memory-device.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /*
  2. * Memory Device Interface
  3. *
  4. * Copyright ProfitBricks GmbH 2012
  5. * Copyright (C) 2014 Red Hat Inc
  6. * Copyright (c) 2018 Red Hat Inc
  7. *
  8. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  9. * See the COPYING file in the top-level directory.
  10. */
  11. #include "qemu/osdep.h"
  12. #include "hw/mem/memory-device.h"
  13. #include "qapi/error.h"
  14. #include "hw/boards.h"
  15. #include "qemu/range.h"
  16. #include "hw/virtio/vhost.h"
  17. #include "sysemu/kvm.h"
  18. #include "trace.h"
  19. static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
  20. {
  21. const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
  22. const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
  23. const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
  24. const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
  25. const uint64_t addr_a = mdc_a->get_addr(md_a);
  26. const uint64_t addr_b = mdc_b->get_addr(md_b);
  27. if (addr_a > addr_b) {
  28. return 1;
  29. } else if (addr_a < addr_b) {
  30. return -1;
  31. }
  32. return 0;
  33. }
  34. static int memory_device_build_list(Object *obj, void *opaque)
  35. {
  36. GSList **list = opaque;
  37. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  38. DeviceState *dev = DEVICE(obj);
  39. if (dev->realized) { /* only realized memory devices matter */
  40. *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
  41. }
  42. }
  43. object_child_foreach(obj, memory_device_build_list, opaque);
  44. return 0;
  45. }
  46. static int memory_device_used_region_size(Object *obj, void *opaque)
  47. {
  48. uint64_t *size = opaque;
  49. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  50. const DeviceState *dev = DEVICE(obj);
  51. const MemoryDeviceState *md = MEMORY_DEVICE(obj);
  52. if (dev->realized) {
  53. *size += memory_device_get_region_size(md, &error_abort);
  54. }
  55. }
  56. object_child_foreach(obj, memory_device_used_region_size, opaque);
  57. return 0;
  58. }
  59. static void memory_device_check_addable(MachineState *ms, uint64_t size,
  60. Error **errp)
  61. {
  62. uint64_t used_region_size = 0;
  63. /* we will need a new memory slot for kvm and vhost */
  64. if (kvm_enabled() && !kvm_has_free_slot(ms)) {
  65. error_setg(errp, "hypervisor has no free memory slots left");
  66. return;
  67. }
  68. if (!vhost_has_free_slot()) {
  69. error_setg(errp, "a used vhost backend has no free memory slots left");
  70. return;
  71. }
  72. /* will we exceed the total amount of memory specified */
  73. memory_device_used_region_size(OBJECT(ms), &used_region_size);
  74. if (used_region_size + size < used_region_size ||
  75. used_region_size + size > ms->maxram_size - ms->ram_size) {
  76. error_setg(errp, "not enough space, currently 0x%" PRIx64
  77. " in use of total space for memory devices 0x" RAM_ADDR_FMT,
  78. used_region_size, ms->maxram_size - ms->ram_size);
  79. return;
  80. }
  81. }
  82. static uint64_t memory_device_get_free_addr(MachineState *ms,
  83. const uint64_t *hint,
  84. uint64_t align, uint64_t size,
  85. Error **errp)
  86. {
  87. GSList *list = NULL, *item;
  88. Range as, new = range_empty;
  89. if (!ms->device_memory) {
  90. error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
  91. "supported by the machine");
  92. return 0;
  93. }
  94. if (!memory_region_size(&ms->device_memory->mr)) {
  95. error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
  96. "enabled, please specify the maxmem option");
  97. return 0;
  98. }
  99. range_init_nofail(&as, ms->device_memory->base,
  100. memory_region_size(&ms->device_memory->mr));
  101. /* start of address space indicates the maximum alignment we expect */
  102. if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
  103. error_setg(errp, "the alignment (0x%" PRIx64 ") is not supported",
  104. align);
  105. return 0;
  106. }
  107. memory_device_check_addable(ms, size, errp);
  108. if (*errp) {
  109. return 0;
  110. }
  111. if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
  112. error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
  113. align);
  114. return 0;
  115. }
  116. if (!QEMU_IS_ALIGNED(size, align)) {
  117. error_setg(errp, "backend memory size must be multiple of 0x%"
  118. PRIx64, align);
  119. return 0;
  120. }
  121. if (hint) {
  122. if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
  123. error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
  124. "], usable range for memory devices [0x%" PRIx64 ":0x%"
  125. PRIx64 "]", *hint, size, range_lob(&as),
  126. range_size(&as));
  127. return 0;
  128. }
  129. } else {
  130. if (range_init(&new, range_lob(&as), size)) {
  131. error_setg(errp, "can't add memory device, device too big");
  132. return 0;
  133. }
  134. }
  135. /* find address range that will fit new memory device */
  136. object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
  137. for (item = list; item; item = g_slist_next(item)) {
  138. const MemoryDeviceState *md = item->data;
  139. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
  140. uint64_t next_addr;
  141. Range tmp;
  142. range_init_nofail(&tmp, mdc->get_addr(md),
  143. memory_device_get_region_size(md, &error_abort));
  144. if (range_overlaps_range(&tmp, &new)) {
  145. if (hint) {
  146. const DeviceState *d = DEVICE(md);
  147. error_setg(errp, "address range conflicts with memory device"
  148. " id='%s'", d->id ? d->id : "(unnamed)");
  149. goto out;
  150. }
  151. next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
  152. if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
  153. range_make_empty(&new);
  154. break;
  155. }
  156. } else if (range_lob(&tmp) > range_upb(&new)) {
  157. break;
  158. }
  159. }
  160. if (!range_contains_range(&as, &new)) {
  161. error_setg(errp, "could not find position in guest address space for "
  162. "memory device - memory fragmented due to alignments");
  163. }
  164. out:
  165. g_slist_free(list);
  166. return range_lob(&new);
  167. }
  168. MemoryDeviceInfoList *qmp_memory_device_list(void)
  169. {
  170. GSList *devices = NULL, *item;
  171. MemoryDeviceInfoList *list = NULL, *prev = NULL;
  172. object_child_foreach(qdev_get_machine(), memory_device_build_list,
  173. &devices);
  174. for (item = devices; item; item = g_slist_next(item)) {
  175. const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
  176. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
  177. MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
  178. MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
  179. mdc->fill_device_info(md, info);
  180. elem->value = info;
  181. elem->next = NULL;
  182. if (prev) {
  183. prev->next = elem;
  184. } else {
  185. list = elem;
  186. }
  187. prev = elem;
  188. }
  189. g_slist_free(devices);
  190. return list;
  191. }
  192. static int memory_device_plugged_size(Object *obj, void *opaque)
  193. {
  194. uint64_t *size = opaque;
  195. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  196. const DeviceState *dev = DEVICE(obj);
  197. const MemoryDeviceState *md = MEMORY_DEVICE(obj);
  198. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
  199. if (dev->realized) {
  200. *size += mdc->get_plugged_size(md, &error_abort);
  201. }
  202. }
  203. object_child_foreach(obj, memory_device_plugged_size, opaque);
  204. return 0;
  205. }
  206. uint64_t get_plugged_memory_size(void)
  207. {
  208. uint64_t size = 0;
  209. memory_device_plugged_size(qdev_get_machine(), &size);
  210. return size;
  211. }
  212. void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
  213. const uint64_t *legacy_align, Error **errp)
  214. {
  215. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  216. Error *local_err = NULL;
  217. uint64_t addr, align;
  218. MemoryRegion *mr;
  219. mr = mdc->get_memory_region(md, &local_err);
  220. if (local_err) {
  221. goto out;
  222. }
  223. align = legacy_align ? *legacy_align : memory_region_get_alignment(mr);
  224. addr = mdc->get_addr(md);
  225. addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
  226. memory_region_size(mr), &local_err);
  227. if (local_err) {
  228. goto out;
  229. }
  230. mdc->set_addr(md, addr, &local_err);
  231. if (!local_err) {
  232. trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
  233. addr);
  234. }
  235. out:
  236. error_propagate(errp, local_err);
  237. }
  238. void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
  239. {
  240. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  241. const uint64_t addr = mdc->get_addr(md);
  242. MemoryRegion *mr;
  243. /*
  244. * We expect that a previous call to memory_device_pre_plug() succeeded, so
  245. * it can't fail at this point.
  246. */
  247. mr = mdc->get_memory_region(md, &error_abort);
  248. g_assert(ms->device_memory);
  249. memory_region_add_subregion(&ms->device_memory->mr,
  250. addr - ms->device_memory->base, mr);
  251. trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
  252. }
  253. void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
  254. {
  255. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  256. MemoryRegion *mr;
  257. /*
  258. * We expect that a previous call to memory_device_pre_plug() succeeded, so
  259. * it can't fail at this point.
  260. */
  261. mr = mdc->get_memory_region(md, &error_abort);
  262. g_assert(ms->device_memory);
  263. memory_region_del_subregion(&ms->device_memory->mr, mr);
  264. trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
  265. mdc->get_addr(md));
  266. }
  267. uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
  268. Error **errp)
  269. {
  270. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  271. MemoryRegion *mr;
  272. /* dropping const here is fine as we don't touch the memory region */
  273. mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
  274. if (!mr) {
  275. return 0;
  276. }
  277. return memory_region_size(mr);
  278. }
  279. static const TypeInfo memory_device_info = {
  280. .name = TYPE_MEMORY_DEVICE,
  281. .parent = TYPE_INTERFACE,
  282. .class_size = sizeof(MemoryDeviceClass),
  283. };
  284. static void memory_device_register_types(void)
  285. {
  286. type_register_static(&memory_device_info);
  287. }
  288. type_init(memory_device_register_types)