot_device_suffixes = true;
  701. mc->default_display = "std";
  702. fwc->get_dev_path = sun4u_fw_dev_path;
  703. }
  704. static const TypeInfo sun4u_type = {
  705. .name = MACHINE_TYPE_NAME("sun4u"),
  706. .parent = TYPE_MACHINE,
  707. .class_init = sun4u_class_init,
  708. .interfaces = (InterfaceInfo[]) {
  709. { TYPE_FW_PATH_PROVIDER },
  710. { }
  711. },
  712. };
  713. static void sun4v_class_init(ObjectClass *oc, void *data)
  714. {
  715. MachineClass *mc = MACHINE_CLASS(oc);
  716. mc->desc = "Sun4v platform";
  717. mc->init = sun4v_init;
  718. mc->block_default_type = IF_IDE;
  719. mc->max_cpus = 1; /* XXX for now */
  720. mc->default_boot_order = "c";
  721. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Sun-UltraSparc-T1");
  722. mc->default_display = "std";
  723. }
  724. static const TypeInfo sun4v_type = {
  725. .name = MACHINE_TYPE_NAME("sun4v"),
  726. .parent = TYPE_MACHINE,
  727. .class_init = sun4v_class_init,
  728. };
  729. static void sun4u_register_types(void)
  730. {
  731. type_register_static(&power_info);
  732. type_register_static(&ebus_info);
  733. type_register_static(&prom_info);
  734. type_register_static(&ram_info);
  735. type_register_static(&sun4u_type);
  736. type_register_static(&sun4v_type);
  737. }
  738. type_init(sun4u_register_types)