2
0

net_tx_pkt.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. /*
  2. * QEMU TX packets abstractions
  3. *
  4. * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
  5. *
  6. * Developed by Daynix Computing LTD (http://www.daynix.com)
  7. *
  8. * Authors:
  9. * Dmitry Fleytman <dmitry@daynix.com>
  10. * Tamir Shomer <tamirs@daynix.com>
  11. * Yan Vugenfirer <yan@daynix.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  14. * See the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "qemu/osdep.h"
  18. #include "net_tx_pkt.h"
  19. #include "net/eth.h"
  20. #include "net/checksum.h"
  21. #include "net/tap.h"
  22. #include "net/net.h"
  23. #include "hw/pci/pci.h"
  24. enum {
  25. NET_TX_PKT_VHDR_FRAG = 0,
  26. NET_TX_PKT_L2HDR_FRAG,
  27. NET_TX_PKT_L3HDR_FRAG,
  28. NET_TX_PKT_PL_START_FRAG
  29. };
  30. /* TX packet private context */
  31. struct NetTxPkt {
  32. PCIDevice *pci_dev;
  33. struct virtio_net_hdr virt_hdr;
  34. bool has_virt_hdr;
  35. struct iovec *raw;
  36. uint32_t raw_frags;
  37. uint32_t max_raw_frags;
  38. struct iovec *vec;
  39. uint8_t l2_hdr[ETH_MAX_L2_HDR_LEN];
  40. uint8_t l3_hdr[ETH_MAX_IP_DGRAM_LEN];
  41. uint32_t payload_len;
  42. uint32_t payload_frags;
  43. uint32_t max_payload_frags;
  44. uint16_t hdr_len;
  45. eth_pkt_types_e packet_type;
  46. uint8_t l4proto;
  47. bool is_loopback;
  48. };
  49. void net_tx_pkt_init(struct NetTxPkt **pkt, PCIDevice *pci_dev,
  50. uint32_t max_frags, bool has_virt_hdr)
  51. {
  52. struct NetTxPkt *p = g_malloc0(sizeof *p);
  53. p->pci_dev = pci_dev;
  54. p->vec = g_new(struct iovec, max_frags + NET_TX_PKT_PL_START_FRAG);
  55. p->raw = g_new(struct iovec, max_frags);
  56. p->max_payload_frags = max_frags;
  57. p->max_raw_frags = max_frags;
  58. p->has_virt_hdr = has_virt_hdr;
  59. p->vec[NET_TX_PKT_VHDR_FRAG].iov_base = &p->virt_hdr;
  60. p->vec[NET_TX_PKT_VHDR_FRAG].iov_len =
  61. p->has_virt_hdr ? sizeof p->virt_hdr : 0;
  62. p->vec[NET_TX_PKT_L2HDR_FRAG].iov_base = &p->l2_hdr;
  63. p->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = &p->l3_hdr;
  64. *pkt = p;
  65. }
  66. void net_tx_pkt_uninit(struct NetTxPkt *pkt)
  67. {
  68. if (pkt) {
  69. g_free(pkt->vec);
  70. g_free(pkt->raw);
  71. g_free(pkt);
  72. }
  73. }
  74. void net_tx_pkt_update_ip_hdr_checksum(struct NetTxPkt *pkt)
  75. {
  76. uint16_t csum;
  77. assert(pkt);
  78. struct ip_header *ip_hdr;
  79. ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
  80. ip_hdr->ip_len = cpu_to_be16(pkt->payload_len +
  81. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
  82. ip_hdr->ip_sum = 0;
  83. csum = net_raw_checksum((uint8_t *)ip_hdr,
  84. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
  85. ip_hdr->ip_sum = cpu_to_be16(csum);
  86. }
  87. void net_tx_pkt_update_ip_checksums(struct NetTxPkt *pkt)
  88. {
  89. uint16_t csum;
  90. uint32_t cntr, cso;
  91. assert(pkt);
  92. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  93. void *ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
  94. if (pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len >
  95. ETH_MAX_IP_DGRAM_LEN) {
  96. return;
  97. }
  98. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  99. gso_type == VIRTIO_NET_HDR_GSO_UDP) {
  100. /* Calculate IP header checksum */
  101. net_tx_pkt_update_ip_hdr_checksum(pkt);
  102. /* Calculate IP pseudo header checksum */
  103. cntr = eth_calc_ip4_pseudo_hdr_csum(ip_hdr, pkt->payload_len, &cso);
  104. csum = cpu_to_be16(~net_checksum_finish(cntr));
  105. } else if (gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  106. /* Calculate IP pseudo header checksum */
  107. cntr = eth_calc_ip6_pseudo_hdr_csum(ip_hdr, pkt->payload_len,
  108. IP_PROTO_TCP, &cso);
  109. csum = cpu_to_be16(~net_checksum_finish(cntr));
  110. } else {
  111. return;
  112. }
  113. iov_from_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
  114. pkt->virt_hdr.csum_offset, &csum, sizeof(csum));
  115. }
  116. static void net_tx_pkt_calculate_hdr_len(struct NetTxPkt *pkt)
  117. {
  118. pkt->hdr_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +
  119. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
  120. }
  121. static bool net_tx_pkt_parse_headers(struct NetTxPkt *pkt)
  122. {
  123. struct iovec *l2_hdr, *l3_hdr;
  124. size_t bytes_read;
  125. size_t full_ip6hdr_len;
  126. uint16_t l3_proto;
  127. assert(pkt);
  128. l2_hdr = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  129. l3_hdr = &pkt->vec[NET_TX_PKT_L3HDR_FRAG];
  130. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, 0, l2_hdr->iov_base,
  131. ETH_MAX_L2_HDR_LEN);
  132. if (bytes_read < sizeof(struct eth_header)) {
  133. l2_hdr->iov_len = 0;
  134. return false;
  135. }
  136. l2_hdr->iov_len = sizeof(struct eth_header);
  137. switch (be16_to_cpu(PKT_GET_ETH_HDR(l2_hdr->iov_base)->h_proto)) {
  138. case ETH_P_VLAN:
  139. l2_hdr->iov_len += sizeof(struct vlan_header);
  140. break;
  141. case ETH_P_DVLAN:
  142. l2_hdr->iov_len += 2 * sizeof(struct vlan_header);
  143. break;
  144. }
  145. if (bytes_read < l2_hdr->iov_len) {
  146. l2_hdr->iov_len = 0;
  147. l3_hdr->iov_len = 0;
  148. pkt->packet_type = ETH_PKT_UCAST;
  149. return false;
  150. } else {
  151. l2_hdr->iov_len = ETH_MAX_L2_HDR_LEN;
  152. l2_hdr->iov_len = eth_get_l2_hdr_length(l2_hdr->iov_base);
  153. pkt->packet_type = get_eth_packet_type(l2_hdr->iov_base);
  154. }
  155. l3_proto = eth_get_l3_proto(l2_hdr, 1, l2_hdr->iov_len);
  156. switch (l3_proto) {
  157. case ETH_P_IP:
  158. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  159. l3_hdr->iov_base, sizeof(struct ip_header));
  160. if (bytes_read < sizeof(struct ip_header)) {
  161. l3_hdr->iov_len = 0;
  162. return false;
  163. }
  164. l3_hdr->iov_len = IP_HDR_GET_LEN(l3_hdr->iov_base);
  165. if (l3_hdr->iov_len < sizeof(struct ip_header)) {
  166. l3_hdr->iov_len = 0;
  167. return false;
  168. }
  169. pkt->l4proto = IP_HDR_GET_P(l3_hdr->iov_base);
  170. if (IP_HDR_GET_LEN(l3_hdr->iov_base) != sizeof(struct ip_header)) {
  171. /* copy optional IPv4 header data if any*/
  172. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags,
  173. l2_hdr->iov_len + sizeof(struct ip_header),
  174. l3_hdr->iov_base + sizeof(struct ip_header),
  175. l3_hdr->iov_len - sizeof(struct ip_header));
  176. if (bytes_read < l3_hdr->iov_len - sizeof(struct ip_header)) {
  177. l3_hdr->iov_len = 0;
  178. return false;
  179. }
  180. }
  181. break;
  182. case ETH_P_IPV6:
  183. {
  184. eth_ip6_hdr_info hdrinfo;
  185. if (!eth_parse_ipv6_hdr(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  186. &hdrinfo)) {
  187. l3_hdr->iov_len = 0;
  188. return false;
  189. }
  190. pkt->l4proto = hdrinfo.l4proto;
  191. full_ip6hdr_len = hdrinfo.full_hdr_len;
  192. if (full_ip6hdr_len > ETH_MAX_IP_DGRAM_LEN) {
  193. l3_hdr->iov_len = 0;
  194. return false;
  195. }
  196. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  197. l3_hdr->iov_base, full_ip6hdr_len);
  198. if (bytes_read < full_ip6hdr_len) {
  199. l3_hdr->iov_len = 0;
  200. return false;
  201. } else {
  202. l3_hdr->iov_len = full_ip6hdr_len;
  203. }
  204. break;
  205. }
  206. default:
  207. l3_hdr->iov_len = 0;
  208. break;
  209. }
  210. net_tx_pkt_calculate_hdr_len(pkt);
  211. return true;
  212. }
  213. static void net_tx_pkt_rebuild_payload(struct NetTxPkt *pkt)
  214. {
  215. pkt->payload_len = iov_size(pkt->raw, pkt->raw_frags) - pkt->hdr_len;
  216. pkt->payload_frags = iov_copy(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
  217. pkt->max_payload_frags,
  218. pkt->raw, pkt->raw_frags,
  219. pkt->hdr_len, pkt->payload_len);
  220. }
  221. bool net_tx_pkt_parse(struct NetTxPkt *pkt)
  222. {
  223. if (net_tx_pkt_parse_headers(pkt)) {
  224. net_tx_pkt_rebuild_payload(pkt);
  225. return true;
  226. } else {
  227. return false;
  228. }
  229. }
  230. struct virtio_net_hdr *net_tx_pkt_get_vhdr(struct NetTxPkt *pkt)
  231. {
  232. assert(pkt);
  233. return &pkt->virt_hdr;
  234. }
  235. static uint8_t net_tx_pkt_get_gso_type(struct NetTxPkt *pkt,
  236. bool tso_enable)
  237. {
  238. uint8_t rc = VIRTIO_NET_HDR_GSO_NONE;
  239. uint16_t l3_proto;
  240. l3_proto = eth_get_l3_proto(&pkt->vec[NET_TX_PKT_L2HDR_FRAG], 1,
  241. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len);
  242. if (!tso_enable) {
  243. goto func_exit;
  244. }
  245. rc = eth_get_gso_type(l3_proto, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  246. pkt->l4proto);
  247. func_exit:
  248. return rc;
  249. }
  250. void net_tx_pkt_build_vheader(struct NetTxPkt *pkt, bool tso_enable,
  251. bool csum_enable, uint32_t gso_size)
  252. {
  253. struct tcp_hdr l4hdr;
  254. assert(pkt);
  255. /* csum has to be enabled if tso is. */
  256. assert(csum_enable || !tso_enable);
  257. pkt->virt_hdr.gso_type = net_tx_pkt_get_gso_type(pkt, tso_enable);
  258. switch (pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
  259. case VIRTIO_NET_HDR_GSO_NONE:
  260. pkt->virt_hdr.hdr_len = 0;
  261. pkt->virt_hdr.gso_size = 0;
  262. break;
  263. case VIRTIO_NET_HDR_GSO_UDP:
  264. pkt->virt_hdr.gso_size = gso_size;
  265. pkt->virt_hdr.hdr_len = pkt->hdr_len + sizeof(struct udp_header);
  266. break;
  267. case VIRTIO_NET_HDR_GSO_TCPV4:
  268. case VIRTIO_NET_HDR_GSO_TCPV6:
  269. iov_to_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
  270. 0, &l4hdr, sizeof(l4hdr));
  271. pkt->virt_hdr.hdr_len = pkt->hdr_len + l4hdr.th_off * sizeof(uint32_t);
  272. pkt->virt_hdr.gso_size = gso_size;
  273. break;
  274. default:
  275. g_assert_not_reached();
  276. }
  277. if (csum_enable) {
  278. switch (pkt->l4proto) {
  279. case IP_PROTO_TCP:
  280. pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
  281. pkt->virt_hdr.csum_start = pkt->hdr_len;
  282. pkt->virt_hdr.csum_offset = offsetof(struct tcp_hdr, th_sum);
  283. break;
  284. case IP_PROTO_UDP:
  285. pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
  286. pkt->virt_hdr.csum_start = pkt->hdr_len;
  287. pkt->virt_hdr.csum_offset = offsetof(struct udp_hdr, uh_sum);
  288. break;
  289. default:
  290. break;
  291. }
  292. }
  293. }
  294. void net_tx_pkt_setup_vlan_header_ex(struct NetTxPkt *pkt,
  295. uint16_t vlan, uint16_t vlan_ethtype)
  296. {
  297. bool is_new;
  298. assert(pkt);
  299. eth_setup_vlan_headers_ex(pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base,
  300. vlan, vlan_ethtype, &is_new);
  301. /* update l2hdrlen */
  302. if (is_new) {
  303. pkt->hdr_len += sizeof(struct vlan_header);
  304. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +=
  305. sizeof(struct vlan_header);
  306. }
  307. }
  308. bool net_tx_pkt_add_raw_fragment(struct NetTxPkt *pkt, hwaddr pa,
  309. size_t len)
  310. {
  311. hwaddr mapped_len = 0;
  312. struct iovec *ventry;
  313. assert(pkt);
  314. assert(pkt->max_raw_frags > pkt->raw_frags);
  315. if (!len) {
  316. return true;
  317. }
  318. ventry = &pkt->raw[pkt->raw_frags];
  319. mapped_len = len;
  320. ventry->iov_base = pci_dma_map(pkt->pci_dev, pa,
  321. &mapped_len, DMA_DIRECTION_TO_DEVICE);
  322. if ((ventry->iov_base != NULL) && (len == mapped_len)) {
  323. ventry->iov_len = mapped_len;
  324. pkt->raw_frags++;
  325. return true;
  326. } else {
  327. return false;
  328. }
  329. }
  330. bool net_tx_pkt_has_fragments(struct NetTxPkt *pkt)
  331. {
  332. return pkt->raw_frags > 0;
  333. }
  334. eth_pkt_types_e net_tx_pkt_get_packet_type(struct NetTxPkt *pkt)
  335. {
  336. assert(pkt);
  337. return pkt->packet_type;
  338. }
  339. size_t net_tx_pkt_get_total_len(struct NetTxPkt *pkt)
  340. {
  341. assert(pkt);
  342. return pkt->hdr_len + pkt->payload_len;
  343. }
  344. void net_tx_pkt_dump(struct NetTxPkt *pkt)
  345. {
  346. #ifdef NET_TX_PKT_DEBUG
  347. assert(pkt);
  348. printf("TX PKT: hdr_len: %d, pkt_type: 0x%X, l2hdr_len: %lu, "
  349. "l3hdr_len: %lu, payload_len: %u\n", pkt->hdr_len, pkt->packet_type,
  350. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
  351. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len, pkt->payload_len);
  352. #endif
  353. }
  354. void net_tx_pkt_reset(struct NetTxPkt *pkt)
  355. {
  356. int i;
  357. /* no assert, as reset can be called before tx_pkt_init */
  358. if (!pkt) {
  359. return;
  360. }
  361. memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr));
  362. assert(pkt->vec);
  363. pkt->payload_len = 0;
  364. pkt->payload_frags = 0;
  365. assert(pkt->raw);
  366. for (i = 0; i < pkt->raw_frags; i++) {
  367. assert(pkt->raw[i].iov_base);
  368. pci_dma_unmap(pkt->pci_dev, pkt->raw[i].iov_base, pkt->raw[i].iov_len,
  369. DMA_DIRECTION_TO_DEVICE, 0);
  370. }
  371. pkt->raw_frags = 0;
  372. pkt->hdr_len = 0;
  373. pkt->l4proto = 0;
  374. }
  375. static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt)
  376. {
  377. struct iovec *iov = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  378. uint32_t csum_cntr;
  379. uint16_t csum = 0;
  380. uint32_t cso;
  381. /* num of iovec without vhdr */
  382. uint32_t iov_len = pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1;
  383. uint16_t csl;
  384. struct ip_header *iphdr;
  385. size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset;
  386. /* Put zero to checksum field */
  387. iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
  388. /* Calculate L4 TCP/UDP checksum */
  389. csl = pkt->payload_len;
  390. /* add pseudo header to csum */
  391. iphdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
  392. csum_cntr = eth_calc_ip4_pseudo_hdr_csum(iphdr, csl, &cso);
  393. /* data checksum */
  394. csum_cntr +=
  395. net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso);
  396. /* Put the checksum obtained into the packet */
  397. csum = cpu_to_be16(net_checksum_finish_nozero(csum_cntr));
  398. iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
  399. }
  400. enum {
  401. NET_TX_PKT_FRAGMENT_L2_HDR_POS = 0,
  402. NET_TX_PKT_FRAGMENT_L3_HDR_POS,
  403. NET_TX_PKT_FRAGMENT_HEADER_NUM
  404. };
  405. #define NET_MAX_FRAG_SG_LIST (64)
  406. static size_t net_tx_pkt_fetch_fragment(struct NetTxPkt *pkt,
  407. int *src_idx, size_t *src_offset, struct iovec *dst, int *dst_idx)
  408. {
  409. size_t fetched = 0;
  410. struct iovec *src = pkt->vec;
  411. *dst_idx = NET_TX_PKT_FRAGMENT_HEADER_NUM;
  412. while (fetched < IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size)) {
  413. /* no more place in fragment iov */
  414. if (*dst_idx == NET_MAX_FRAG_SG_LIST) {
  415. break;
  416. }
  417. /* no more data in iovec */
  418. if (*src_idx == (pkt->payload_frags + NET_TX_PKT_PL_START_FRAG)) {
  419. break;
  420. }
  421. dst[*dst_idx].iov_base = src[*src_idx].iov_base + *src_offset;
  422. dst[*dst_idx].iov_len = MIN(src[*src_idx].iov_len - *src_offset,
  423. IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size) - fetched);
  424. *src_offset += dst[*dst_idx].iov_len;
  425. fetched += dst[*dst_idx].iov_len;
  426. if (*src_offset == src[*src_idx].iov_len) {
  427. *src_offset = 0;
  428. (*src_idx)++;
  429. }
  430. (*dst_idx)++;
  431. }
  432. return fetched;
  433. }
  434. static inline void net_tx_pkt_sendv(struct NetTxPkt *pkt,
  435. NetClientState *nc, const struct iovec *iov, int iov_cnt)
  436. {
  437. if (pkt->is_loopback) {
  438. nc->info->receive_iov(nc, iov, iov_cnt);
  439. } else {
  440. qemu_sendv_packet(nc, iov, iov_cnt);
  441. }
  442. }
  443. static bool net_tx_pkt_do_sw_fragmentation(struct NetTxPkt *pkt,
  444. NetClientState *nc)
  445. {
  446. struct iovec fragment[NET_MAX_FRAG_SG_LIST];
  447. size_t fragment_len = 0;
  448. bool more_frags = false;
  449. /* some pointers for shorter code */
  450. void *l2_iov_base, *l3_iov_base;
  451. size_t l2_iov_len, l3_iov_len;
  452. int src_idx = NET_TX_PKT_PL_START_FRAG, dst_idx;
  453. size_t src_offset = 0;
  454. size_t fragment_offset = 0;
  455. l2_iov_base = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base;
  456. l2_iov_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len;
  457. l3_iov_base = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
  458. l3_iov_len = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
  459. /* Copy headers */
  460. fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_base = l2_iov_base;
  461. fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_len = l2_iov_len;
  462. fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_base = l3_iov_base;
  463. fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_len = l3_iov_len;
  464. /* Put as much data as possible and send */
  465. do {
  466. fragment_len = net_tx_pkt_fetch_fragment(pkt, &src_idx, &src_offset,
  467. fragment, &dst_idx);
  468. more_frags = (fragment_offset + fragment_len < pkt->payload_len);
  469. eth_setup_ip4_fragmentation(l2_iov_base, l2_iov_len, l3_iov_base,
  470. l3_iov_len, fragment_len, fragment_offset, more_frags);
  471. eth_fix_ip4_checksum(l3_iov_base, l3_iov_len);
  472. net_tx_pkt_sendv(pkt, nc, fragment, dst_idx);
  473. fragment_offset += fragment_len;
  474. } while (fragment_len && more_frags);
  475. return true;
  476. }
  477. bool net_tx_pkt_send(struct NetTxPkt *pkt, NetClientState *nc)
  478. {
  479. assert(pkt);
  480. if (!pkt->has_virt_hdr &&
  481. pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
  482. net_tx_pkt_do_sw_csum(pkt);
  483. }
  484. /*
  485. * Since underlying infrastructure does not support IP datagrams longer
  486. * than 64K we should drop such packets and don't even try to send
  487. */
  488. if (VIRTIO_NET_HDR_GSO_NONE != pkt->virt_hdr.gso_type) {
  489. if (pkt->payload_len >
  490. ETH_MAX_IP_DGRAM_LEN -
  491. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len) {
  492. return false;
  493. }
  494. }
  495. if (pkt->has_virt_hdr ||
  496. pkt->virt_hdr.gso_type == VIRTIO_NET_HDR_GSO_NONE) {
  497. net_tx_pkt_sendv(pkt, nc, pkt->vec,
  498. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG);
  499. return true;
  500. }
  501. return net_tx_pkt_do_sw_fragmentation(pkt, nc);
  502. }
  503. bool net_tx_pkt_send_loopback(struct NetTxPkt *pkt, NetClientState *nc)
  504. {
  505. bool res;
  506. pkt->is_loopback = true;
  507. res = net_tx_pkt_send(pkt, nc);
  508. pkt->is_loopback = false;
  509. return res;
  510. }