sun4m.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591
  1. /*
  2. * QEMU Sun4m & Sun4d & Sun4c System Emulator
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "qapi/error.h"
  27. #include "qemu-common.h"
  28. #include "cpu.h"
  29. #include "hw/sysbus.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/sparc/sun4m_iommu.h"
  33. #include "hw/rtc/m48t59.h"
  34. #include "migration/vmstate.h"
  35. #include "hw/sparc/sparc32_dma.h"
  36. #include "hw/block/fdc.h"
  37. #include "sysemu/reset.h"
  38. #include "sysemu/runstate.h"
  39. #include "sysemu/sysemu.h"
  40. #include "net/net.h"
  41. #include "hw/boards.h"
  42. #include "hw/scsi/esp.h"
  43. #include "hw/nvram/sun_nvram.h"
  44. #include "hw/qdev-properties.h"
  45. #include "hw/nvram/chrp_nvram.h"
  46. #include "hw/nvram/fw_cfg.h"
  47. #include "hw/char/escc.h"
  48. #include "hw/empty_slot.h"
  49. #include "hw/irq.h"
  50. #include "hw/loader.h"
  51. #include "elf.h"
  52. #include "trace.h"
  53. /*
  54. * Sun4m architecture was used in the following machines:
  55. *
  56. * SPARCserver 6xxMP/xx
  57. * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
  58. * SPARCclassic X (4/10)
  59. * SPARCstation LX/ZX (4/30)
  60. * SPARCstation Voyager
  61. * SPARCstation 10/xx, SPARCserver 10/xx
  62. * SPARCstation 5, SPARCserver 5
  63. * SPARCstation 20/xx, SPARCserver 20
  64. * SPARCstation 4
  65. *
  66. * See for example: http://www.sunhelp.org/faq/sunref1.html
  67. */
  68. #define KERNEL_LOAD_ADDR 0x00004000
  69. #define CMDLINE_ADDR 0x007ff000
  70. #define INITRD_LOAD_ADDR 0x00800000
  71. #define PROM_SIZE_MAX (1 * MiB)
  72. #define PROM_VADDR 0xffd00000
  73. #define PROM_FILENAME "openbios-sparc32"
  74. #define CFG_ADDR 0xd00000510ULL
  75. #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
  76. #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
  77. #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
  78. #define MAX_CPUS 16
  79. #define MAX_PILS 16
  80. #define MAX_VSIMMS 4
  81. #define ESCC_CLOCK 4915200
  82. struct sun4m_hwdef {
  83. hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
  84. hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
  85. hwaddr serial_base, fd_base;
  86. hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
  87. hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
  88. hwaddr bpp_base, dbri_base, sx_base;
  89. struct {
  90. hwaddr reg_base, vram_base;
  91. } vsimm[MAX_VSIMMS];
  92. hwaddr ecc_base;
  93. uint64_t max_mem;
  94. uint32_t ecc_version;
  95. uint32_t iommu_version;
  96. uint16_t machine_id;
  97. uint8_t nvram_machine_id;
  98. };
  99. const char *fw_cfg_arch_key_name(uint16_t key)
  100. {
  101. static const struct {
  102. uint16_t key;
  103. const char *name;
  104. } fw_cfg_arch_wellknown_keys[] = {
  105. {FW_CFG_SUN4M_DEPTH, "depth"},
  106. {FW_CFG_SUN4M_WIDTH, "width"},
  107. {FW_CFG_SUN4M_HEIGHT, "height"},
  108. };
  109. for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
  110. if (fw_cfg_arch_wellknown_keys[i].key == key) {
  111. return fw_cfg_arch_wellknown_keys[i].name;
  112. }
  113. }
  114. return NULL;
  115. }
  116. static void fw_cfg_boot_set(void *opaque, const char *boot_device,
  117. Error **errp)
  118. {
  119. fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  120. }
  121. static void nvram_init(Nvram *nvram, uint8_t *macaddr,
  122. const char *cmdline, const char *boot_devices,
  123. ram_addr_t RAM_size, uint32_t kernel_size,
  124. int width, int height, int depth,
  125. int nvram_machine_id, const char *arch)
  126. {
  127. unsigned int i;
  128. int sysp_end;
  129. uint8_t image[0x1ff0];
  130. NvramClass *k = NVRAM_GET_CLASS(nvram);
  131. memset(image, '\0', sizeof(image));
  132. /* OpenBIOS nvram variables partition */
  133. sysp_end = chrp_nvram_create_system_partition(image, 0);
  134. /* Free space partition */
  135. chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
  136. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
  137. nvram_machine_id);
  138. for (i = 0; i < sizeof(image); i++) {
  139. (k->write)(nvram, i, image[i]);
  140. }
  141. }
  142. void cpu_check_irqs(CPUSPARCState *env)
  143. {
  144. CPUState *cs;
  145. /* We should be holding the BQL before we mess with IRQs */
  146. g_assert(qemu_mutex_iothread_locked());
  147. if (env->pil_in && (env->interrupt_index == 0 ||
  148. (env->interrupt_index & ~15) == TT_EXTINT)) {
  149. unsigned int i;
  150. for (i = 15; i > 0; i--) {
  151. if (env->pil_in & (1 << i)) {
  152. int old_interrupt = env->interrupt_index;
  153. env->interrupt_index = TT_EXTINT | i;
  154. if (old_interrupt != env->interrupt_index) {
  155. cs = env_cpu(env);
  156. trace_sun4m_cpu_interrupt(i);
  157. cpu_interrupt(cs, CPU_INTERRUPT_HARD);
  158. }
  159. break;
  160. }
  161. }
  162. } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
  163. cs = env_cpu(env);
  164. trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
  165. env->interrupt_index = 0;
  166. cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
  167. }
  168. }
  169. static void cpu_kick_irq(SPARCCPU *cpu)
  170. {
  171. CPUSPARCState *env = &cpu->env;
  172. CPUState *cs = CPU(cpu);
  173. cs->halted = 0;
  174. cpu_check_irqs(env);
  175. qemu_cpu_kick(cs);
  176. }
  177. static void cpu_set_irq(void *opaque, int irq, int level)
  178. {
  179. SPARCCPU *cpu = opaque;
  180. CPUSPARCState *env = &cpu->env;
  181. if (level) {
  182. trace_sun4m_cpu_set_irq_raise(irq);
  183. env->pil_in |= 1 << irq;
  184. cpu_kick_irq(cpu);
  185. } else {
  186. trace_sun4m_cpu_set_irq_lower(irq);
  187. env->pil_in &= ~(1 << irq);
  188. cpu_check_irqs(env);
  189. }
  190. }
  191. static void dummy_cpu_set_irq(void *opaque, int irq, int level)
  192. {
  193. }
  194. static void main_cpu_reset(void *opaque)
  195. {
  196. SPARCCPU *cpu = opaque;
  197. CPUState *cs = CPU(cpu);
  198. cpu_reset(cs);
  199. cs->halted = 0;
  200. }
  201. static void secondary_cpu_reset(void *opaque)
  202. {
  203. SPARCCPU *cpu = opaque;
  204. CPUState *cs = CPU(cpu);
  205. cpu_reset(cs);
  206. cs->halted = 1;
  207. }
  208. static void cpu_halt_signal(void *opaque, int irq, int level)
  209. {
  210. if (level && current_cpu) {
  211. cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
  212. }
  213. }
  214. static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
  215. {
  216. return addr - 0xf0000000ULL;
  217. }
  218. static unsigned long sun4m_load_kernel(const char *kernel_filename,
  219. const char *initrd_filename,
  220. ram_addr_t RAM_size,
  221. uint32_t *initrd_size)
  222. {
  223. int linux_boot;
  224. unsigned int i;
  225. long kernel_size;
  226. uint8_t *ptr;
  227. linux_boot = (kernel_filename != NULL);
  228. kernel_size = 0;
  229. if (linux_boot) {
  230. int bswap_needed;
  231. #ifdef BSWAP_NEEDED
  232. bswap_needed = 1;
  233. #else
  234. bswap_needed = 0;
  235. #endif
  236. kernel_size = load_elf(kernel_filename, NULL,
  237. translate_kernel_address, NULL,
  238. NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  239. if (kernel_size < 0)
  240. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  241. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  242. TARGET_PAGE_SIZE);
  243. if (kernel_size < 0)
  244. kernel_size = load_image_targphys(kernel_filename,
  245. KERNEL_LOAD_ADDR,
  246. RAM_size - KERNEL_LOAD_ADDR);
  247. if (kernel_size < 0) {
  248. error_report("could not load kernel '%s'", kernel_filename);
  249. exit(1);
  250. }
  251. /* load initrd */
  252. *initrd_size = 0;
  253. if (initrd_filename) {
  254. *initrd_size = load_image_targphys(initrd_filename,
  255. INITRD_LOAD_ADDR,
  256. RAM_size - INITRD_LOAD_ADDR);
  257. if ((int)*initrd_size < 0) {
  258. error_report("could not load initial ram disk '%s'",
  259. initrd_filename);
  260. exit(1);
  261. }
  262. }
  263. if (*initrd_size > 0) {
  264. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  265. ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
  266. if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
  267. stl_p(ptr + 16, INITRD_LOAD_ADDR);
  268. stl_p(ptr + 20, *initrd_size);
  269. break;
  270. }
  271. }
  272. }
  273. }
  274. return kernel_size;
  275. }
  276. static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
  277. {
  278. DeviceState *dev;
  279. SysBusDevice *s;
  280. dev = qdev_create(NULL, TYPE_SUN4M_IOMMU);
  281. qdev_prop_set_uint32(dev, "version", version);
  282. qdev_init_nofail(dev);
  283. s = SYS_BUS_DEVICE(dev);
  284. sysbus_connect_irq(s, 0, irq);
  285. sysbus_mmio_map(s, 0, addr);
  286. return s;
  287. }
  288. static void *sparc32_dma_init(hwaddr dma_base,
  289. hwaddr esp_base, qemu_irq espdma_irq,
  290. hwaddr le_base, qemu_irq ledma_irq)
  291. {
  292. DeviceState *dma;
  293. ESPDMADeviceState *espdma;
  294. LEDMADeviceState *ledma;
  295. SysBusESPState *esp;
  296. SysBusPCNetState *lance;
  297. dma = qdev_create(NULL, TYPE_SPARC32_DMA);
  298. qdev_init_nofail(dma);
  299. sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
  300. espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
  301. OBJECT(dma), "espdma"));
  302. sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
  303. esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
  304. sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
  305. scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
  306. ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
  307. OBJECT(dma), "ledma"));
  308. sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
  309. lance = SYSBUS_PCNET(object_resolve_path_component(
  310. OBJECT(ledma), "lance"));
  311. sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
  312. return dma;
  313. }
  314. static DeviceState *slavio_intctl_init(hwaddr addr,
  315. hwaddr addrg,
  316. qemu_irq **parent_irq)
  317. {
  318. DeviceState *dev;
  319. SysBusDevice *s;
  320. unsigned int i, j;
  321. dev = qdev_create(NULL, "slavio_intctl");
  322. qdev_init_nofail(dev);
  323. s = SYS_BUS_DEVICE(dev);
  324. for (i = 0; i < MAX_CPUS; i++) {
  325. for (j = 0; j < MAX_PILS; j++) {
  326. sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
  327. }
  328. }
  329. sysbus_mmio_map(s, 0, addrg);
  330. for (i = 0; i < MAX_CPUS; i++) {
  331. sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
  332. }
  333. return dev;
  334. }
  335. #define SYS_TIMER_OFFSET 0x10000ULL
  336. #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
  337. static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
  338. qemu_irq *cpu_irqs, unsigned int num_cpus)
  339. {
  340. DeviceState *dev;
  341. SysBusDevice *s;
  342. unsigned int i;
  343. dev = qdev_create(NULL, "slavio_timer");
  344. qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
  345. qdev_init_nofail(dev);
  346. s = SYS_BUS_DEVICE(dev);
  347. sysbus_connect_irq(s, 0, master_irq);
  348. sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
  349. for (i = 0; i < MAX_CPUS; i++) {
  350. sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
  351. sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
  352. }
  353. }
  354. static qemu_irq slavio_system_powerdown;
  355. static void slavio_powerdown_req(Notifier *n, void *opaque)
  356. {
  357. qemu_irq_raise(slavio_system_powerdown);
  358. }
  359. static Notifier slavio_system_powerdown_notifier = {
  360. .notify = slavio_powerdown_req
  361. };
  362. #define MISC_LEDS 0x01600000
  363. #define MISC_CFG 0x01800000
  364. #define MISC_DIAG 0x01a00000
  365. #define MISC_MDM 0x01b00000
  366. #define MISC_SYS 0x01f00000
  367. static void slavio_misc_init(hwaddr base,
  368. hwaddr aux1_base,
  369. hwaddr aux2_base, qemu_irq irq,
  370. qemu_irq fdc_tc)
  371. {
  372. DeviceState *dev;
  373. SysBusDevice *s;
  374. dev = qdev_create(NULL, "slavio_misc");
  375. qdev_init_nofail(dev);
  376. s = SYS_BUS_DEVICE(dev);
  377. if (base) {
  378. /* 8 bit registers */
  379. /* Slavio control */
  380. sysbus_mmio_map(s, 0, base + MISC_CFG);
  381. /* Diagnostics */
  382. sysbus_mmio_map(s, 1, base + MISC_DIAG);
  383. /* Modem control */
  384. sysbus_mmio_map(s, 2, base + MISC_MDM);
  385. /* 16 bit registers */
  386. /* ss600mp diag LEDs */
  387. sysbus_mmio_map(s, 3, base + MISC_LEDS);
  388. /* 32 bit registers */
  389. /* System control */
  390. sysbus_mmio_map(s, 4, base + MISC_SYS);
  391. }
  392. if (aux1_base) {
  393. /* AUX 1 (Misc System Functions) */
  394. sysbus_mmio_map(s, 5, aux1_base);
  395. }
  396. if (aux2_base) {
  397. /* AUX 2 (Software Powerdown Control) */
  398. sysbus_mmio_map(s, 6, aux2_base);
  399. }
  400. sysbus_connect_irq(s, 0, irq);
  401. sysbus_connect_irq(s, 1, fdc_tc);
  402. slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
  403. qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
  404. }
  405. static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
  406. {
  407. DeviceState *dev;
  408. SysBusDevice *s;
  409. dev = qdev_create(NULL, "eccmemctl");
  410. qdev_prop_set_uint32(dev, "version", version);
  411. qdev_init_nofail(dev);
  412. s = SYS_BUS_DEVICE(dev);
  413. sysbus_connect_irq(s, 0, irq);
  414. sysbus_mmio_map(s, 0, base);
  415. if (version == 0) { // SS-600MP only
  416. sysbus_mmio_map(s, 1, base + 0x1000);
  417. }
  418. }
  419. static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
  420. {
  421. DeviceState *dev;
  422. SysBusDevice *s;
  423. dev = qdev_create(NULL, "apc");
  424. qdev_init_nofail(dev);
  425. s = SYS_BUS_DEVICE(dev);
  426. /* Power management (APC) XXX: not a Slavio device */
  427. sysbus_mmio_map(s, 0, power_base);
  428. sysbus_connect_irq(s, 0, cpu_halt);
  429. }
  430. static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  431. int height, int depth)
  432. {
  433. DeviceState *dev;
  434. SysBusDevice *s;
  435. dev = qdev_create(NULL, "SUNW,tcx");
  436. qdev_prop_set_uint32(dev, "vram_size", vram_size);
  437. qdev_prop_set_uint16(dev, "width", width);
  438. qdev_prop_set_uint16(dev, "height", height);
  439. qdev_prop_set_uint16(dev, "depth", depth);
  440. qdev_init_nofail(dev);
  441. s = SYS_BUS_DEVICE(dev);
  442. /* 10/ROM : FCode ROM */
  443. sysbus_mmio_map(s, 0, addr);
  444. /* 2/STIP : Stipple */
  445. sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
  446. /* 3/BLIT : Blitter */
  447. sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
  448. /* 5/RSTIP : Raw Stipple */
  449. sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
  450. /* 6/RBLIT : Raw Blitter */
  451. sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
  452. /* 7/TEC : Transform Engine */
  453. sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
  454. /* 8/CMAP : DAC */
  455. sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
  456. /* 9/THC : */
  457. if (depth == 8) {
  458. sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
  459. } else {
  460. sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
  461. }
  462. /* 11/DHC : */
  463. sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
  464. /* 12/ALT : */
  465. sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
  466. /* 0/DFB8 : 8-bit plane */
  467. sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
  468. /* 1/DFB24 : 24bit plane */
  469. sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
  470. /* 4/RDFB32: Raw framebuffer. Control plane */
  471. sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
  472. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  473. if (depth == 8) {
  474. sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
  475. }
  476. sysbus_connect_irq(s, 0, irq);
  477. }
  478. static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  479. int height, int depth)
  480. {
  481. DeviceState *dev;
  482. SysBusDevice *s;
  483. dev = qdev_create(NULL, "cgthree");
  484. qdev_prop_set_uint32(dev, "vram-size", vram_size);
  485. qdev_prop_set_uint16(dev, "width", width);
  486. qdev_prop_set_uint16(dev, "height", height);
  487. qdev_prop_set_uint16(dev, "depth", depth);
  488. qdev_init_nofail(dev);
  489. s = SYS_BUS_DEVICE(dev);
  490. /* FCode ROM */
  491. sysbus_mmio_map(s, 0, addr);
  492. /* DAC */
  493. sysbus_mmio_map(s, 1, addr + 0x400000ULL);
  494. /* 8-bit plane */
  495. sysbus_mmio_map(s, 2, addr + 0x800000ULL);
  496. sysbus_connect_irq(s, 0, irq);
  497. }
  498. /* NCR89C100/MACIO Internal ID register */
  499. #define TYPE_MACIO_ID_REGISTER "macio_idreg"
  500. static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
  501. static void idreg_init(hwaddr addr)
  502. {
  503. DeviceState *dev;
  504. SysBusDevice *s;
  505. dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
  506. qdev_init_nofail(dev);
  507. s = SYS_BUS_DEVICE(dev);
  508. sysbus_mmio_map(s, 0, addr);
  509. address_space_write_rom(&address_space_memory, addr,
  510. MEMTXATTRS_UNSPECIFIED,
  511. idreg_data, sizeof(idreg_data));
  512. }
  513. #define MACIO_ID_REGISTER(obj) \
  514. OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
  515. typedef struct IDRegState {
  516. SysBusDevice parent_obj;
  517. MemoryRegion mem;
  518. } IDRegState;
  519. static void idreg_realize(DeviceState *ds, Error **errp)
  520. {
  521. IDRegState *s = MACIO_ID_REGISTER(ds);
  522. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  523. Error *local_err = NULL;
  524. memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
  525. sizeof(idreg_data), &local_err);
  526. if (local_err) {
  527. error_propagate(errp, local_err);
  528. return;
  529. }
  530. vmstate_register_ram_global(&s->mem);
  531. memory_region_set_readonly(&s->mem, true);
  532. sysbus_init_mmio(dev, &s->mem);
  533. }
  534. static void idreg_class_init(ObjectClass *oc, void *data)
  535. {
  536. DeviceClass *dc = DEVICE_CLASS(oc);
  537. dc->realize = idreg_realize;
  538. }
  539. static const TypeInfo idreg_info = {
  540. .name = TYPE_MACIO_ID_REGISTER,
  541. .parent = TYPE_SYS_BUS_DEVICE,
  542. .instance_size = sizeof(IDRegState),
  543. .class_init = idreg_class_init,
  544. };
  545. #define TYPE_TCX_AFX "tcx_afx"
  546. #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
  547. typedef struct AFXState {
  548. SysBusDevice parent_obj;
  549. MemoryRegion mem;
  550. } AFXState;
  551. /* SS-5 TCX AFX register */
  552. static void afx_init(hwaddr addr)
  553. {
  554. DeviceState *dev;
  555. SysBusDevice *s;
  556. dev = qdev_create(NULL, TYPE_TCX_AFX);
  557. qdev_init_nofail(dev);
  558. s = SYS_BUS_DEVICE(dev);
  559. sysbus_mmio_map(s, 0, addr);
  560. }
  561. static void afx_realize(DeviceState *ds, Error **errp)
  562. {
  563. AFXState *s = TCX_AFX(ds);
  564. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  565. Error *local_err = NULL;
  566. memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
  567. &local_err);
  568. if (local_err) {
  569. error_propagate(errp, local_err);
  570. return;
  571. }
  572. vmstate_register_ram_global(&s->mem);
  573. sysbus_init_mmio(dev, &s->mem);
  574. }
  575. static void afx_class_init(ObjectClass *oc, void *data)
  576. {
  577. DeviceClass *dc = DEVICE_CLASS(oc);
  578. dc->realize = afx_realize;
  579. }
  580. static const TypeInfo afx_info = {
  581. .name = TYPE_TCX_AFX,
  582. .parent = TYPE_SYS_BUS_DEVICE,
  583. .instance_size = sizeof(AFXState),
  584. .class_init = afx_class_init,
  585. };
  586. #define TYPE_OPENPROM "openprom"
  587. #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
  588. typedef struct PROMState {
  589. SysBusDevice parent_obj;
  590. MemoryRegion prom;
  591. } PROMState;
  592. /* Boot PROM (OpenBIOS) */
  593. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  594. {
  595. hwaddr *base_addr = (hwaddr *)opaque;
  596. return addr + *base_addr - PROM_VADDR;
  597. }
  598. static void prom_init(hwaddr addr, const char *bios_name)
  599. {
  600. DeviceState *dev;
  601. SysBusDevice *s;
  602. char *filename;
  603. int ret;
  604. dev = qdev_create(NULL, TYPE_OPENPROM);
  605. qdev_init_nofail(dev);
  606. s = SYS_BUS_DEVICE(dev);
  607. sysbus_mmio_map(s, 0, addr);
  608. /* load boot prom */
  609. if (bios_name == NULL) {
  610. bios_name = PROM_FILENAME;
  611. }
  612. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  613. if (filename) {
  614. ret = load_elf(filename, NULL,
  615. translate_prom_address, &addr, NULL,
  616. NULL, NULL, 1, EM_SPARC, 0, 0);
  617. if (ret < 0 || ret > PROM_SIZE_MAX) {
  618. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  619. }
  620. g_free(filename);
  621. } else {
  622. ret = -1;
  623. }
  624. if (ret < 0 || ret > PROM_SIZE_MAX) {
  625. error_report("could not load prom '%s'", bios_name);
  626. exit(1);
  627. }
  628. }
  629. static void prom_realize(DeviceState *ds, Error **errp)
  630. {
  631. PROMState *s = OPENPROM(ds);
  632. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  633. Error *local_err = NULL;
  634. memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
  635. PROM_SIZE_MAX, &local_err);
  636. if (local_err) {
  637. error_propagate(errp, local_err);
  638. return;
  639. }
  640. vmstate_register_ram_global(&s->prom);
  641. memory_region_set_readonly(&s->prom, true);
  642. sysbus_init_mmio(dev, &s->prom);
  643. }
  644. static Property prom_properties[] = {
  645. {/* end of property list */},
  646. };
  647. static void prom_class_init(ObjectClass *klass, void *data)
  648. {
  649. DeviceClass *dc = DEVICE_CLASS(klass);
  650. dc->props = prom_properties;
  651. dc->realize = prom_realize;
  652. }
  653. static const TypeInfo prom_info = {
  654. .name = TYPE_OPENPROM,
  655. .parent = TYPE_SYS_BUS_DEVICE,
  656. .instance_size = sizeof(PROMState),
  657. .class_init = prom_class_init,
  658. };
  659. #define TYPE_SUN4M_MEMORY "memory"
  660. #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
  661. typedef struct RamDevice {
  662. SysBusDevice parent_obj;
  663. MemoryRegion ram;
  664. uint64_t size;
  665. } RamDevice;
  666. /* System RAM */
  667. static void ram_realize(DeviceState *dev, Error **errp)
  668. {
  669. RamDevice *d = SUN4M_RAM(dev);
  670. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  671. memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
  672. d->size);
  673. sysbus_init_mmio(sbd, &d->ram);
  674. }
  675. static void ram_init(hwaddr addr, ram_addr_t RAM_size,
  676. uint64_t max_mem)
  677. {
  678. DeviceState *dev;
  679. SysBusDevice *s;
  680. RamDevice *d;
  681. /* allocate RAM */
  682. if ((uint64_t)RAM_size > max_mem) {
  683. error_report("Too much memory for this machine: %" PRId64 ","
  684. " maximum %" PRId64,
  685. RAM_size / MiB, max_mem / MiB);
  686. exit(1);
  687. }
  688. dev = qdev_create(NULL, "memory");
  689. s = SYS_BUS_DEVICE(dev);
  690. d = SUN4M_RAM(dev);
  691. d->size = RAM_size;
  692. qdev_init_nofail(dev);
  693. sysbus_mmio_map(s, 0, addr);
  694. }
  695. static Property ram_properties[] = {
  696. DEFINE_PROP_UINT64("size", RamDevice, size, 0),
  697. DEFINE_PROP_END_OF_LIST(),
  698. };
  699. static void ram_class_init(ObjectClass *klass, void *data)
  700. {
  701. DeviceClass *dc = DEVICE_CLASS(klass);
  702. dc->realize = ram_realize;
  703. dc->props = ram_properties;
  704. }
  705. static const TypeInfo ram_info = {
  706. .name = TYPE_SUN4M_MEMORY,
  707. .parent = TYPE_SYS_BUS_DEVICE,
  708. .instance_size = sizeof(RamDevice),
  709. .class_init = ram_class_init,
  710. };
  711. static void cpu_devinit(const char *cpu_type, unsigned int id,
  712. uint64_t prom_addr, qemu_irq **cpu_irqs)
  713. {
  714. CPUState *cs;
  715. SPARCCPU *cpu;
  716. CPUSPARCState *env;
  717. cpu = SPARC_CPU(cpu_create(cpu_type));
  718. env = &cpu->env;
  719. cpu_sparc_set_id(env, id);
  720. if (id == 0) {
  721. qemu_register_reset(main_cpu_reset, cpu);
  722. } else {
  723. qemu_register_reset(secondary_cpu_reset, cpu);
  724. cs = CPU(cpu);
  725. cs->halted = 1;
  726. }
  727. *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
  728. env->prom_addr = prom_addr;
  729. }
  730. static void dummy_fdc_tc(void *opaque, int irq, int level)
  731. {
  732. }
  733. static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
  734. MachineState *machine)
  735. {
  736. DeviceState *slavio_intctl;
  737. unsigned int i;
  738. void *nvram;
  739. qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
  740. qemu_irq fdc_tc;
  741. unsigned long kernel_size;
  742. uint32_t initrd_size;
  743. DriveInfo *fd[MAX_FD];
  744. FWCfgState *fw_cfg;
  745. DeviceState *dev;
  746. SysBusDevice *s;
  747. unsigned int smp_cpus = machine->smp.cpus;
  748. unsigned int max_cpus = machine->smp.max_cpus;
  749. /* init CPUs */
  750. for(i = 0; i < smp_cpus; i++) {
  751. cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
  752. }
  753. for (i = smp_cpus; i < MAX_CPUS; i++)
  754. cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
  755. /* set up devices */
  756. ram_init(0, machine->ram_size, hwdef->max_mem);
  757. /* models without ECC don't trap when missing ram is accessed */
  758. if (!hwdef->ecc_base) {
  759. empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
  760. }
  761. prom_init(hwdef->slavio_base, bios_name);
  762. slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
  763. hwdef->intctl_base + 0x10000ULL,
  764. cpu_irqs);
  765. for (i = 0; i < 32; i++) {
  766. slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
  767. }
  768. for (i = 0; i < MAX_CPUS; i++) {
  769. slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
  770. }
  771. if (hwdef->idreg_base) {
  772. idreg_init(hwdef->idreg_base);
  773. }
  774. if (hwdef->afx_base) {
  775. afx_init(hwdef->afx_base);
  776. }
  777. iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
  778. if (hwdef->iommu_pad_base) {
  779. /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
  780. Software shouldn't use aliased addresses, neither should it crash
  781. when does. Using empty_slot instead of aliasing can help with
  782. debugging such accesses */
  783. empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
  784. }
  785. sparc32_dma_init(hwdef->dma_base,
  786. hwdef->esp_base, slavio_irq[18],
  787. hwdef->le_base, slavio_irq[16]);
  788. if (graphic_depth != 8 && graphic_depth != 24) {
  789. error_report("Unsupported depth: %d", graphic_depth);
  790. exit (1);
  791. }
  792. if (vga_interface_type != VGA_NONE) {
  793. if (vga_interface_type == VGA_CG3) {
  794. if (graphic_depth != 8) {
  795. error_report("Unsupported depth: %d", graphic_depth);
  796. exit(1);
  797. }
  798. if (!(graphic_width == 1024 && graphic_height == 768) &&
  799. !(graphic_width == 1152 && graphic_height == 900)) {
  800. error_report("Unsupported resolution: %d x %d", graphic_width,
  801. graphic_height);
  802. exit(1);
  803. }
  804. /* sbus irq 5 */
  805. cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  806. graphic_width, graphic_height, graphic_depth);
  807. } else {
  808. /* If no display specified, default to TCX */
  809. if (graphic_depth != 8 && graphic_depth != 24) {
  810. error_report("Unsupported depth: %d", graphic_depth);
  811. exit(1);
  812. }
  813. if (!(graphic_width == 1024 && graphic_height == 768)) {
  814. error_report("Unsupported resolution: %d x %d",
  815. graphic_width, graphic_height);
  816. exit(1);
  817. }
  818. tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  819. graphic_width, graphic_height, graphic_depth);
  820. }
  821. }
  822. for (i = 0; i < MAX_VSIMMS; i++) {
  823. /* vsimm registers probed by OBP */
  824. if (hwdef->vsimm[i].reg_base) {
  825. empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
  826. }
  827. }
  828. if (hwdef->sx_base) {
  829. empty_slot_init(hwdef->sx_base, 0x2000);
  830. }
  831. nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
  832. slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
  833. /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
  834. Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
  835. dev = qdev_create(NULL, TYPE_ESCC);
  836. qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
  837. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  838. qdev_prop_set_uint32(dev, "it_shift", 1);
  839. qdev_prop_set_chr(dev, "chrB", NULL);
  840. qdev_prop_set_chr(dev, "chrA", NULL);
  841. qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
  842. qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
  843. qdev_init_nofail(dev);
  844. s = SYS_BUS_DEVICE(dev);
  845. sysbus_connect_irq(s, 0, slavio_irq[14]);
  846. sysbus_connect_irq(s, 1, slavio_irq[14]);
  847. sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
  848. dev = qdev_create(NULL, TYPE_ESCC);
  849. qdev_prop_set_uint32(dev, "disabled", 0);
  850. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  851. qdev_prop_set_uint32(dev, "it_shift", 1);
  852. qdev_prop_set_chr(dev, "chrB", serial_hd(1));
  853. qdev_prop_set_chr(dev, "chrA", serial_hd(0));
  854. qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
  855. qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
  856. qdev_init_nofail(dev);
  857. s = SYS_BUS_DEVICE(dev);
  858. sysbus_connect_irq(s, 0, slavio_irq[15]);
  859. sysbus_connect_irq(s, 1, slavio_irq[15]);
  860. sysbus_mmio_map(s, 0, hwdef->serial_base);
  861. if (hwdef->apc_base) {
  862. apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
  863. }
  864. if (hwdef->fd_base) {
  865. /* there is zero or one floppy drive */
  866. memset(fd, 0, sizeof(fd));
  867. fd[0] = drive_get(IF_FLOPPY, 0, 0);
  868. sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
  869. &fdc_tc);
  870. } else {
  871. fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
  872. }
  873. slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
  874. slavio_irq[30], fdc_tc);
  875. if (hwdef->cs_base) {
  876. sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
  877. slavio_irq[5]);
  878. }
  879. if (hwdef->dbri_base) {
  880. /* ISDN chip with attached CS4215 audio codec */
  881. /* prom space */
  882. empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
  883. /* reg space */
  884. empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
  885. }
  886. if (hwdef->bpp_base) {
  887. /* parallel port */
  888. empty_slot_init(hwdef->bpp_base, 0x20);
  889. }
  890. initrd_size = 0;
  891. kernel_size = sun4m_load_kernel(machine->kernel_filename,
  892. machine->initrd_filename,
  893. machine->ram_size, &initrd_size);
  894. nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
  895. machine->boot_order, machine->ram_size, kernel_size,
  896. graphic_width, graphic_height, graphic_depth,
  897. hwdef->nvram_machine_id, "Sun4m");
  898. if (hwdef->ecc_base)
  899. ecc_init(hwdef->ecc_base, slavio_irq[28],
  900. hwdef->ecc_version);
  901. dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
  902. fw_cfg = FW_CFG(dev);
  903. qdev_prop_set_uint32(dev, "data_width", 1);
  904. qdev_prop_set_bit(dev, "dma_enabled", false);
  905. object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
  906. OBJECT(fw_cfg), NULL);
  907. qdev_init_nofail(dev);
  908. s = SYS_BUS_DEVICE(dev);
  909. sysbus_mmio_map(s, 0, CFG_ADDR);
  910. sysbus_mmio_map(s, 1, CFG_ADDR + 2);
  911. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
  912. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
  913. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
  914. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  915. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
  916. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
  917. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
  918. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
  919. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  920. if (machine->kernel_cmdline) {
  921. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
  922. pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
  923. machine->kernel_cmdline);
  924. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
  925. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  926. strlen(machine->kernel_cmdline) + 1);
  927. } else {
  928. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
  929. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  930. }
  931. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
  932. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  933. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
  934. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  935. }
  936. enum {
  937. ss5_id = 32,
  938. vger_id,
  939. lx_id,
  940. ss4_id,
  941. scls_id,
  942. sbook_id,
  943. ss10_id = 64,
  944. ss20_id,
  945. ss600mp_id,
  946. };
  947. static const struct sun4m_hwdef sun4m_hwdefs[] = {
  948. /* SS-5 */
  949. {
  950. .iommu_base = 0x10000000,
  951. .iommu_pad_base = 0x10004000,
  952. .iommu_pad_len = 0x0fffb000,
  953. .tcx_base = 0x50000000,
  954. .cs_base = 0x6c000000,
  955. .slavio_base = 0x70000000,
  956. .ms_kb_base = 0x71000000,
  957. .serial_base = 0x71100000,
  958. .nvram_base = 0x71200000,
  959. .fd_base = 0x71400000,
  960. .counter_base = 0x71d00000,
  961. .intctl_base = 0x71e00000,
  962. .idreg_base = 0x78000000,
  963. .dma_base = 0x78400000,
  964. .esp_base = 0x78800000,
  965. .le_base = 0x78c00000,
  966. .apc_base = 0x6a000000,
  967. .afx_base = 0x6e000000,
  968. .aux1_base = 0x71900000,
  969. .aux2_base = 0x71910000,
  970. .nvram_machine_id = 0x80,
  971. .machine_id = ss5_id,
  972. .iommu_version = 0x05000000,
  973. .max_mem = 0x10000000,
  974. },
  975. /* SS-10 */
  976. {
  977. .iommu_base = 0xfe0000000ULL,
  978. .tcx_base = 0xe20000000ULL,
  979. .slavio_base = 0xff0000000ULL,
  980. .ms_kb_base = 0xff1000000ULL,
  981. .serial_base = 0xff1100000ULL,
  982. .nvram_base = 0xff1200000ULL,
  983. .fd_base = 0xff1700000ULL,
  984. .counter_base = 0xff1300000ULL,
  985. .intctl_base = 0xff1400000ULL,
  986. .idreg_base = 0xef0000000ULL,
  987. .dma_base = 0xef0400000ULL,
  988. .esp_base = 0xef0800000ULL,
  989. .le_base = 0xef0c00000ULL,
  990. .apc_base = 0xefa000000ULL, // XXX should not exist
  991. .aux1_base = 0xff1800000ULL,
  992. .aux2_base = 0xff1a01000ULL,
  993. .ecc_base = 0xf00000000ULL,
  994. .ecc_version = 0x10000000, // version 0, implementation 1
  995. .nvram_machine_id = 0x72,
  996. .machine_id = ss10_id,
  997. .iommu_version = 0x03000000,
  998. .max_mem = 0xf00000000ULL,
  999. },
  1000. /* SS-600MP */
  1001. {
  1002. .iommu_base = 0xfe0000000ULL,
  1003. .tcx_base = 0xe20000000ULL,
  1004. .slavio_base = 0xff0000000ULL,
  1005. .ms_kb_base = 0xff1000000ULL,
  1006. .serial_base = 0xff1100000ULL,
  1007. .nvram_base = 0xff1200000ULL,
  1008. .counter_base = 0xff1300000ULL,
  1009. .intctl_base = 0xff1400000ULL,
  1010. .dma_base = 0xef0081000ULL,
  1011. .esp_base = 0xef0080000ULL,
  1012. .le_base = 0xef0060000ULL,
  1013. .apc_base = 0xefa000000ULL, // XXX should not exist
  1014. .aux1_base = 0xff1800000ULL,
  1015. .aux2_base = 0xff1a01000ULL, // XXX should not exist
  1016. .ecc_base = 0xf00000000ULL,
  1017. .ecc_version = 0x00000000, // version 0, implementation 0
  1018. .nvram_machine_id = 0x71,
  1019. .machine_id = ss600mp_id,
  1020. .iommu_version = 0x01000000,
  1021. .max_mem = 0xf00000000ULL,
  1022. },
  1023. /* SS-20 */
  1024. {
  1025. .iommu_base = 0xfe0000000ULL,
  1026. .tcx_base = 0xe20000000ULL,
  1027. .slavio_base = 0xff0000000ULL,
  1028. .ms_kb_base = 0xff1000000ULL,
  1029. .serial_base = 0xff1100000ULL,
  1030. .nvram_base = 0xff1200000ULL,
  1031. .fd_base = 0xff1700000ULL,
  1032. .counter_base = 0xff1300000ULL,
  1033. .intctl_base = 0xff1400000ULL,
  1034. .idreg_base = 0xef0000000ULL,
  1035. .dma_base = 0xef0400000ULL,
  1036. .esp_base = 0xef0800000ULL,
  1037. .le_base = 0xef0c00000ULL,
  1038. .bpp_base = 0xef4800000ULL,
  1039. .apc_base = 0xefa000000ULL, // XXX should not exist
  1040. .aux1_base = 0xff1800000ULL,
  1041. .aux2_base = 0xff1a01000ULL,
  1042. .dbri_base = 0xee0000000ULL,
  1043. .sx_base = 0xf80000000ULL,
  1044. .vsimm = {
  1045. {
  1046. .reg_base = 0x9c000000ULL,
  1047. .vram_base = 0xfc000000ULL
  1048. }, {
  1049. .reg_base = 0x90000000ULL,
  1050. .vram_base = 0xf0000000ULL
  1051. }, {
  1052. .reg_base = 0x94000000ULL
  1053. }, {
  1054. .reg_base = 0x98000000ULL
  1055. }
  1056. },
  1057. .ecc_base = 0xf00000000ULL,
  1058. .ecc_version = 0x20000000, // version 0, implementation 2
  1059. .nvram_machine_id = 0x72,
  1060. .machine_id = ss20_id,
  1061. .iommu_version = 0x13000000,
  1062. .max_mem = 0xf00000000ULL,
  1063. },
  1064. /* Voyager */
  1065. {
  1066. .iommu_base = 0x10000000,
  1067. .tcx_base = 0x50000000,
  1068. .slavio_base = 0x70000000,
  1069. .ms_kb_base = 0x71000000,
  1070. .serial_base = 0x71100000,
  1071. .nvram_base = 0x71200000,
  1072. .fd_base = 0x71400000,
  1073. .counter_base = 0x71d00000,
  1074. .intctl_base = 0x71e00000,
  1075. .idreg_base = 0x78000000,
  1076. .dma_base = 0x78400000,
  1077. .esp_base = 0x78800000,
  1078. .le_base = 0x78c00000,
  1079. .apc_base = 0x71300000, // pmc
  1080. .aux1_base = 0x71900000,
  1081. .aux2_base = 0x71910000,
  1082. .nvram_machine_id = 0x80,
  1083. .machine_id = vger_id,
  1084. .iommu_version = 0x05000000,
  1085. .max_mem = 0x10000000,
  1086. },
  1087. /* LX */
  1088. {
  1089. .iommu_base = 0x10000000,
  1090. .iommu_pad_base = 0x10004000,
  1091. .iommu_pad_len = 0x0fffb000,
  1092. .tcx_base = 0x50000000,
  1093. .slavio_base = 0x70000000,
  1094. .ms_kb_base = 0x71000000,
  1095. .serial_base = 0x71100000,
  1096. .nvram_base = 0x71200000,
  1097. .fd_base = 0x71400000,
  1098. .counter_base = 0x71d00000,
  1099. .intctl_base = 0x71e00000,
  1100. .idreg_base = 0x78000000,
  1101. .dma_base = 0x78400000,
  1102. .esp_base = 0x78800000,
  1103. .le_base = 0x78c00000,
  1104. .aux1_base = 0x71900000,
  1105. .aux2_base = 0x71910000,
  1106. .nvram_machine_id = 0x80,
  1107. .machine_id = lx_id,
  1108. .iommu_version = 0x04000000,
  1109. .max_mem = 0x10000000,
  1110. },
  1111. /* SS-4 */
  1112. {
  1113. .iommu_base = 0x10000000,
  1114. .tcx_base = 0x50000000,
  1115. .cs_base = 0x6c000000,
  1116. .slavio_base = 0x70000000,
  1117. .ms_kb_base = 0x71000000,
  1118. .serial_base = 0x71100000,
  1119. .nvram_base = 0x71200000,
  1120. .fd_base = 0x71400000,
  1121. .counter_base = 0x71d00000,
  1122. .intctl_base = 0x71e00000,
  1123. .idreg_base = 0x78000000,
  1124. .dma_base = 0x78400000,
  1125. .esp_base = 0x78800000,
  1126. .le_base = 0x78c00000,
  1127. .apc_base = 0x6a000000,
  1128. .aux1_base = 0x71900000,
  1129. .aux2_base = 0x71910000,
  1130. .nvram_machine_id = 0x80,
  1131. .machine_id = ss4_id,
  1132. .iommu_version = 0x05000000,
  1133. .max_mem = 0x10000000,
  1134. },
  1135. /* SPARCClassic */
  1136. {
  1137. .iommu_base = 0x10000000,
  1138. .tcx_base = 0x50000000,
  1139. .slavio_base = 0x70000000,
  1140. .ms_kb_base = 0x71000000,
  1141. .serial_base = 0x71100000,
  1142. .nvram_base = 0x71200000,
  1143. .fd_base = 0x71400000,
  1144. .counter_base = 0x71d00000,
  1145. .intctl_base = 0x71e00000,
  1146. .idreg_base = 0x78000000,
  1147. .dma_base = 0x78400000,
  1148. .esp_base = 0x78800000,
  1149. .le_base = 0x78c00000,
  1150. .apc_base = 0x6a000000,
  1151. .aux1_base = 0x71900000,
  1152. .aux2_base = 0x71910000,
  1153. .nvram_machine_id = 0x80,
  1154. .machine_id = scls_id,
  1155. .iommu_version = 0x05000000,
  1156. .max_mem = 0x10000000,
  1157. },
  1158. /* SPARCbook */
  1159. {
  1160. .iommu_base = 0x10000000,
  1161. .tcx_base = 0x50000000, // XXX
  1162. .slavio_base = 0x70000000,
  1163. .ms_kb_base = 0x71000000,
  1164. .serial_base = 0x71100000,
  1165. .nvram_base = 0x71200000,
  1166. .fd_base = 0x71400000,
  1167. .counter_base = 0x71d00000,
  1168. .intctl_base = 0x71e00000,
  1169. .idreg_base = 0x78000000,
  1170. .dma_base = 0x78400000,
  1171. .esp_base = 0x78800000,
  1172. .le_base = 0x78c00000,
  1173. .apc_base = 0x6a000000,
  1174. .aux1_base = 0x71900000,
  1175. .aux2_base = 0x71910000,
  1176. .nvram_machine_id = 0x80,
  1177. .machine_id = sbook_id,
  1178. .iommu_version = 0x05000000,
  1179. .max_mem = 0x10000000,
  1180. },
  1181. };
  1182. /* SPARCstation 5 hardware initialisation */
  1183. static void ss5_init(MachineState *machine)
  1184. {
  1185. sun4m_hw_init(&sun4m_hwdefs[0], machine);
  1186. }
  1187. /* SPARCstation 10 hardware initialisation */
  1188. static void ss10_init(MachineState *machine)
  1189. {
  1190. sun4m_hw_init(&sun4m_hwdefs[1], machine);
  1191. }
  1192. /* SPARCserver 600MP hardware initialisation */
  1193. static void ss600mp_init(MachineState *machine)
  1194. {
  1195. sun4m_hw_init(&sun4m_hwdefs[2], machine);
  1196. }
  1197. /* SPARCstation 20 hardware initialisation */
  1198. static void ss20_init(MachineState *machine)
  1199. {
  1200. sun4m_hw_init(&sun4m_hwdefs[3], machine);
  1201. }
  1202. /* SPARCstation Voyager hardware initialisation */
  1203. static void vger_init(MachineState *machine)
  1204. {
  1205. sun4m_hw_init(&sun4m_hwdefs[4], machine);
  1206. }
  1207. /* SPARCstation LX hardware initialisation */
  1208. static void ss_lx_init(MachineState *machine)
  1209. {
  1210. sun4m_hw_init(&sun4m_hwdefs[5], machine);
  1211. }
  1212. /* SPARCstation 4 hardware initialisation */
  1213. static void ss4_init(MachineState *machine)
  1214. {
  1215. sun4m_hw_init(&sun4m_hwdefs[6], machine);
  1216. }
  1217. /* SPARCClassic hardware initialisation */
  1218. static void scls_init(MachineState *machine)
  1219. {
  1220. sun4m_hw_init(&sun4m_hwdefs[7], machine);
  1221. }
  1222. /* SPARCbook hardware initialisation */
  1223. static void sbook_init(MachineState *machine)
  1224. {
  1225. sun4m_hw_init(&sun4m_hwdefs[8], machine);
  1226. }
  1227. static void ss5_class_init(ObjectClass *oc, void *data)
  1228. {
  1229. MachineClass *mc = MACHINE_CLASS(oc);
  1230. mc->desc = "Sun4m platform, SPARCstation 5";
  1231. mc->init = ss5_init;
  1232. mc->block_default_type = IF_SCSI;
  1233. mc->is_default = 1;
  1234. mc->default_boot_order = "c";
  1235. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1236. mc->default_display = "tcx";
  1237. }
  1238. static const TypeInfo ss5_type = {
  1239. .name = MACHINE_TYPE_NAME("SS-5"),
  1240. .parent = TYPE_MACHINE,
  1241. .class_init = ss5_class_init,
  1242. };
  1243. static void ss10_class_init(ObjectClass *oc, void *data)
  1244. {
  1245. MachineClass *mc = MACHINE_CLASS(oc);
  1246. mc->desc = "Sun4m platform, SPARCstation 10";
  1247. mc->init = ss10_init;
  1248. mc->block_default_type = IF_SCSI;
  1249. mc->max_cpus = 4;
  1250. mc->default_boot_order = "c";
  1251. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1252. mc->default_display = "tcx";
  1253. }
  1254. static const TypeInfo ss10_type = {
  1255. .name = MACHINE_TYPE_NAME("SS-10"),
  1256. .parent = TYPE_MACHINE,
  1257. .class_init = ss10_class_init,
  1258. };
  1259. static void ss600mp_class_init(ObjectClass *oc, void *data)
  1260. {
  1261. MachineClass *mc = MACHINE_CLASS(oc);
  1262. mc->desc = "Sun4m platform, SPARCserver 600MP";
  1263. mc->init = ss600mp_init;
  1264. mc->block_default_type = IF_SCSI;
  1265. mc->max_cpus = 4;
  1266. mc->default_boot_order = "c";
  1267. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1268. mc->default_display = "tcx";
  1269. }
  1270. static const TypeInfo ss600mp_type = {
  1271. .name = MACHINE_TYPE_NAME("SS-600MP"),
  1272. .parent = TYPE_MACHINE,
  1273. .class_init = ss600mp_class_init,
  1274. };
  1275. static void ss20_class_init(ObjectClass *oc, void *data)
  1276. {
  1277. MachineClass *mc = MACHINE_CLASS(oc);
  1278. mc->desc = "Sun4m platform, SPARCstation 20";
  1279. mc->init = ss20_init;
  1280. mc->block_default_type = IF_SCSI;
  1281. mc->max_cpus = 4;
  1282. mc->default_boot_order = "c";
  1283. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1284. mc->default_display = "tcx";
  1285. }
  1286. static const TypeInfo ss20_type = {
  1287. .name = MACHINE_TYPE_NAME("SS-20"),
  1288. .parent = TYPE_MACHINE,
  1289. .class_init = ss20_class_init,
  1290. };
  1291. static void voyager_class_init(ObjectClass *oc, void *data)
  1292. {
  1293. MachineClass *mc = MACHINE_CLASS(oc);
  1294. mc->desc = "Sun4m platform, SPARCstation Voyager";
  1295. mc->init = vger_init;
  1296. mc->block_default_type = IF_SCSI;
  1297. mc->default_boot_order = "c";
  1298. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1299. mc->default_display = "tcx";
  1300. }
  1301. static const TypeInfo voyager_type = {
  1302. .name = MACHINE_TYPE_NAME("Voyager"),
  1303. .parent = TYPE_MACHINE,
  1304. .class_init = voyager_class_init,
  1305. };
  1306. static void ss_lx_class_init(ObjectClass *oc, void *data)
  1307. {
  1308. MachineClass *mc = MACHINE_CLASS(oc);
  1309. mc->desc = "Sun4m platform, SPARCstation LX";
  1310. mc->init = ss_lx_init;
  1311. mc->block_default_type = IF_SCSI;
  1312. mc->default_boot_order = "c";
  1313. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1314. mc->default_display = "tcx";
  1315. }
  1316. static const TypeInfo ss_lx_type = {
  1317. .name = MACHINE_TYPE_NAME("LX"),
  1318. .parent = TYPE_MACHINE,
  1319. .class_init = ss_lx_class_init,
  1320. };
  1321. static void ss4_class_init(ObjectClass *oc, void *data)
  1322. {
  1323. MachineClass *mc = MACHINE_CLASS(oc);
  1324. mc->desc = "Sun4m platform, SPARCstation 4";
  1325. mc->init = ss4_init;
  1326. mc->block_default_type = IF_SCSI;
  1327. mc->default_boot_order = "c";
  1328. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1329. mc->default_display = "tcx";
  1330. }
  1331. static const TypeInfo ss4_type = {
  1332. .name = MACHINE_TYPE_NAME("SS-4"),
  1333. .parent = TYPE_MACHINE,
  1334. .class_init = ss4_class_init,
  1335. };
  1336. static void scls_class_init(ObjectClass *oc, void *data)
  1337. {
  1338. MachineClass *mc = MACHINE_CLASS(oc);
  1339. mc->desc = "Sun4m platform, SPARCClassic";
  1340. mc->init = scls_init;
  1341. mc->block_default_type = IF_SCSI;
  1342. mc->default_boot_order = "c";
  1343. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1344. mc->default_display = "tcx";
  1345. }
  1346. static const TypeInfo scls_type = {
  1347. .name = MACHINE_TYPE_NAME("SPARCClassic"),
  1348. .parent = TYPE_MACHINE,
  1349. .class_init = scls_class_init,
  1350. };
  1351. static void sbook_class_init(ObjectClass *oc, void *data)
  1352. {
  1353. MachineClass *mc = MACHINE_CLASS(oc);
  1354. mc->desc = "Sun4m platform, SPARCbook";
  1355. mc->init = sbook_init;
  1356. mc->block_default_type = IF_SCSI;
  1357. mc->default_boot_order = "c";
  1358. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1359. mc->default_display = "tcx";
  1360. }
  1361. static const TypeInfo sbook_type = {
  1362. .name = MACHINE_TYPE_NAME("SPARCbook"),
  1363. .parent = TYPE_MACHINE,
  1364. .class_init = sbook_class_init,
  1365. };
  1366. static void sun4m_register_types(void)
  1367. {
  1368. type_register_static(&idreg_info);
  1369. type_register_static(&afx_info);
  1370. type_register_static(&prom_info);
  1371. type_register_static(&ram_info);
  1372. type_register_static(&ss5_type);
  1373. type_register_static(&ss10_type);
  1374. type_register_static(&ss600mp_type);
  1375. type_register_static(&ss20_type);
  1376. type_register_static(&voyager_type);
  1377. type_register_static(&ss_lx_type);
  1378. type_register_static(&ss4_type);
  1379. type_register_static(&scls_type);
  1380. type_register_static(&sbook_type);
  1381. }
  1382. type_init(sun4m_register_types)