2
0

ne2000.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. /*
  2. * QEMU NE2000 emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "net/eth.h"
  26. #include "qemu/module.h"
  27. #include "exec/memory.h"
  28. #include "hw/irq.h"
  29. #include "migration/vmstate.h"
  30. #include "ne2000.h"
  31. #include "trace.h"
  32. /* debug NE2000 card */
  33. //#define DEBUG_NE2000
  34. #define MAX_ETH_FRAME_SIZE 1514
  35. #define E8390_CMD 0x00 /* The command register (for all pages) */
  36. /* Page 0 register offsets. */
  37. #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
  38. #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
  39. #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
  40. #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
  41. #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
  42. #define EN0_TSR 0x04 /* Transmit status reg RD */
  43. #define EN0_TPSR 0x04 /* Transmit starting page WR */
  44. #define EN0_NCR 0x05 /* Number of collision reg RD */
  45. #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
  46. #define EN0_FIFO 0x06 /* FIFO RD */
  47. #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
  48. #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
  49. #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
  50. #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
  51. #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
  52. #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
  53. #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
  54. #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
  55. #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
  56. #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
  57. #define EN0_RSR 0x0c /* rx status reg RD */
  58. #define EN0_RXCR 0x0c /* RX configuration reg WR */
  59. #define EN0_TXCR 0x0d /* TX configuration reg WR */
  60. #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
  61. #define EN0_DCFG 0x0e /* Data configuration reg WR */
  62. #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
  63. #define EN0_IMR 0x0f /* Interrupt mask reg WR */
  64. #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
  65. #define EN1_PHYS 0x11
  66. #define EN1_CURPAG 0x17
  67. #define EN1_MULT 0x18
  68. #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
  69. #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
  70. #define EN3_CONFIG0 0x33
  71. #define EN3_CONFIG1 0x34
  72. #define EN3_CONFIG2 0x35
  73. #define EN3_CONFIG3 0x36
  74. /* Register accessed at EN_CMD, the 8390 base addr. */
  75. #define E8390_STOP 0x01 /* Stop and reset the chip */
  76. #define E8390_START 0x02 /* Start the chip, clear reset */
  77. #define E8390_TRANS 0x04 /* Transmit a frame */
  78. #define E8390_RREAD 0x08 /* Remote read */
  79. #define E8390_RWRITE 0x10 /* Remote write */
  80. #define E8390_NODMA 0x20 /* Remote DMA */
  81. #define E8390_PAGE0 0x00 /* Select page chip registers */
  82. #define E8390_PAGE1 0x40 /* using the two high-order bits */
  83. #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
  84. /* Bits in EN0_ISR - Interrupt status register */
  85. #define ENISR_RX 0x01 /* Receiver, no error */
  86. #define ENISR_TX 0x02 /* Transmitter, no error */
  87. #define ENISR_RX_ERR 0x04 /* Receiver, with error */
  88. #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
  89. #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
  90. #define ENISR_COUNTERS 0x20 /* Counters need emptying */
  91. #define ENISR_RDC 0x40 /* remote dma complete */
  92. #define ENISR_RESET 0x80 /* Reset completed */
  93. #define ENISR_ALL 0x3f /* Interrupts we will enable */
  94. /* Bits in received packet status byte and EN0_RSR*/
  95. #define ENRSR_RXOK 0x01 /* Received a good packet */
  96. #define ENRSR_CRC 0x02 /* CRC error */
  97. #define ENRSR_FAE 0x04 /* frame alignment error */
  98. #define ENRSR_FO 0x08 /* FIFO overrun */
  99. #define ENRSR_MPA 0x10 /* missed pkt */
  100. #define ENRSR_PHY 0x20 /* physical/multicast address */
  101. #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
  102. #define ENRSR_DEF 0x80 /* deferring */
  103. /* Transmitted packet status, EN0_TSR. */
  104. #define ENTSR_PTX 0x01 /* Packet transmitted without error */
  105. #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
  106. #define ENTSR_COL 0x04 /* The transmit collided at least once. */
  107. #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
  108. #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
  109. #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
  110. #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
  111. #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
  112. void ne2000_reset(NE2000State *s)
  113. {
  114. int i;
  115. s->isr = ENISR_RESET;
  116. memcpy(s->mem, &s->c.macaddr, 6);
  117. s->mem[14] = 0x57;
  118. s->mem[15] = 0x57;
  119. /* duplicate prom data */
  120. for(i = 15;i >= 0; i--) {
  121. s->mem[2 * i] = s->mem[i];
  122. s->mem[2 * i + 1] = s->mem[i];
  123. }
  124. }
  125. static void ne2000_update_irq(NE2000State *s)
  126. {
  127. int isr;
  128. isr = (s->isr & s->imr) & 0x7f;
  129. #if defined(DEBUG_NE2000)
  130. printf("NE2000: Set IRQ to %d (%02x %02x)\n",
  131. isr ? 1 : 0, s->isr, s->imr);
  132. #endif
  133. qemu_set_irq(s->irq, (isr != 0));
  134. }
  135. static int ne2000_buffer_full(NE2000State *s)
  136. {
  137. int avail, index, boundary;
  138. if (s->stop <= s->start) {
  139. return 1;
  140. }
  141. index = s->curpag << 8;
  142. boundary = s->boundary << 8;
  143. if (index < boundary)
  144. avail = boundary - index;
  145. else
  146. avail = (s->stop - s->start) - (index - boundary);
  147. if (avail < (MAX_ETH_FRAME_SIZE + 4))
  148. return 1;
  149. return 0;
  150. }
  151. #define MIN_BUF_SIZE 60
  152. ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
  153. {
  154. NE2000State *s = qemu_get_nic_opaque(nc);
  155. size_t size = size_;
  156. uint8_t *p;
  157. unsigned int total_len, next, avail, len, index, mcast_idx;
  158. uint8_t buf1[60];
  159. static const uint8_t broadcast_macaddr[6] =
  160. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  161. #if defined(DEBUG_NE2000)
  162. printf("NE2000: received len=%zu\n", size);
  163. #endif
  164. if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
  165. return -1;
  166. /* XXX: check this */
  167. if (s->rxcr & 0x10) {
  168. /* promiscuous: receive all */
  169. } else {
  170. if (!memcmp(buf, broadcast_macaddr, 6)) {
  171. /* broadcast address */
  172. if (!(s->rxcr & 0x04))
  173. return size;
  174. } else if (buf[0] & 0x01) {
  175. /* multicast */
  176. if (!(s->rxcr & 0x08))
  177. return size;
  178. mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
  179. if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
  180. return size;
  181. } else if (s->mem[0] == buf[0] &&
  182. s->mem[2] == buf[1] &&
  183. s->mem[4] == buf[2] &&
  184. s->mem[6] == buf[3] &&
  185. s->mem[8] == buf[4] &&
  186. s->mem[10] == buf[5]) {
  187. /* match */
  188. } else {
  189. return size;
  190. }
  191. }
  192. /* if too small buffer, then expand it */
  193. if (size < MIN_BUF_SIZE) {
  194. memcpy(buf1, buf, size);
  195. memset(buf1 + size, 0, MIN_BUF_SIZE - size);
  196. buf = buf1;
  197. size = MIN_BUF_SIZE;
  198. }
  199. index = s->curpag << 8;
  200. if (index >= NE2000_PMEM_END) {
  201. index = s->start;
  202. }
  203. /* 4 bytes for header */
  204. total_len = size + 4;
  205. /* address for next packet (4 bytes for CRC) */
  206. next = index + ((total_len + 4 + 255) & ~0xff);
  207. if (next >= s->stop)
  208. next -= (s->stop - s->start);
  209. /* prepare packet header */
  210. p = s->mem + index;
  211. s->rsr = ENRSR_RXOK; /* receive status */
  212. /* XXX: check this */
  213. if (buf[0] & 0x01)
  214. s->rsr |= ENRSR_PHY;
  215. p[0] = s->rsr;
  216. p[1] = next >> 8;
  217. p[2] = total_len;
  218. p[3] = total_len >> 8;
  219. index += 4;
  220. /* write packet data */
  221. while (size > 0) {
  222. if (index <= s->stop)
  223. avail = s->stop - index;
  224. else
  225. break;
  226. len = size;
  227. if (len > avail)
  228. len = avail;
  229. memcpy(s->mem + index, buf, len);
  230. buf += len;
  231. index += len;
  232. if (index == s->stop)
  233. index = s->start;
  234. size -= len;
  235. }
  236. s->curpag = next >> 8;
  237. /* now we can signal we have received something */
  238. s->isr |= ENISR_RX;
  239. ne2000_update_irq(s);
  240. return size_;
  241. }
  242. static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  243. {
  244. NE2000State *s = opaque;
  245. int offset, page, index;
  246. addr &= 0xf;
  247. trace_ne2000_ioport_write(addr, val);
  248. if (addr == E8390_CMD) {
  249. /* control register */
  250. s->cmd = val;
  251. if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
  252. s->isr &= ~ENISR_RESET;
  253. /* test specific case: zero length transfer */
  254. if ((val & (E8390_RREAD | E8390_RWRITE)) &&
  255. s->rcnt == 0) {
  256. s->isr |= ENISR_RDC;
  257. ne2000_update_irq(s);
  258. }
  259. if (val & E8390_TRANS) {
  260. index = (s->tpsr << 8);
  261. /* XXX: next 2 lines are a hack to make netware 3.11 work */
  262. if (index >= NE2000_PMEM_END)
  263. index -= NE2000_PMEM_SIZE;
  264. /* fail safe: check range on the transmitted length */
  265. if (index + s->tcnt <= NE2000_PMEM_END) {
  266. qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
  267. s->tcnt);
  268. }
  269. /* signal end of transfer */
  270. s->tsr = ENTSR_PTX;
  271. s->isr |= ENISR_TX;
  272. s->cmd &= ~E8390_TRANS;
  273. ne2000_update_irq(s);
  274. }
  275. }
  276. } else {
  277. page = s->cmd >> 6;
  278. offset = addr | (page << 4);
  279. switch(offset) {
  280. case EN0_STARTPG:
  281. if (val << 8 <= NE2000_PMEM_END) {
  282. s->start = val << 8;
  283. }
  284. break;
  285. case EN0_STOPPG:
  286. if (val << 8 <= NE2000_PMEM_END) {
  287. s->stop = val << 8;
  288. }
  289. break;
  290. case EN0_BOUNDARY:
  291. if (val << 8 < NE2000_PMEM_END) {
  292. s->boundary = val;
  293. }
  294. break;
  295. case EN0_IMR:
  296. s->imr = val;
  297. ne2000_update_irq(s);
  298. break;
  299. case EN0_TPSR:
  300. s->tpsr = val;
  301. break;
  302. case EN0_TCNTLO:
  303. s->tcnt = (s->tcnt & 0xff00) | val;
  304. break;
  305. case EN0_TCNTHI:
  306. s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
  307. break;
  308. case EN0_RSARLO:
  309. s->rsar = (s->rsar & 0xff00) | val;
  310. break;
  311. case EN0_RSARHI:
  312. s->rsar = (s->rsar & 0x00ff) | (val << 8);
  313. break;
  314. case EN0_RCNTLO:
  315. s->rcnt = (s->rcnt & 0xff00) | val;
  316. break;
  317. case EN0_RCNTHI:
  318. s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
  319. break;
  320. case EN0_RXCR:
  321. s->rxcr = val;
  322. break;
  323. case EN0_DCFG:
  324. s->dcfg = val;
  325. break;
  326. case EN0_ISR:
  327. s->isr &= ~(val & 0x7f);
  328. ne2000_update_irq(s);
  329. break;
  330. case EN1_PHYS ... EN1_PHYS + 5:
  331. s->phys[offset - EN1_PHYS] = val;
  332. break;
  333. case EN1_CURPAG:
  334. if (val << 8 < NE2000_PMEM_END) {
  335. s->curpag = val;
  336. }
  337. break;
  338. case EN1_MULT ... EN1_MULT + 7:
  339. s->mult[offset - EN1_MULT] = val;
  340. break;
  341. }
  342. }
  343. }
  344. static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
  345. {
  346. NE2000State *s = opaque;
  347. int offset, page, ret;
  348. addr &= 0xf;
  349. if (addr == E8390_CMD) {
  350. ret = s->cmd;
  351. } else {
  352. page = s->cmd >> 6;
  353. offset = addr | (page << 4);
  354. switch(offset) {
  355. case EN0_TSR:
  356. ret = s->tsr;
  357. break;
  358. case EN0_BOUNDARY:
  359. ret = s->boundary;
  360. break;
  361. case EN0_ISR:
  362. ret = s->isr;
  363. break;
  364. case EN0_RSARLO:
  365. ret = s->rsar & 0x00ff;
  366. break;
  367. case EN0_RSARHI:
  368. ret = s->rsar >> 8;
  369. break;
  370. case EN1_PHYS ... EN1_PHYS + 5:
  371. ret = s->phys[offset - EN1_PHYS];
  372. break;
  373. case EN1_CURPAG:
  374. ret = s->curpag;
  375. break;
  376. case EN1_MULT ... EN1_MULT + 7:
  377. ret = s->mult[offset - EN1_MULT];
  378. break;
  379. case EN0_RSR:
  380. ret = s->rsr;
  381. break;
  382. case EN2_STARTPG:
  383. ret = s->start >> 8;
  384. break;
  385. case EN2_STOPPG:
  386. ret = s->stop >> 8;
  387. break;
  388. case EN0_RTL8029ID0:
  389. ret = 0x50;
  390. break;
  391. case EN0_RTL8029ID1:
  392. ret = 0x43;
  393. break;
  394. case EN3_CONFIG0:
  395. ret = 0; /* 10baseT media */
  396. break;
  397. case EN3_CONFIG2:
  398. ret = 0x40; /* 10baseT active */
  399. break;
  400. case EN3_CONFIG3:
  401. ret = 0x40; /* Full duplex */
  402. break;
  403. default:
  404. ret = 0x00;
  405. break;
  406. }
  407. }
  408. trace_ne2000_ioport_read(addr, ret);
  409. return ret;
  410. }
  411. static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
  412. uint32_t val)
  413. {
  414. if (addr < 32 ||
  415. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  416. s->mem[addr] = val;
  417. }
  418. }
  419. static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
  420. uint32_t val)
  421. {
  422. addr &= ~1; /* XXX: check exact behaviour if not even */
  423. if (addr < 32 ||
  424. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  425. *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
  426. }
  427. }
  428. static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
  429. uint32_t val)
  430. {
  431. addr &= ~1; /* XXX: check exact behaviour if not even */
  432. if (addr < 32
  433. || (addr >= NE2000_PMEM_START
  434. && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
  435. stl_le_p(s->mem + addr, val);
  436. }
  437. }
  438. static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
  439. {
  440. if (addr < 32 ||
  441. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  442. return s->mem[addr];
  443. } else {
  444. return 0xff;
  445. }
  446. }
  447. static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
  448. {
  449. addr &= ~1; /* XXX: check exact behaviour if not even */
  450. if (addr < 32 ||
  451. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  452. return le16_to_cpu(*(uint16_t *)(s->mem + addr));
  453. } else {
  454. return 0xffff;
  455. }
  456. }
  457. static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
  458. {
  459. addr &= ~1; /* XXX: check exact behaviour if not even */
  460. if (addr < 32
  461. || (addr >= NE2000_PMEM_START
  462. && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
  463. return ldl_le_p(s->mem + addr);
  464. } else {
  465. return 0xffffffff;
  466. }
  467. }
  468. static inline void ne2000_dma_update(NE2000State *s, int len)
  469. {
  470. s->rsar += len;
  471. /* wrap */
  472. /* XXX: check what to do if rsar > stop */
  473. if (s->rsar == s->stop)
  474. s->rsar = s->start;
  475. if (s->rcnt <= len) {
  476. s->rcnt = 0;
  477. /* signal end of transfer */
  478. s->isr |= ENISR_RDC;
  479. ne2000_update_irq(s);
  480. } else {
  481. s->rcnt -= len;
  482. }
  483. }
  484. static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  485. {
  486. NE2000State *s = opaque;
  487. #ifdef DEBUG_NE2000
  488. printf("NE2000: asic write val=0x%04x\n", val);
  489. #endif
  490. if (s->rcnt == 0)
  491. return;
  492. if (s->dcfg & 0x01) {
  493. /* 16 bit access */
  494. ne2000_mem_writew(s, s->rsar, val);
  495. ne2000_dma_update(s, 2);
  496. } else {
  497. /* 8 bit access */
  498. ne2000_mem_writeb(s, s->rsar, val);
  499. ne2000_dma_update(s, 1);
  500. }
  501. }
  502. static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
  503. {
  504. NE2000State *s = opaque;
  505. int ret;
  506. if (s->dcfg & 0x01) {
  507. /* 16 bit access */
  508. ret = ne2000_mem_readw(s, s->rsar);
  509. ne2000_dma_update(s, 2);
  510. } else {
  511. /* 8 bit access */
  512. ret = ne2000_mem_readb(s, s->rsar);
  513. ne2000_dma_update(s, 1);
  514. }
  515. #ifdef DEBUG_NE2000
  516. printf("NE2000: asic read val=0x%04x\n", ret);
  517. #endif
  518. return ret;
  519. }
  520. static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
  521. {
  522. NE2000State *s = opaque;
  523. #ifdef DEBUG_NE2000
  524. printf("NE2000: asic writel val=0x%04x\n", val);
  525. #endif
  526. if (s->rcnt == 0)
  527. return;
  528. /* 32 bit access */
  529. ne2000_mem_writel(s, s->rsar, val);
  530. ne2000_dma_update(s, 4);
  531. }
  532. static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
  533. {
  534. NE2000State *s = opaque;
  535. int ret;
  536. /* 32 bit access */
  537. ret = ne2000_mem_readl(s, s->rsar);
  538. ne2000_dma_update(s, 4);
  539. #ifdef DEBUG_NE2000
  540. printf("NE2000: asic readl val=0x%04x\n", ret);
  541. #endif
  542. return ret;
  543. }
  544. static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  545. {
  546. /* nothing to do (end of reset pulse) */
  547. }
  548. static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
  549. {
  550. NE2000State *s = opaque;
  551. ne2000_reset(s);
  552. return 0;
  553. }
  554. static int ne2000_post_load(void* opaque, int version_id)
  555. {
  556. NE2000State* s = opaque;
  557. if (version_id < 2) {
  558. s->rxcr = 0x0c;
  559. }
  560. return 0;
  561. }
  562. const VMStateDescription vmstate_ne2000 = {
  563. .name = "ne2000",
  564. .version_id = 2,
  565. .minimum_version_id = 0,
  566. .post_load = ne2000_post_load,
  567. .fields = (VMStateField[]) {
  568. VMSTATE_UINT8_V(rxcr, NE2000State, 2),
  569. VMSTATE_UINT8(cmd, NE2000State),
  570. VMSTATE_UINT32(start, NE2000State),
  571. VMSTATE_UINT32(stop, NE2000State),
  572. VMSTATE_UINT8(boundary, NE2000State),
  573. VMSTATE_UINT8(tsr, NE2000State),
  574. VMSTATE_UINT8(tpsr, NE2000State),
  575. VMSTATE_UINT16(tcnt, NE2000State),
  576. VMSTATE_UINT16(rcnt, NE2000State),
  577. VMSTATE_UINT32(rsar, NE2000State),
  578. VMSTATE_UINT8(rsr, NE2000State),
  579. VMSTATE_UINT8(isr, NE2000State),
  580. VMSTATE_UINT8(dcfg, NE2000State),
  581. VMSTATE_UINT8(imr, NE2000State),
  582. VMSTATE_BUFFER(phys, NE2000State),
  583. VMSTATE_UINT8(curpag, NE2000State),
  584. VMSTATE_BUFFER(mult, NE2000State),
  585. VMSTATE_UNUSED(4), /* was irq */
  586. VMSTATE_BUFFER(mem, NE2000State),
  587. VMSTATE_END_OF_LIST()
  588. }
  589. };
  590. static uint64_t ne2000_read(void *opaque, hwaddr addr,
  591. unsigned size)
  592. {
  593. NE2000State *s = opaque;
  594. uint64_t val;
  595. if (addr < 0x10 && size == 1) {
  596. val = ne2000_ioport_read(s, addr);
  597. } else if (addr == 0x10) {
  598. if (size <= 2) {
  599. val = ne2000_asic_ioport_read(s, addr);
  600. } else {
  601. val = ne2000_asic_ioport_readl(s, addr);
  602. }
  603. } else if (addr == 0x1f && size == 1) {
  604. val = ne2000_reset_ioport_read(s, addr);
  605. } else {
  606. val = ((uint64_t)1 << (size * 8)) - 1;
  607. }
  608. trace_ne2000_read(addr, val);
  609. return val;
  610. }
  611. static void ne2000_write(void *opaque, hwaddr addr,
  612. uint64_t data, unsigned size)
  613. {
  614. NE2000State *s = opaque;
  615. trace_ne2000_write(addr, data);
  616. if (addr < 0x10 && size == 1) {
  617. ne2000_ioport_write(s, addr, data);
  618. } else if (addr == 0x10) {
  619. if (size <= 2) {
  620. ne2000_asic_ioport_write(s, addr, data);
  621. } else {
  622. ne2000_asic_ioport_writel(s, addr, data);
  623. }
  624. } else if (addr == 0x1f && size == 1) {
  625. ne2000_reset_ioport_write(s, addr, data);
  626. }
  627. }
  628. static const MemoryRegionOps ne2000_ops = {
  629. .read = ne2000_read,
  630. .write = ne2000_write,
  631. .endianness = DEVICE_LITTLE_ENDIAN,
  632. };
  633. /***********************************************************/
  634. /* PCI NE2000 definitions */
  635. void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
  636. {
  637. memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
  638. }