2
0

intel_iommu.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833
  1. /*
  2. * QEMU emulation of an Intel IOMMU (VT-d)
  3. * (DMA Remapping device)
  4. *
  5. * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
  6. * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/error-report.h"
  21. #include "qemu/main-loop.h"
  22. #include "qapi/error.h"
  23. #include "hw/sysbus.h"
  24. #include "exec/address-spaces.h"
  25. #include "intel_iommu_internal.h"
  26. #include "hw/pci/pci.h"
  27. #include "hw/pci/pci_bus.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/i386/pc.h"
  30. #include "hw/i386/apic-msidef.h"
  31. #include "hw/boards.h"
  32. #include "hw/i386/x86-iommu.h"
  33. #include "hw/pci-host/q35.h"
  34. #include "sysemu/kvm.h"
  35. #include "sysemu/sysemu.h"
  36. #include "hw/i386/apic_internal.h"
  37. #include "kvm_i386.h"
  38. #include "migration/vmstate.h"
  39. #include "trace.h"
  40. /* context entry operations */
  41. #define VTD_CE_GET_RID2PASID(ce) \
  42. ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
  43. #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
  44. ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
  45. /* pe operations */
  46. #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
  47. #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
  48. #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
  49. if (ret_fr) { \
  50. ret_fr = -ret_fr; \
  51. if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
  52. trace_vtd_fault_disabled(); \
  53. } else { \
  54. vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
  55. } \
  56. goto error; \
  57. } \
  58. }
  59. static void vtd_address_space_refresh_all(IntelIOMMUState *s);
  60. static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
  61. static void vtd_panic_require_caching_mode(void)
  62. {
  63. error_report("We need to set caching-mode=on for intel-iommu to enable "
  64. "device assignment with IOMMU protection.");
  65. exit(1);
  66. }
  67. static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  68. uint64_t wmask, uint64_t w1cmask)
  69. {
  70. stq_le_p(&s->csr[addr], val);
  71. stq_le_p(&s->wmask[addr], wmask);
  72. stq_le_p(&s->w1cmask[addr], w1cmask);
  73. }
  74. static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  75. {
  76. stq_le_p(&s->womask[addr], mask);
  77. }
  78. static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  79. uint32_t wmask, uint32_t w1cmask)
  80. {
  81. stl_le_p(&s->csr[addr], val);
  82. stl_le_p(&s->wmask[addr], wmask);
  83. stl_le_p(&s->w1cmask[addr], w1cmask);
  84. }
  85. static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  86. {
  87. stl_le_p(&s->womask[addr], mask);
  88. }
  89. /* "External" get/set operations */
  90. static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  91. {
  92. uint64_t oldval = ldq_le_p(&s->csr[addr]);
  93. uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  94. uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  95. stq_le_p(&s->csr[addr],
  96. ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  97. }
  98. static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
  99. {
  100. uint32_t oldval = ldl_le_p(&s->csr[addr]);
  101. uint32_t wmask = ldl_le_p(&s->wmask[addr]);
  102. uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  103. stl_le_p(&s->csr[addr],
  104. ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  105. }
  106. static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
  107. {
  108. uint64_t val = ldq_le_p(&s->csr[addr]);
  109. uint64_t womask = ldq_le_p(&s->womask[addr]);
  110. return val & ~womask;
  111. }
  112. static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
  113. {
  114. uint32_t val = ldl_le_p(&s->csr[addr]);
  115. uint32_t womask = ldl_le_p(&s->womask[addr]);
  116. return val & ~womask;
  117. }
  118. /* "Internal" get/set operations */
  119. static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
  120. {
  121. return ldq_le_p(&s->csr[addr]);
  122. }
  123. static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
  124. {
  125. return ldl_le_p(&s->csr[addr]);
  126. }
  127. static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  128. {
  129. stq_le_p(&s->csr[addr], val);
  130. }
  131. static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
  132. uint32_t clear, uint32_t mask)
  133. {
  134. uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
  135. stl_le_p(&s->csr[addr], new_val);
  136. return new_val;
  137. }
  138. static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
  139. uint64_t clear, uint64_t mask)
  140. {
  141. uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
  142. stq_le_p(&s->csr[addr], new_val);
  143. return new_val;
  144. }
  145. static inline void vtd_iommu_lock(IntelIOMMUState *s)
  146. {
  147. qemu_mutex_lock(&s->iommu_lock);
  148. }
  149. static inline void vtd_iommu_unlock(IntelIOMMUState *s)
  150. {
  151. qemu_mutex_unlock(&s->iommu_lock);
  152. }
  153. static void vtd_update_scalable_state(IntelIOMMUState *s)
  154. {
  155. uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
  156. if (s->scalable_mode) {
  157. s->root_scalable = val & VTD_RTADDR_SMT;
  158. }
  159. }
  160. /* Whether the address space needs to notify new mappings */
  161. static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
  162. {
  163. return as->notifier_flags & IOMMU_NOTIFIER_MAP;
  164. }
  165. /* GHashTable functions */
  166. static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
  167. {
  168. return *((const uint64_t *)v1) == *((const uint64_t *)v2);
  169. }
  170. static guint vtd_uint64_hash(gconstpointer v)
  171. {
  172. return (guint)*(const uint64_t *)v;
  173. }
  174. static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
  175. gpointer user_data)
  176. {
  177. VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
  178. uint16_t domain_id = *(uint16_t *)user_data;
  179. return entry->domain_id == domain_id;
  180. }
  181. /* The shift of an addr for a certain level of paging structure */
  182. static inline uint32_t vtd_slpt_level_shift(uint32_t level)
  183. {
  184. assert(level != 0);
  185. return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
  186. }
  187. static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
  188. {
  189. return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
  190. }
  191. static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
  192. gpointer user_data)
  193. {
  194. VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
  195. VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
  196. uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
  197. uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
  198. return (entry->domain_id == info->domain_id) &&
  199. (((entry->gfn & info->mask) == gfn) ||
  200. (entry->gfn == gfn_tlb));
  201. }
  202. /* Reset all the gen of VTDAddressSpace to zero and set the gen of
  203. * IntelIOMMUState to 1. Must be called with IOMMU lock held.
  204. */
  205. static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
  206. {
  207. VTDAddressSpace *vtd_as;
  208. VTDBus *vtd_bus;
  209. GHashTableIter bus_it;
  210. uint32_t devfn_it;
  211. trace_vtd_context_cache_reset();
  212. g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
  213. while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
  214. for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
  215. vtd_as = vtd_bus->dev_as[devfn_it];
  216. if (!vtd_as) {
  217. continue;
  218. }
  219. vtd_as->context_cache_entry.context_cache_gen = 0;
  220. }
  221. }
  222. s->context_cache_gen = 1;
  223. }
  224. /* Must be called with IOMMU lock held. */
  225. static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
  226. {
  227. assert(s->iotlb);
  228. g_hash_table_remove_all(s->iotlb);
  229. }
  230. static void vtd_reset_iotlb(IntelIOMMUState *s)
  231. {
  232. vtd_iommu_lock(s);
  233. vtd_reset_iotlb_locked(s);
  234. vtd_iommu_unlock(s);
  235. }
  236. static void vtd_reset_caches(IntelIOMMUState *s)
  237. {
  238. vtd_iommu_lock(s);
  239. vtd_reset_iotlb_locked(s);
  240. vtd_reset_context_cache_locked(s);
  241. vtd_iommu_unlock(s);
  242. }
  243. static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
  244. uint32_t level)
  245. {
  246. return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
  247. ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
  248. }
  249. static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
  250. {
  251. return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
  252. }
  253. /* Must be called with IOMMU lock held */
  254. static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
  255. hwaddr addr)
  256. {
  257. VTDIOTLBEntry *entry;
  258. uint64_t key;
  259. int level;
  260. for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
  261. key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
  262. source_id, level);
  263. entry = g_hash_table_lookup(s->iotlb, &key);
  264. if (entry) {
  265. goto out;
  266. }
  267. }
  268. out:
  269. return entry;
  270. }
  271. /* Must be with IOMMU lock held */
  272. static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
  273. uint16_t domain_id, hwaddr addr, uint64_t slpte,
  274. uint8_t access_flags, uint32_t level)
  275. {
  276. VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
  277. uint64_t *key = g_malloc(sizeof(*key));
  278. uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
  279. trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
  280. if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
  281. trace_vtd_iotlb_reset("iotlb exceeds size limit");
  282. vtd_reset_iotlb_locked(s);
  283. }
  284. entry->gfn = gfn;
  285. entry->domain_id = domain_id;
  286. entry->slpte = slpte;
  287. entry->access_flags = access_flags;
  288. entry->mask = vtd_slpt_level_page_mask(level);
  289. *key = vtd_get_iotlb_key(gfn, source_id, level);
  290. g_hash_table_replace(s->iotlb, key, entry);
  291. }
  292. /* Given the reg addr of both the message data and address, generate an
  293. * interrupt via MSI.
  294. */
  295. static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
  296. hwaddr mesg_data_reg)
  297. {
  298. MSIMessage msi;
  299. assert(mesg_data_reg < DMAR_REG_SIZE);
  300. assert(mesg_addr_reg < DMAR_REG_SIZE);
  301. msi.address = vtd_get_long_raw(s, mesg_addr_reg);
  302. msi.data = vtd_get_long_raw(s, mesg_data_reg);
  303. trace_vtd_irq_generate(msi.address, msi.data);
  304. apic_get_class()->send_msi(&msi);
  305. }
  306. /* Generate a fault event to software via MSI if conditions are met.
  307. * Notice that the value of FSTS_REG being passed to it should be the one
  308. * before any update.
  309. */
  310. static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
  311. {
  312. if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
  313. pre_fsts & VTD_FSTS_IQE) {
  314. error_report_once("There are previous interrupt conditions "
  315. "to be serviced by software, fault event "
  316. "is not generated");
  317. return;
  318. }
  319. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
  320. if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
  321. error_report_once("Interrupt Mask set, irq is not generated");
  322. } else {
  323. vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
  324. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  325. }
  326. }
  327. /* Check if the Fault (F) field of the Fault Recording Register referenced by
  328. * @index is Set.
  329. */
  330. static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
  331. {
  332. /* Each reg is 128-bit */
  333. hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  334. addr += 8; /* Access the high 64-bit half */
  335. assert(index < DMAR_FRCD_REG_NR);
  336. return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
  337. }
  338. /* Update the PPF field of Fault Status Register.
  339. * Should be called whenever change the F field of any fault recording
  340. * registers.
  341. */
  342. static void vtd_update_fsts_ppf(IntelIOMMUState *s)
  343. {
  344. uint32_t i;
  345. uint32_t ppf_mask = 0;
  346. for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
  347. if (vtd_is_frcd_set(s, i)) {
  348. ppf_mask = VTD_FSTS_PPF;
  349. break;
  350. }
  351. }
  352. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
  353. trace_vtd_fsts_ppf(!!ppf_mask);
  354. }
  355. static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
  356. {
  357. /* Each reg is 128-bit */
  358. hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  359. addr += 8; /* Access the high 64-bit half */
  360. assert(index < DMAR_FRCD_REG_NR);
  361. vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
  362. vtd_update_fsts_ppf(s);
  363. }
  364. /* Must not update F field now, should be done later */
  365. static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
  366. uint16_t source_id, hwaddr addr,
  367. VTDFaultReason fault, bool is_write)
  368. {
  369. uint64_t hi = 0, lo;
  370. hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
  371. assert(index < DMAR_FRCD_REG_NR);
  372. lo = VTD_FRCD_FI(addr);
  373. hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
  374. if (!is_write) {
  375. hi |= VTD_FRCD_T;
  376. }
  377. vtd_set_quad_raw(s, frcd_reg_addr, lo);
  378. vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
  379. trace_vtd_frr_new(index, hi, lo);
  380. }
  381. /* Try to collapse multiple pending faults from the same requester */
  382. static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
  383. {
  384. uint32_t i;
  385. uint64_t frcd_reg;
  386. hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
  387. for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
  388. frcd_reg = vtd_get_quad_raw(s, addr);
  389. if ((frcd_reg & VTD_FRCD_F) &&
  390. ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
  391. return true;
  392. }
  393. addr += 16; /* 128-bit for each */
  394. }
  395. return false;
  396. }
  397. /* Log and report an DMAR (address translation) fault to software */
  398. static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
  399. hwaddr addr, VTDFaultReason fault,
  400. bool is_write)
  401. {
  402. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  403. assert(fault < VTD_FR_MAX);
  404. if (fault == VTD_FR_RESERVED_ERR) {
  405. /* This is not a normal fault reason case. Drop it. */
  406. return;
  407. }
  408. trace_vtd_dmar_fault(source_id, fault, addr, is_write);
  409. if (fsts_reg & VTD_FSTS_PFO) {
  410. error_report_once("New fault is not recorded due to "
  411. "Primary Fault Overflow");
  412. return;
  413. }
  414. if (vtd_try_collapse_fault(s, source_id)) {
  415. error_report_once("New fault is not recorded due to "
  416. "compression of faults");
  417. return;
  418. }
  419. if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
  420. error_report_once("Next Fault Recording Reg is used, "
  421. "new fault is not recorded, set PFO field");
  422. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
  423. return;
  424. }
  425. vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
  426. if (fsts_reg & VTD_FSTS_PPF) {
  427. error_report_once("There are pending faults already, "
  428. "fault event is not generated");
  429. vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
  430. s->next_frcd_reg++;
  431. if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
  432. s->next_frcd_reg = 0;
  433. }
  434. } else {
  435. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
  436. VTD_FSTS_FRI(s->next_frcd_reg));
  437. vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
  438. s->next_frcd_reg++;
  439. if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
  440. s->next_frcd_reg = 0;
  441. }
  442. /* This case actually cause the PPF to be Set.
  443. * So generate fault event (interrupt).
  444. */
  445. vtd_generate_fault_event(s, fsts_reg);
  446. }
  447. }
  448. /* Handle Invalidation Queue Errors of queued invalidation interface error
  449. * conditions.
  450. */
  451. static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
  452. {
  453. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  454. vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
  455. vtd_generate_fault_event(s, fsts_reg);
  456. }
  457. /* Set the IWC field and try to generate an invalidation completion interrupt */
  458. static void vtd_generate_completion_event(IntelIOMMUState *s)
  459. {
  460. if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
  461. trace_vtd_inv_desc_wait_irq("One pending, skip current");
  462. return;
  463. }
  464. vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
  465. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
  466. if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
  467. trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
  468. "new event not generated");
  469. return;
  470. } else {
  471. /* Generate the interrupt event */
  472. trace_vtd_inv_desc_wait_irq("Generating complete event");
  473. vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
  474. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  475. }
  476. }
  477. static inline bool vtd_root_entry_present(IntelIOMMUState *s,
  478. VTDRootEntry *re,
  479. uint8_t devfn)
  480. {
  481. if (s->root_scalable && devfn > UINT8_MAX / 2) {
  482. return re->hi & VTD_ROOT_ENTRY_P;
  483. }
  484. return re->lo & VTD_ROOT_ENTRY_P;
  485. }
  486. static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
  487. VTDRootEntry *re)
  488. {
  489. dma_addr_t addr;
  490. addr = s->root + index * sizeof(*re);
  491. if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
  492. re->lo = 0;
  493. return -VTD_FR_ROOT_TABLE_INV;
  494. }
  495. re->lo = le64_to_cpu(re->lo);
  496. re->hi = le64_to_cpu(re->hi);
  497. return 0;
  498. }
  499. static inline bool vtd_ce_present(VTDContextEntry *context)
  500. {
  501. return context->lo & VTD_CONTEXT_ENTRY_P;
  502. }
  503. static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
  504. VTDRootEntry *re,
  505. uint8_t index,
  506. VTDContextEntry *ce)
  507. {
  508. dma_addr_t addr, ce_size;
  509. /* we have checked that root entry is present */
  510. ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
  511. VTD_CTX_ENTRY_LEGACY_SIZE;
  512. if (s->root_scalable && index > UINT8_MAX / 2) {
  513. index = index & (~VTD_DEVFN_CHECK_MASK);
  514. addr = re->hi & VTD_ROOT_ENTRY_CTP;
  515. } else {
  516. addr = re->lo & VTD_ROOT_ENTRY_CTP;
  517. }
  518. addr = addr + index * ce_size;
  519. if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
  520. return -VTD_FR_CONTEXT_TABLE_INV;
  521. }
  522. ce->lo = le64_to_cpu(ce->lo);
  523. ce->hi = le64_to_cpu(ce->hi);
  524. if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
  525. ce->val[2] = le64_to_cpu(ce->val[2]);
  526. ce->val[3] = le64_to_cpu(ce->val[3]);
  527. }
  528. return 0;
  529. }
  530. static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
  531. {
  532. return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
  533. }
  534. static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
  535. {
  536. return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
  537. }
  538. /* Whether the pte indicates the address of the page frame */
  539. static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
  540. {
  541. return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
  542. }
  543. /* Get the content of a spte located in @base_addr[@index] */
  544. static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
  545. {
  546. uint64_t slpte;
  547. assert(index < VTD_SL_PT_ENTRY_NR);
  548. if (dma_memory_read(&address_space_memory,
  549. base_addr + index * sizeof(slpte), &slpte,
  550. sizeof(slpte))) {
  551. slpte = (uint64_t)-1;
  552. return slpte;
  553. }
  554. slpte = le64_to_cpu(slpte);
  555. return slpte;
  556. }
  557. /* Given an iova and the level of paging structure, return the offset
  558. * of current level.
  559. */
  560. static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
  561. {
  562. return (iova >> vtd_slpt_level_shift(level)) &
  563. ((1ULL << VTD_SL_LEVEL_BITS) - 1);
  564. }
  565. /* Check Capability Register to see if the @level of page-table is supported */
  566. static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
  567. {
  568. return VTD_CAP_SAGAW_MASK & s->cap &
  569. (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
  570. }
  571. /* Return true if check passed, otherwise false */
  572. static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
  573. VTDPASIDEntry *pe)
  574. {
  575. switch (VTD_PE_GET_TYPE(pe)) {
  576. case VTD_SM_PASID_ENTRY_FLT:
  577. case VTD_SM_PASID_ENTRY_SLT:
  578. case VTD_SM_PASID_ENTRY_NESTED:
  579. break;
  580. case VTD_SM_PASID_ENTRY_PT:
  581. if (!x86_iommu->pt_supported) {
  582. return false;
  583. }
  584. break;
  585. default:
  586. /* Unknwon type */
  587. return false;
  588. }
  589. return true;
  590. }
  591. static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
  592. uint32_t pasid,
  593. VTDPASIDDirEntry *pdire)
  594. {
  595. uint32_t index;
  596. dma_addr_t addr, entry_size;
  597. index = VTD_PASID_DIR_INDEX(pasid);
  598. entry_size = VTD_PASID_DIR_ENTRY_SIZE;
  599. addr = pasid_dir_base + index * entry_size;
  600. if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
  601. return -VTD_FR_PASID_TABLE_INV;
  602. }
  603. return 0;
  604. }
  605. static int vtd_get_pasid_entry(IntelIOMMUState *s,
  606. uint32_t pasid,
  607. VTDPASIDDirEntry *pdire,
  608. VTDPASIDEntry *pe)
  609. {
  610. uint32_t index;
  611. dma_addr_t addr, entry_size;
  612. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  613. index = VTD_PASID_TABLE_INDEX(pasid);
  614. entry_size = VTD_PASID_ENTRY_SIZE;
  615. addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
  616. addr = addr + index * entry_size;
  617. if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
  618. return -VTD_FR_PASID_TABLE_INV;
  619. }
  620. /* Do translation type check */
  621. if (!vtd_pe_type_check(x86_iommu, pe)) {
  622. return -VTD_FR_PASID_TABLE_INV;
  623. }
  624. if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
  625. return -VTD_FR_PASID_TABLE_INV;
  626. }
  627. return 0;
  628. }
  629. static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
  630. dma_addr_t pasid_dir_base,
  631. uint32_t pasid,
  632. VTDPASIDEntry *pe)
  633. {
  634. int ret;
  635. VTDPASIDDirEntry pdire;
  636. ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
  637. if (ret) {
  638. return ret;
  639. }
  640. ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
  641. if (ret) {
  642. return ret;
  643. }
  644. return ret;
  645. }
  646. static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
  647. VTDContextEntry *ce,
  648. VTDPASIDEntry *pe)
  649. {
  650. uint32_t pasid;
  651. dma_addr_t pasid_dir_base;
  652. int ret = 0;
  653. pasid = VTD_CE_GET_RID2PASID(ce);
  654. pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
  655. ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
  656. return ret;
  657. }
  658. static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
  659. VTDContextEntry *ce,
  660. bool *pe_fpd_set)
  661. {
  662. int ret;
  663. uint32_t pasid;
  664. dma_addr_t pasid_dir_base;
  665. VTDPASIDDirEntry pdire;
  666. VTDPASIDEntry pe;
  667. pasid = VTD_CE_GET_RID2PASID(ce);
  668. pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
  669. ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
  670. if (ret) {
  671. return ret;
  672. }
  673. if (pdire.val & VTD_PASID_DIR_FPD) {
  674. *pe_fpd_set = true;
  675. return 0;
  676. }
  677. ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
  678. if (ret) {
  679. return ret;
  680. }
  681. if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
  682. *pe_fpd_set = true;
  683. }
  684. return 0;
  685. }
  686. /* Get the page-table level that hardware should use for the second-level
  687. * page-table walk from the Address Width field of context-entry.
  688. */
  689. static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
  690. {
  691. return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
  692. }
  693. static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
  694. VTDContextEntry *ce)
  695. {
  696. VTDPASIDEntry pe;
  697. if (s->root_scalable) {
  698. vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  699. return VTD_PE_GET_LEVEL(&pe);
  700. }
  701. return vtd_ce_get_level(ce);
  702. }
  703. static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
  704. {
  705. return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
  706. }
  707. static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
  708. VTDContextEntry *ce)
  709. {
  710. VTDPASIDEntry pe;
  711. if (s->root_scalable) {
  712. vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  713. return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
  714. }
  715. return vtd_ce_get_agaw(ce);
  716. }
  717. static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
  718. {
  719. return ce->lo & VTD_CONTEXT_ENTRY_TT;
  720. }
  721. /* Only for Legacy Mode. Return true if check passed, otherwise false */
  722. static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
  723. VTDContextEntry *ce)
  724. {
  725. switch (vtd_ce_get_type(ce)) {
  726. case VTD_CONTEXT_TT_MULTI_LEVEL:
  727. /* Always supported */
  728. break;
  729. case VTD_CONTEXT_TT_DEV_IOTLB:
  730. if (!x86_iommu->dt_supported) {
  731. error_report_once("%s: DT specified but not supported", __func__);
  732. return false;
  733. }
  734. break;
  735. case VTD_CONTEXT_TT_PASS_THROUGH:
  736. if (!x86_iommu->pt_supported) {
  737. error_report_once("%s: PT specified but not supported", __func__);
  738. return false;
  739. }
  740. break;
  741. default:
  742. /* Unknown type */
  743. error_report_once("%s: unknown ce type: %"PRIu32, __func__,
  744. vtd_ce_get_type(ce));
  745. return false;
  746. }
  747. return true;
  748. }
  749. static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
  750. VTDContextEntry *ce, uint8_t aw)
  751. {
  752. uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
  753. return 1ULL << MIN(ce_agaw, aw);
  754. }
  755. /* Return true if IOVA passes range check, otherwise false. */
  756. static inline bool vtd_iova_range_check(IntelIOMMUState *s,
  757. uint64_t iova, VTDContextEntry *ce,
  758. uint8_t aw)
  759. {
  760. /*
  761. * Check if @iova is above 2^X-1, where X is the minimum of MGAW
  762. * in CAP_REG and AW in context-entry.
  763. */
  764. return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
  765. }
  766. static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
  767. VTDContextEntry *ce)
  768. {
  769. VTDPASIDEntry pe;
  770. if (s->root_scalable) {
  771. vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  772. return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
  773. }
  774. return vtd_ce_get_slpt_base(ce);
  775. }
  776. /*
  777. * Rsvd field masks for spte:
  778. * vtd_spte_rsvd 4k pages
  779. * vtd_spte_rsvd_large large pages
  780. */
  781. static uint64_t vtd_spte_rsvd[5];
  782. static uint64_t vtd_spte_rsvd_large[5];
  783. static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
  784. {
  785. uint64_t rsvd_mask = vtd_spte_rsvd[level];
  786. if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
  787. (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
  788. /* large page */
  789. rsvd_mask = vtd_spte_rsvd_large[level];
  790. }
  791. return slpte & rsvd_mask;
  792. }
  793. /* Find the VTD address space associated with a given bus number */
  794. static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
  795. {
  796. VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
  797. if (!vtd_bus) {
  798. /*
  799. * Iterate over the registered buses to find the one which
  800. * currently hold this bus number, and update the bus_num
  801. * lookup table:
  802. */
  803. GHashTableIter iter;
  804. g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
  805. while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
  806. if (pci_bus_num(vtd_bus->bus) == bus_num) {
  807. s->vtd_as_by_bus_num[bus_num] = vtd_bus;
  808. return vtd_bus;
  809. }
  810. }
  811. }
  812. return vtd_bus;
  813. }
  814. /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
  815. * of the translation, can be used for deciding the size of large page.
  816. */
  817. static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
  818. uint64_t iova, bool is_write,
  819. uint64_t *slptep, uint32_t *slpte_level,
  820. bool *reads, bool *writes, uint8_t aw_bits)
  821. {
  822. dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
  823. uint32_t level = vtd_get_iova_level(s, ce);
  824. uint32_t offset;
  825. uint64_t slpte;
  826. uint64_t access_right_check;
  827. if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
  828. error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
  829. __func__, iova);
  830. return -VTD_FR_ADDR_BEYOND_MGAW;
  831. }
  832. /* FIXME: what is the Atomics request here? */
  833. access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
  834. while (true) {
  835. offset = vtd_iova_level_offset(iova, level);
  836. slpte = vtd_get_slpte(addr, offset);
  837. if (slpte == (uint64_t)-1) {
  838. error_report_once("%s: detected read error on DMAR slpte "
  839. "(iova=0x%" PRIx64 ")", __func__, iova);
  840. if (level == vtd_get_iova_level(s, ce)) {
  841. /* Invalid programming of context-entry */
  842. return -VTD_FR_CONTEXT_ENTRY_INV;
  843. } else {
  844. return -VTD_FR_PAGING_ENTRY_INV;
  845. }
  846. }
  847. *reads = (*reads) && (slpte & VTD_SL_R);
  848. *writes = (*writes) && (slpte & VTD_SL_W);
  849. if (!(slpte & access_right_check)) {
  850. error_report_once("%s: detected slpte permission error "
  851. "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
  852. "slpte=0x%" PRIx64 ", write=%d)", __func__,
  853. iova, level, slpte, is_write);
  854. return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
  855. }
  856. if (vtd_slpte_nonzero_rsvd(slpte, level)) {
  857. error_report_once("%s: detected splte reserve non-zero "
  858. "iova=0x%" PRIx64 ", level=0x%" PRIx32
  859. "slpte=0x%" PRIx64 ")", __func__, iova,
  860. level, slpte);
  861. return -VTD_FR_PAGING_ENTRY_RSVD;
  862. }
  863. if (vtd_is_last_slpte(slpte, level)) {
  864. *slptep = slpte;
  865. *slpte_level = level;
  866. return 0;
  867. }
  868. addr = vtd_get_slpte_addr(slpte, aw_bits);
  869. level--;
  870. }
  871. }
  872. typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
  873. /**
  874. * Constant information used during page walking
  875. *
  876. * @hook_fn: hook func to be called when detected page
  877. * @private: private data to be passed into hook func
  878. * @notify_unmap: whether we should notify invalid entries
  879. * @as: VT-d address space of the device
  880. * @aw: maximum address width
  881. * @domain: domain ID of the page walk
  882. */
  883. typedef struct {
  884. VTDAddressSpace *as;
  885. vtd_page_walk_hook hook_fn;
  886. void *private;
  887. bool notify_unmap;
  888. uint8_t aw;
  889. uint16_t domain_id;
  890. } vtd_page_walk_info;
  891. static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
  892. {
  893. VTDAddressSpace *as = info->as;
  894. vtd_page_walk_hook hook_fn = info->hook_fn;
  895. void *private = info->private;
  896. DMAMap target = {
  897. .iova = entry->iova,
  898. .size = entry->addr_mask,
  899. .translated_addr = entry->translated_addr,
  900. .perm = entry->perm,
  901. };
  902. DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
  903. if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
  904. trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
  905. return 0;
  906. }
  907. assert(hook_fn);
  908. /* Update local IOVA mapped ranges */
  909. if (entry->perm) {
  910. if (mapped) {
  911. /* If it's exactly the same translation, skip */
  912. if (!memcmp(mapped, &target, sizeof(target))) {
  913. trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
  914. entry->translated_addr);
  915. return 0;
  916. } else {
  917. /*
  918. * Translation changed. Normally this should not
  919. * happen, but it can happen when with buggy guest
  920. * OSes. Note that there will be a small window that
  921. * we don't have map at all. But that's the best
  922. * effort we can do. The ideal way to emulate this is
  923. * atomically modify the PTE to follow what has
  924. * changed, but we can't. One example is that vfio
  925. * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
  926. * interface to modify a mapping (meanwhile it seems
  927. * meaningless to even provide one). Anyway, let's
  928. * mark this as a TODO in case one day we'll have
  929. * a better solution.
  930. */
  931. IOMMUAccessFlags cache_perm = entry->perm;
  932. int ret;
  933. /* Emulate an UNMAP */
  934. entry->perm = IOMMU_NONE;
  935. trace_vtd_page_walk_one(info->domain_id,
  936. entry->iova,
  937. entry->translated_addr,
  938. entry->addr_mask,
  939. entry->perm);
  940. ret = hook_fn(entry, private);
  941. if (ret) {
  942. return ret;
  943. }
  944. /* Drop any existing mapping */
  945. iova_tree_remove(as->iova_tree, &target);
  946. /* Recover the correct permission */
  947. entry->perm = cache_perm;
  948. }
  949. }
  950. iova_tree_insert(as->iova_tree, &target);
  951. } else {
  952. if (!mapped) {
  953. /* Skip since we didn't map this range at all */
  954. trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
  955. return 0;
  956. }
  957. iova_tree_remove(as->iova_tree, &target);
  958. }
  959. trace_vtd_page_walk_one(info->domain_id, entry->iova,
  960. entry->translated_addr, entry->addr_mask,
  961. entry->perm);
  962. return hook_fn(entry, private);
  963. }
  964. /**
  965. * vtd_page_walk_level - walk over specific level for IOVA range
  966. *
  967. * @addr: base GPA addr to start the walk
  968. * @start: IOVA range start address
  969. * @end: IOVA range end address (start <= addr < end)
  970. * @read: whether parent level has read permission
  971. * @write: whether parent level has write permission
  972. * @info: constant information for the page walk
  973. */
  974. static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
  975. uint64_t end, uint32_t level, bool read,
  976. bool write, vtd_page_walk_info *info)
  977. {
  978. bool read_cur, write_cur, entry_valid;
  979. uint32_t offset;
  980. uint64_t slpte;
  981. uint64_t subpage_size, subpage_mask;
  982. IOMMUTLBEntry entry;
  983. uint64_t iova = start;
  984. uint64_t iova_next;
  985. int ret = 0;
  986. trace_vtd_page_walk_level(addr, level, start, end);
  987. subpage_size = 1ULL << vtd_slpt_level_shift(level);
  988. subpage_mask = vtd_slpt_level_page_mask(level);
  989. while (iova < end) {
  990. iova_next = (iova & subpage_mask) + subpage_size;
  991. offset = vtd_iova_level_offset(iova, level);
  992. slpte = vtd_get_slpte(addr, offset);
  993. if (slpte == (uint64_t)-1) {
  994. trace_vtd_page_walk_skip_read(iova, iova_next);
  995. goto next;
  996. }
  997. if (vtd_slpte_nonzero_rsvd(slpte, level)) {
  998. trace_vtd_page_walk_skip_reserve(iova, iova_next);
  999. goto next;
  1000. }
  1001. /* Permissions are stacked with parents' */
  1002. read_cur = read && (slpte & VTD_SL_R);
  1003. write_cur = write && (slpte & VTD_SL_W);
  1004. /*
  1005. * As long as we have either read/write permission, this is a
  1006. * valid entry. The rule works for both page entries and page
  1007. * table entries.
  1008. */
  1009. entry_valid = read_cur | write_cur;
  1010. if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
  1011. /*
  1012. * This is a valid PDE (or even bigger than PDE). We need
  1013. * to walk one further level.
  1014. */
  1015. ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
  1016. iova, MIN(iova_next, end), level - 1,
  1017. read_cur, write_cur, info);
  1018. } else {
  1019. /*
  1020. * This means we are either:
  1021. *
  1022. * (1) the real page entry (either 4K page, or huge page)
  1023. * (2) the whole range is invalid
  1024. *
  1025. * In either case, we send an IOTLB notification down.
  1026. */
  1027. entry.target_as = &address_space_memory;
  1028. entry.iova = iova & subpage_mask;
  1029. entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
  1030. entry.addr_mask = ~subpage_mask;
  1031. /* NOTE: this is only meaningful if entry_valid == true */
  1032. entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
  1033. ret = vtd_page_walk_one(&entry, info);
  1034. }
  1035. if (ret < 0) {
  1036. return ret;
  1037. }
  1038. next:
  1039. iova = iova_next;
  1040. }
  1041. return 0;
  1042. }
  1043. /**
  1044. * vtd_page_walk - walk specific IOVA range, and call the hook
  1045. *
  1046. * @s: intel iommu state
  1047. * @ce: context entry to walk upon
  1048. * @start: IOVA address to start the walk
  1049. * @end: IOVA range end address (start <= addr < end)
  1050. * @info: page walking information struct
  1051. */
  1052. static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
  1053. uint64_t start, uint64_t end,
  1054. vtd_page_walk_info *info)
  1055. {
  1056. dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
  1057. uint32_t level = vtd_get_iova_level(s, ce);
  1058. if (!vtd_iova_range_check(s, start, ce, info->aw)) {
  1059. return -VTD_FR_ADDR_BEYOND_MGAW;
  1060. }
  1061. if (!vtd_iova_range_check(s, end, ce, info->aw)) {
  1062. /* Fix end so that it reaches the maximum */
  1063. end = vtd_iova_limit(s, ce, info->aw);
  1064. }
  1065. return vtd_page_walk_level(addr, start, end, level, true, true, info);
  1066. }
  1067. static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
  1068. VTDRootEntry *re)
  1069. {
  1070. /* Legacy Mode reserved bits check */
  1071. if (!s->root_scalable &&
  1072. (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
  1073. goto rsvd_err;
  1074. /* Scalable Mode reserved bits check */
  1075. if (s->root_scalable &&
  1076. ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
  1077. (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
  1078. goto rsvd_err;
  1079. return 0;
  1080. rsvd_err:
  1081. error_report_once("%s: invalid root entry: hi=0x%"PRIx64
  1082. ", lo=0x%"PRIx64,
  1083. __func__, re->hi, re->lo);
  1084. return -VTD_FR_ROOT_ENTRY_RSVD;
  1085. }
  1086. static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
  1087. VTDContextEntry *ce)
  1088. {
  1089. if (!s->root_scalable &&
  1090. (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
  1091. ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
  1092. error_report_once("%s: invalid context entry: hi=%"PRIx64
  1093. ", lo=%"PRIx64" (reserved nonzero)",
  1094. __func__, ce->hi, ce->lo);
  1095. return -VTD_FR_CONTEXT_ENTRY_RSVD;
  1096. }
  1097. if (s->root_scalable &&
  1098. (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
  1099. ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
  1100. ce->val[2] ||
  1101. ce->val[3])) {
  1102. error_report_once("%s: invalid context entry: val[3]=%"PRIx64
  1103. ", val[2]=%"PRIx64
  1104. ", val[1]=%"PRIx64
  1105. ", val[0]=%"PRIx64" (reserved nonzero)",
  1106. __func__, ce->val[3], ce->val[2],
  1107. ce->val[1], ce->val[0]);
  1108. return -VTD_FR_CONTEXT_ENTRY_RSVD;
  1109. }
  1110. return 0;
  1111. }
  1112. static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
  1113. VTDContextEntry *ce)
  1114. {
  1115. VTDPASIDEntry pe;
  1116. /*
  1117. * Make sure in Scalable Mode, a present context entry
  1118. * has valid rid2pasid setting, which includes valid
  1119. * rid2pasid field and corresponding pasid entry setting
  1120. */
  1121. return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  1122. }
  1123. /* Map a device to its corresponding domain (context-entry) */
  1124. static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
  1125. uint8_t devfn, VTDContextEntry *ce)
  1126. {
  1127. VTDRootEntry re;
  1128. int ret_fr;
  1129. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  1130. ret_fr = vtd_get_root_entry(s, bus_num, &re);
  1131. if (ret_fr) {
  1132. return ret_fr;
  1133. }
  1134. if (!vtd_root_entry_present(s, &re, devfn)) {
  1135. /* Not error - it's okay we don't have root entry. */
  1136. trace_vtd_re_not_present(bus_num);
  1137. return -VTD_FR_ROOT_ENTRY_P;
  1138. }
  1139. ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
  1140. if (ret_fr) {
  1141. return ret_fr;
  1142. }
  1143. ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
  1144. if (ret_fr) {
  1145. return ret_fr;
  1146. }
  1147. if (!vtd_ce_present(ce)) {
  1148. /* Not error - it's okay we don't have context entry. */
  1149. trace_vtd_ce_not_present(bus_num, devfn);
  1150. return -VTD_FR_CONTEXT_ENTRY_P;
  1151. }
  1152. ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
  1153. if (ret_fr) {
  1154. return ret_fr;
  1155. }
  1156. /* Check if the programming of context-entry is valid */
  1157. if (!s->root_scalable &&
  1158. !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
  1159. error_report_once("%s: invalid context entry: hi=%"PRIx64
  1160. ", lo=%"PRIx64" (level %d not supported)",
  1161. __func__, ce->hi, ce->lo,
  1162. vtd_ce_get_level(ce));
  1163. return -VTD_FR_CONTEXT_ENTRY_INV;
  1164. }
  1165. if (!s->root_scalable) {
  1166. /* Do translation type check */
  1167. if (!vtd_ce_type_check(x86_iommu, ce)) {
  1168. /* Errors dumped in vtd_ce_type_check() */
  1169. return -VTD_FR_CONTEXT_ENTRY_INV;
  1170. }
  1171. } else {
  1172. /*
  1173. * Check if the programming of context-entry.rid2pasid
  1174. * and corresponding pasid setting is valid, and thus
  1175. * avoids to check pasid entry fetching result in future
  1176. * helper function calling.
  1177. */
  1178. ret_fr = vtd_ce_rid2pasid_check(s, ce);
  1179. if (ret_fr) {
  1180. return ret_fr;
  1181. }
  1182. }
  1183. return 0;
  1184. }
  1185. static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
  1186. void *private)
  1187. {
  1188. memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
  1189. return 0;
  1190. }
  1191. static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
  1192. VTDContextEntry *ce)
  1193. {
  1194. VTDPASIDEntry pe;
  1195. if (s->root_scalable) {
  1196. vtd_ce_get_rid2pasid_entry(s, ce, &pe);
  1197. return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
  1198. }
  1199. return VTD_CONTEXT_ENTRY_DID(ce->hi);
  1200. }
  1201. static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
  1202. VTDContextEntry *ce,
  1203. hwaddr addr, hwaddr size)
  1204. {
  1205. IntelIOMMUState *s = vtd_as->iommu_state;
  1206. vtd_page_walk_info info = {
  1207. .hook_fn = vtd_sync_shadow_page_hook,
  1208. .private = (void *)&vtd_as->iommu,
  1209. .notify_unmap = true,
  1210. .aw = s->aw_bits,
  1211. .as = vtd_as,
  1212. .domain_id = vtd_get_domain_id(s, ce),
  1213. };
  1214. return vtd_page_walk(s, ce, addr, addr + size, &info);
  1215. }
  1216. static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
  1217. {
  1218. int ret;
  1219. VTDContextEntry ce;
  1220. IOMMUNotifier *n;
  1221. ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
  1222. pci_bus_num(vtd_as->bus),
  1223. vtd_as->devfn, &ce);
  1224. if (ret) {
  1225. if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
  1226. /*
  1227. * It's a valid scenario to have a context entry that is
  1228. * not present. For example, when a device is removed
  1229. * from an existing domain then the context entry will be
  1230. * zeroed by the guest before it was put into another
  1231. * domain. When this happens, instead of synchronizing
  1232. * the shadow pages we should invalidate all existing
  1233. * mappings and notify the backends.
  1234. */
  1235. IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
  1236. vtd_address_space_unmap(vtd_as, n);
  1237. }
  1238. ret = 0;
  1239. }
  1240. return ret;
  1241. }
  1242. return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
  1243. }
  1244. /*
  1245. * Check if specific device is configed to bypass address
  1246. * translation for DMA requests. In Scalable Mode, bypass
  1247. * 1st-level translation or 2nd-level translation, it depends
  1248. * on PGTT setting.
  1249. */
  1250. static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
  1251. {
  1252. IntelIOMMUState *s;
  1253. VTDContextEntry ce;
  1254. VTDPASIDEntry pe;
  1255. int ret;
  1256. assert(as);
  1257. s = as->iommu_state;
  1258. ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
  1259. as->devfn, &ce);
  1260. if (ret) {
  1261. /*
  1262. * Possibly failed to parse the context entry for some reason
  1263. * (e.g., during init, or any guest configuration errors on
  1264. * context entries). We should assume PT not enabled for
  1265. * safety.
  1266. */
  1267. return false;
  1268. }
  1269. if (s->root_scalable) {
  1270. ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
  1271. if (ret) {
  1272. error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
  1273. __func__, ret);
  1274. return false;
  1275. }
  1276. return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
  1277. }
  1278. return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
  1279. }
  1280. /* Return whether the device is using IOMMU translation. */
  1281. static bool vtd_switch_address_space(VTDAddressSpace *as)
  1282. {
  1283. bool use_iommu;
  1284. /* Whether we need to take the BQL on our own */
  1285. bool take_bql = !qemu_mutex_iothread_locked();
  1286. assert(as);
  1287. use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
  1288. trace_vtd_switch_address_space(pci_bus_num(as->bus),
  1289. VTD_PCI_SLOT(as->devfn),
  1290. VTD_PCI_FUNC(as->devfn),
  1291. use_iommu);
  1292. /*
  1293. * It's possible that we reach here without BQL, e.g., when called
  1294. * from vtd_pt_enable_fast_path(). However the memory APIs need
  1295. * it. We'd better make sure we have had it already, or, take it.
  1296. */
  1297. if (take_bql) {
  1298. qemu_mutex_lock_iothread();
  1299. }
  1300. /* Turn off first then on the other */
  1301. if (use_iommu) {
  1302. memory_region_set_enabled(&as->nodmar, false);
  1303. memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
  1304. } else {
  1305. memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
  1306. memory_region_set_enabled(&as->nodmar, true);
  1307. }
  1308. if (take_bql) {
  1309. qemu_mutex_unlock_iothread();
  1310. }
  1311. return use_iommu;
  1312. }
  1313. static void vtd_switch_address_space_all(IntelIOMMUState *s)
  1314. {
  1315. GHashTableIter iter;
  1316. VTDBus *vtd_bus;
  1317. int i;
  1318. g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
  1319. while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
  1320. for (i = 0; i < PCI_DEVFN_MAX; i++) {
  1321. if (!vtd_bus->dev_as[i]) {
  1322. continue;
  1323. }
  1324. vtd_switch_address_space(vtd_bus->dev_as[i]);
  1325. }
  1326. }
  1327. }
  1328. static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
  1329. {
  1330. return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
  1331. }
  1332. static const bool vtd_qualified_faults[] = {
  1333. [VTD_FR_RESERVED] = false,
  1334. [VTD_FR_ROOT_ENTRY_P] = false,
  1335. [VTD_FR_CONTEXT_ENTRY_P] = true,
  1336. [VTD_FR_CONTEXT_ENTRY_INV] = true,
  1337. [VTD_FR_ADDR_BEYOND_MGAW] = true,
  1338. [VTD_FR_WRITE] = true,
  1339. [VTD_FR_READ] = true,
  1340. [VTD_FR_PAGING_ENTRY_INV] = true,
  1341. [VTD_FR_ROOT_TABLE_INV] = false,
  1342. [VTD_FR_CONTEXT_TABLE_INV] = false,
  1343. [VTD_FR_ROOT_ENTRY_RSVD] = false,
  1344. [VTD_FR_PAGING_ENTRY_RSVD] = true,
  1345. [VTD_FR_CONTEXT_ENTRY_TT] = true,
  1346. [VTD_FR_PASID_TABLE_INV] = false,
  1347. [VTD_FR_RESERVED_ERR] = false,
  1348. [VTD_FR_MAX] = false,
  1349. };
  1350. /* To see if a fault condition is "qualified", which is reported to software
  1351. * only if the FPD field in the context-entry used to process the faulting
  1352. * request is 0.
  1353. */
  1354. static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
  1355. {
  1356. return vtd_qualified_faults[fault];
  1357. }
  1358. static inline bool vtd_is_interrupt_addr(hwaddr addr)
  1359. {
  1360. return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
  1361. }
  1362. static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
  1363. {
  1364. VTDBus *vtd_bus;
  1365. VTDAddressSpace *vtd_as;
  1366. bool success = false;
  1367. vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
  1368. if (!vtd_bus) {
  1369. goto out;
  1370. }
  1371. vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
  1372. if (!vtd_as) {
  1373. goto out;
  1374. }
  1375. if (vtd_switch_address_space(vtd_as) == false) {
  1376. /* We switched off IOMMU region successfully. */
  1377. success = true;
  1378. }
  1379. out:
  1380. trace_vtd_pt_enable_fast_path(source_id, success);
  1381. }
  1382. /* Map dev to context-entry then do a paging-structures walk to do a iommu
  1383. * translation.
  1384. *
  1385. * Called from RCU critical section.
  1386. *
  1387. * @bus_num: The bus number
  1388. * @devfn: The devfn, which is the combined of device and function number
  1389. * @is_write: The access is a write operation
  1390. * @entry: IOMMUTLBEntry that contain the addr to be translated and result
  1391. *
  1392. * Returns true if translation is successful, otherwise false.
  1393. */
  1394. static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
  1395. uint8_t devfn, hwaddr addr, bool is_write,
  1396. IOMMUTLBEntry *entry)
  1397. {
  1398. IntelIOMMUState *s = vtd_as->iommu_state;
  1399. VTDContextEntry ce;
  1400. uint8_t bus_num = pci_bus_num(bus);
  1401. VTDContextCacheEntry *cc_entry;
  1402. uint64_t slpte, page_mask;
  1403. uint32_t level;
  1404. uint16_t source_id = vtd_make_source_id(bus_num, devfn);
  1405. int ret_fr;
  1406. bool is_fpd_set = false;
  1407. bool reads = true;
  1408. bool writes = true;
  1409. uint8_t access_flags;
  1410. VTDIOTLBEntry *iotlb_entry;
  1411. /*
  1412. * We have standalone memory region for interrupt addresses, we
  1413. * should never receive translation requests in this region.
  1414. */
  1415. assert(!vtd_is_interrupt_addr(addr));
  1416. vtd_iommu_lock(s);
  1417. cc_entry = &vtd_as->context_cache_entry;
  1418. /* Try to fetch slpte form IOTLB */
  1419. iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
  1420. if (iotlb_entry) {
  1421. trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
  1422. iotlb_entry->domain_id);
  1423. slpte = iotlb_entry->slpte;
  1424. access_flags = iotlb_entry->access_flags;
  1425. page_mask = iotlb_entry->mask;
  1426. goto out;
  1427. }
  1428. /* Try to fetch context-entry from cache first */
  1429. if (cc_entry->context_cache_gen == s->context_cache_gen) {
  1430. trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
  1431. cc_entry->context_entry.lo,
  1432. cc_entry->context_cache_gen);
  1433. ce = cc_entry->context_entry;
  1434. is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
  1435. if (!is_fpd_set && s->root_scalable) {
  1436. ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
  1437. VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
  1438. }
  1439. } else {
  1440. ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
  1441. is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
  1442. if (!ret_fr && !is_fpd_set && s->root_scalable) {
  1443. ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
  1444. }
  1445. VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
  1446. /* Update context-cache */
  1447. trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
  1448. cc_entry->context_cache_gen,
  1449. s->context_cache_gen);
  1450. cc_entry->context_entry = ce;
  1451. cc_entry->context_cache_gen = s->context_cache_gen;
  1452. }
  1453. /*
  1454. * We don't need to translate for pass-through context entries.
  1455. * Also, let's ignore IOTLB caching as well for PT devices.
  1456. */
  1457. if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
  1458. entry->iova = addr & VTD_PAGE_MASK_4K;
  1459. entry->translated_addr = entry->iova;
  1460. entry->addr_mask = ~VTD_PAGE_MASK_4K;
  1461. entry->perm = IOMMU_RW;
  1462. trace_vtd_translate_pt(source_id, entry->iova);
  1463. /*
  1464. * When this happens, it means firstly caching-mode is not
  1465. * enabled, and this is the first passthrough translation for
  1466. * the device. Let's enable the fast path for passthrough.
  1467. *
  1468. * When passthrough is disabled again for the device, we can
  1469. * capture it via the context entry invalidation, then the
  1470. * IOMMU region can be swapped back.
  1471. */
  1472. vtd_pt_enable_fast_path(s, source_id);
  1473. vtd_iommu_unlock(s);
  1474. return true;
  1475. }
  1476. ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
  1477. &reads, &writes, s->aw_bits);
  1478. VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
  1479. page_mask = vtd_slpt_level_page_mask(level);
  1480. access_flags = IOMMU_ACCESS_FLAG(reads, writes);
  1481. vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
  1482. access_flags, level);
  1483. out:
  1484. vtd_iommu_unlock(s);
  1485. entry->iova = addr & page_mask;
  1486. entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
  1487. entry->addr_mask = ~page_mask;
  1488. entry->perm = access_flags;
  1489. return true;
  1490. error:
  1491. vtd_iommu_unlock(s);
  1492. entry->iova = 0;
  1493. entry->translated_addr = 0;
  1494. entry->addr_mask = 0;
  1495. entry->perm = IOMMU_NONE;
  1496. return false;
  1497. }
  1498. static void vtd_root_table_setup(IntelIOMMUState *s)
  1499. {
  1500. s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
  1501. s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
  1502. vtd_update_scalable_state(s);
  1503. trace_vtd_reg_dmar_root(s->root, s->root_scalable);
  1504. }
  1505. static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
  1506. uint32_t index, uint32_t mask)
  1507. {
  1508. x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
  1509. }
  1510. static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
  1511. {
  1512. uint64_t value = 0;
  1513. value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
  1514. s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
  1515. s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
  1516. s->intr_eime = value & VTD_IRTA_EIME;
  1517. /* Notify global invalidation */
  1518. vtd_iec_notify_all(s, true, 0, 0);
  1519. trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
  1520. }
  1521. static void vtd_iommu_replay_all(IntelIOMMUState *s)
  1522. {
  1523. VTDAddressSpace *vtd_as;
  1524. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  1525. vtd_sync_shadow_page_table(vtd_as);
  1526. }
  1527. }
  1528. static void vtd_context_global_invalidate(IntelIOMMUState *s)
  1529. {
  1530. trace_vtd_inv_desc_cc_global();
  1531. /* Protects context cache */
  1532. vtd_iommu_lock(s);
  1533. s->context_cache_gen++;
  1534. if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
  1535. vtd_reset_context_cache_locked(s);
  1536. }
  1537. vtd_iommu_unlock(s);
  1538. vtd_address_space_refresh_all(s);
  1539. /*
  1540. * From VT-d spec 6.5.2.1, a global context entry invalidation
  1541. * should be followed by a IOTLB global invalidation, so we should
  1542. * be safe even without this. Hoewever, let's replay the region as
  1543. * well to be safer, and go back here when we need finer tunes for
  1544. * VT-d emulation codes.
  1545. */
  1546. vtd_iommu_replay_all(s);
  1547. }
  1548. /* Do a context-cache device-selective invalidation.
  1549. * @func_mask: FM field after shifting
  1550. */
  1551. static void vtd_context_device_invalidate(IntelIOMMUState *s,
  1552. uint16_t source_id,
  1553. uint16_t func_mask)
  1554. {
  1555. uint16_t mask;
  1556. VTDBus *vtd_bus;
  1557. VTDAddressSpace *vtd_as;
  1558. uint8_t bus_n, devfn;
  1559. uint16_t devfn_it;
  1560. trace_vtd_inv_desc_cc_devices(source_id, func_mask);
  1561. switch (func_mask & 3) {
  1562. case 0:
  1563. mask = 0; /* No bits in the SID field masked */
  1564. break;
  1565. case 1:
  1566. mask = 4; /* Mask bit 2 in the SID field */
  1567. break;
  1568. case 2:
  1569. mask = 6; /* Mask bit 2:1 in the SID field */
  1570. break;
  1571. case 3:
  1572. mask = 7; /* Mask bit 2:0 in the SID field */
  1573. break;
  1574. }
  1575. mask = ~mask;
  1576. bus_n = VTD_SID_TO_BUS(source_id);
  1577. vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
  1578. if (vtd_bus) {
  1579. devfn = VTD_SID_TO_DEVFN(source_id);
  1580. for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
  1581. vtd_as = vtd_bus->dev_as[devfn_it];
  1582. if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
  1583. trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
  1584. VTD_PCI_FUNC(devfn_it));
  1585. vtd_iommu_lock(s);
  1586. vtd_as->context_cache_entry.context_cache_gen = 0;
  1587. vtd_iommu_unlock(s);
  1588. /*
  1589. * Do switch address space when needed, in case if the
  1590. * device passthrough bit is switched.
  1591. */
  1592. vtd_switch_address_space(vtd_as);
  1593. /*
  1594. * So a device is moving out of (or moving into) a
  1595. * domain, resync the shadow page table.
  1596. * This won't bring bad even if we have no such
  1597. * notifier registered - the IOMMU notification
  1598. * framework will skip MAP notifications if that
  1599. * happened.
  1600. */
  1601. vtd_sync_shadow_page_table(vtd_as);
  1602. }
  1603. }
  1604. }
  1605. }
  1606. /* Context-cache invalidation
  1607. * Returns the Context Actual Invalidation Granularity.
  1608. * @val: the content of the CCMD_REG
  1609. */
  1610. static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
  1611. {
  1612. uint64_t caig;
  1613. uint64_t type = val & VTD_CCMD_CIRG_MASK;
  1614. switch (type) {
  1615. case VTD_CCMD_DOMAIN_INVL:
  1616. /* Fall through */
  1617. case VTD_CCMD_GLOBAL_INVL:
  1618. caig = VTD_CCMD_GLOBAL_INVL_A;
  1619. vtd_context_global_invalidate(s);
  1620. break;
  1621. case VTD_CCMD_DEVICE_INVL:
  1622. caig = VTD_CCMD_DEVICE_INVL_A;
  1623. vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
  1624. break;
  1625. default:
  1626. error_report_once("%s: invalid context: 0x%" PRIx64,
  1627. __func__, val);
  1628. caig = 0;
  1629. }
  1630. return caig;
  1631. }
  1632. static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
  1633. {
  1634. trace_vtd_inv_desc_iotlb_global();
  1635. vtd_reset_iotlb(s);
  1636. vtd_iommu_replay_all(s);
  1637. }
  1638. static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
  1639. {
  1640. VTDContextEntry ce;
  1641. VTDAddressSpace *vtd_as;
  1642. trace_vtd_inv_desc_iotlb_domain(domain_id);
  1643. vtd_iommu_lock(s);
  1644. g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
  1645. &domain_id);
  1646. vtd_iommu_unlock(s);
  1647. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  1648. if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
  1649. vtd_as->devfn, &ce) &&
  1650. domain_id == vtd_get_domain_id(s, &ce)) {
  1651. vtd_sync_shadow_page_table(vtd_as);
  1652. }
  1653. }
  1654. }
  1655. static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
  1656. uint16_t domain_id, hwaddr addr,
  1657. uint8_t am)
  1658. {
  1659. VTDAddressSpace *vtd_as;
  1660. VTDContextEntry ce;
  1661. int ret;
  1662. hwaddr size = (1 << am) * VTD_PAGE_SIZE;
  1663. QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
  1664. ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
  1665. vtd_as->devfn, &ce);
  1666. if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
  1667. if (vtd_as_has_map_notifier(vtd_as)) {
  1668. /*
  1669. * As long as we have MAP notifications registered in
  1670. * any of our IOMMU notifiers, we need to sync the
  1671. * shadow page table.
  1672. */
  1673. vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
  1674. } else {
  1675. /*
  1676. * For UNMAP-only notifiers, we don't need to walk the
  1677. * page tables. We just deliver the PSI down to
  1678. * invalidate caches.
  1679. */
  1680. IOMMUTLBEntry entry = {
  1681. .target_as = &address_space_memory,
  1682. .iova = addr,
  1683. .translated_addr = 0,
  1684. .addr_mask = size - 1,
  1685. .perm = IOMMU_NONE,
  1686. };
  1687. memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
  1688. }
  1689. }
  1690. }
  1691. }
  1692. static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
  1693. hwaddr addr, uint8_t am)
  1694. {
  1695. VTDIOTLBPageInvInfo info;
  1696. trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
  1697. assert(am <= VTD_MAMV);
  1698. info.domain_id = domain_id;
  1699. info.addr = addr;
  1700. info.mask = ~((1 << am) - 1);
  1701. vtd_iommu_lock(s);
  1702. g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
  1703. vtd_iommu_unlock(s);
  1704. vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
  1705. }
  1706. /* Flush IOTLB
  1707. * Returns the IOTLB Actual Invalidation Granularity.
  1708. * @val: the content of the IOTLB_REG
  1709. */
  1710. static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
  1711. {
  1712. uint64_t iaig;
  1713. uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
  1714. uint16_t domain_id;
  1715. hwaddr addr;
  1716. uint8_t am;
  1717. switch (type) {
  1718. case VTD_TLB_GLOBAL_FLUSH:
  1719. iaig = VTD_TLB_GLOBAL_FLUSH_A;
  1720. vtd_iotlb_global_invalidate(s);
  1721. break;
  1722. case VTD_TLB_DSI_FLUSH:
  1723. domain_id = VTD_TLB_DID(val);
  1724. iaig = VTD_TLB_DSI_FLUSH_A;
  1725. vtd_iotlb_domain_invalidate(s, domain_id);
  1726. break;
  1727. case VTD_TLB_PSI_FLUSH:
  1728. domain_id = VTD_TLB_DID(val);
  1729. addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
  1730. am = VTD_IVA_AM(addr);
  1731. addr = VTD_IVA_ADDR(addr);
  1732. if (am > VTD_MAMV) {
  1733. error_report_once("%s: address mask overflow: 0x%" PRIx64,
  1734. __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
  1735. iaig = 0;
  1736. break;
  1737. }
  1738. iaig = VTD_TLB_PSI_FLUSH_A;
  1739. vtd_iotlb_page_invalidate(s, domain_id, addr, am);
  1740. break;
  1741. default:
  1742. error_report_once("%s: invalid granularity: 0x%" PRIx64,
  1743. __func__, val);
  1744. iaig = 0;
  1745. }
  1746. return iaig;
  1747. }
  1748. static void vtd_fetch_inv_desc(IntelIOMMUState *s);
  1749. static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
  1750. {
  1751. return s->qi_enabled && (s->iq_tail == s->iq_head) &&
  1752. (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
  1753. }
  1754. static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
  1755. {
  1756. uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
  1757. trace_vtd_inv_qi_enable(en);
  1758. if (en) {
  1759. s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
  1760. /* 2^(x+8) entries */
  1761. s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
  1762. s->qi_enabled = true;
  1763. trace_vtd_inv_qi_setup(s->iq, s->iq_size);
  1764. /* Ok - report back to driver */
  1765. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
  1766. if (s->iq_tail != 0) {
  1767. /*
  1768. * This is a spec violation but Windows guests are known to set up
  1769. * Queued Invalidation this way so we allow the write and process
  1770. * Invalidation Descriptors right away.
  1771. */
  1772. trace_vtd_warn_invalid_qi_tail(s->iq_tail);
  1773. if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
  1774. vtd_fetch_inv_desc(s);
  1775. }
  1776. }
  1777. } else {
  1778. if (vtd_queued_inv_disable_check(s)) {
  1779. /* disable Queued Invalidation */
  1780. vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
  1781. s->iq_head = 0;
  1782. s->qi_enabled = false;
  1783. /* Ok - report back to driver */
  1784. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
  1785. } else {
  1786. error_report_once("%s: detected improper state when disable QI "
  1787. "(head=0x%x, tail=0x%x, last_type=%d)",
  1788. __func__,
  1789. s->iq_head, s->iq_tail, s->iq_last_desc_type);
  1790. }
  1791. }
  1792. }
  1793. /* Set Root Table Pointer */
  1794. static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
  1795. {
  1796. vtd_root_table_setup(s);
  1797. /* Ok - report back to driver */
  1798. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
  1799. vtd_reset_caches(s);
  1800. vtd_address_space_refresh_all(s);
  1801. }
  1802. /* Set Interrupt Remap Table Pointer */
  1803. static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
  1804. {
  1805. vtd_interrupt_remap_table_setup(s);
  1806. /* Ok - report back to driver */
  1807. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
  1808. }
  1809. /* Handle Translation Enable/Disable */
  1810. static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
  1811. {
  1812. if (s->dmar_enabled == en) {
  1813. return;
  1814. }
  1815. trace_vtd_dmar_enable(en);
  1816. if (en) {
  1817. s->dmar_enabled = true;
  1818. /* Ok - report back to driver */
  1819. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
  1820. } else {
  1821. s->dmar_enabled = false;
  1822. /* Clear the index of Fault Recording Register */
  1823. s->next_frcd_reg = 0;
  1824. /* Ok - report back to driver */
  1825. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
  1826. }
  1827. vtd_reset_caches(s);
  1828. vtd_address_space_refresh_all(s);
  1829. }
  1830. /* Handle Interrupt Remap Enable/Disable */
  1831. static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
  1832. {
  1833. trace_vtd_ir_enable(en);
  1834. if (en) {
  1835. s->intr_enabled = true;
  1836. /* Ok - report back to driver */
  1837. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
  1838. } else {
  1839. s->intr_enabled = false;
  1840. /* Ok - report back to driver */
  1841. vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
  1842. }
  1843. }
  1844. /* Handle write to Global Command Register */
  1845. static void vtd_handle_gcmd_write(IntelIOMMUState *s)
  1846. {
  1847. uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
  1848. uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
  1849. uint32_t changed = status ^ val;
  1850. trace_vtd_reg_write_gcmd(status, val);
  1851. if (changed & VTD_GCMD_TE) {
  1852. /* Translation enable/disable */
  1853. vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
  1854. }
  1855. if (val & VTD_GCMD_SRTP) {
  1856. /* Set/update the root-table pointer */
  1857. vtd_handle_gcmd_srtp(s);
  1858. }
  1859. if (changed & VTD_GCMD_QIE) {
  1860. /* Queued Invalidation Enable */
  1861. vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
  1862. }
  1863. if (val & VTD_GCMD_SIRTP) {
  1864. /* Set/update the interrupt remapping root-table pointer */
  1865. vtd_handle_gcmd_sirtp(s);
  1866. }
  1867. if (changed & VTD_GCMD_IRE) {
  1868. /* Interrupt remap enable/disable */
  1869. vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
  1870. }
  1871. }
  1872. /* Handle write to Context Command Register */
  1873. static void vtd_handle_ccmd_write(IntelIOMMUState *s)
  1874. {
  1875. uint64_t ret;
  1876. uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
  1877. /* Context-cache invalidation request */
  1878. if (val & VTD_CCMD_ICC) {
  1879. if (s->qi_enabled) {
  1880. error_report_once("Queued Invalidation enabled, "
  1881. "should not use register-based invalidation");
  1882. return;
  1883. }
  1884. ret = vtd_context_cache_invalidate(s, val);
  1885. /* Invalidation completed. Change something to show */
  1886. vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
  1887. ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
  1888. ret);
  1889. }
  1890. }
  1891. /* Handle write to IOTLB Invalidation Register */
  1892. static void vtd_handle_iotlb_write(IntelIOMMUState *s)
  1893. {
  1894. uint64_t ret;
  1895. uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
  1896. /* IOTLB invalidation request */
  1897. if (val & VTD_TLB_IVT) {
  1898. if (s->qi_enabled) {
  1899. error_report_once("Queued Invalidation enabled, "
  1900. "should not use register-based invalidation");
  1901. return;
  1902. }
  1903. ret = vtd_iotlb_flush(s, val);
  1904. /* Invalidation completed. Change something to show */
  1905. vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
  1906. ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
  1907. VTD_TLB_FLUSH_GRANU_MASK_A, ret);
  1908. }
  1909. }
  1910. /* Fetch an Invalidation Descriptor from the Invalidation Queue */
  1911. static bool vtd_get_inv_desc(IntelIOMMUState *s,
  1912. VTDInvDesc *inv_desc)
  1913. {
  1914. dma_addr_t base_addr = s->iq;
  1915. uint32_t offset = s->iq_head;
  1916. uint32_t dw = s->iq_dw ? 32 : 16;
  1917. dma_addr_t addr = base_addr + offset * dw;
  1918. if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
  1919. error_report_once("Read INV DESC failed.");
  1920. return false;
  1921. }
  1922. inv_desc->lo = le64_to_cpu(inv_desc->lo);
  1923. inv_desc->hi = le64_to_cpu(inv_desc->hi);
  1924. if (dw == 32) {
  1925. inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
  1926. inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
  1927. }
  1928. return true;
  1929. }
  1930. static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
  1931. {
  1932. if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
  1933. (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
  1934. error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
  1935. " (reserved nonzero)", __func__, inv_desc->hi,
  1936. inv_desc->lo);
  1937. return false;
  1938. }
  1939. if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
  1940. /* Status Write */
  1941. uint32_t status_data = (uint32_t)(inv_desc->lo >>
  1942. VTD_INV_DESC_WAIT_DATA_SHIFT);
  1943. assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
  1944. /* FIXME: need to be masked with HAW? */
  1945. dma_addr_t status_addr = inv_desc->hi;
  1946. trace_vtd_inv_desc_wait_sw(status_addr, status_data);
  1947. status_data = cpu_to_le32(status_data);
  1948. if (dma_memory_write(&address_space_memory, status_addr, &status_data,
  1949. sizeof(status_data))) {
  1950. trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
  1951. return false;
  1952. }
  1953. } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
  1954. /* Interrupt flag */
  1955. vtd_generate_completion_event(s);
  1956. } else {
  1957. error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
  1958. " (unknown type)", __func__, inv_desc->hi,
  1959. inv_desc->lo);
  1960. return false;
  1961. }
  1962. return true;
  1963. }
  1964. static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
  1965. VTDInvDesc *inv_desc)
  1966. {
  1967. uint16_t sid, fmask;
  1968. if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
  1969. error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
  1970. " (reserved nonzero)", __func__, inv_desc->hi,
  1971. inv_desc->lo);
  1972. return false;
  1973. }
  1974. switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
  1975. case VTD_INV_DESC_CC_DOMAIN:
  1976. trace_vtd_inv_desc_cc_domain(
  1977. (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
  1978. /* Fall through */
  1979. case VTD_INV_DESC_CC_GLOBAL:
  1980. vtd_context_global_invalidate(s);
  1981. break;
  1982. case VTD_INV_DESC_CC_DEVICE:
  1983. sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
  1984. fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
  1985. vtd_context_device_invalidate(s, sid, fmask);
  1986. break;
  1987. default:
  1988. error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
  1989. " (invalid type)", __func__, inv_desc->hi,
  1990. inv_desc->lo);
  1991. return false;
  1992. }
  1993. return true;
  1994. }
  1995. static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
  1996. {
  1997. uint16_t domain_id;
  1998. uint8_t am;
  1999. hwaddr addr;
  2000. if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
  2001. (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
  2002. error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
  2003. ", lo=0x%"PRIx64" (reserved bits unzero)\n",
  2004. __func__, inv_desc->hi, inv_desc->lo);
  2005. return false;
  2006. }
  2007. switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
  2008. case VTD_INV_DESC_IOTLB_GLOBAL:
  2009. vtd_iotlb_global_invalidate(s);
  2010. break;
  2011. case VTD_INV_DESC_IOTLB_DOMAIN:
  2012. domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
  2013. vtd_iotlb_domain_invalidate(s, domain_id);
  2014. break;
  2015. case VTD_INV_DESC_IOTLB_PAGE:
  2016. domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
  2017. addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
  2018. am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
  2019. if (am > VTD_MAMV) {
  2020. error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
  2021. ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
  2022. __func__, inv_desc->hi, inv_desc->lo,
  2023. am, (unsigned)VTD_MAMV);
  2024. return false;
  2025. }
  2026. vtd_iotlb_page_invalidate(s, domain_id, addr, am);
  2027. break;
  2028. default:
  2029. error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
  2030. ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
  2031. __func__, inv_desc->hi, inv_desc->lo,
  2032. inv_desc->lo & VTD_INV_DESC_IOTLB_G);
  2033. return false;
  2034. }
  2035. return true;
  2036. }
  2037. static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
  2038. VTDInvDesc *inv_desc)
  2039. {
  2040. trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
  2041. inv_desc->iec.index,
  2042. inv_desc->iec.index_mask);
  2043. vtd_iec_notify_all(s, !inv_desc->iec.granularity,
  2044. inv_desc->iec.index,
  2045. inv_desc->iec.index_mask);
  2046. return true;
  2047. }
  2048. static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
  2049. VTDInvDesc *inv_desc)
  2050. {
  2051. VTDAddressSpace *vtd_dev_as;
  2052. IOMMUTLBEntry entry;
  2053. struct VTDBus *vtd_bus;
  2054. hwaddr addr;
  2055. uint64_t sz;
  2056. uint16_t sid;
  2057. uint8_t devfn;
  2058. bool size;
  2059. uint8_t bus_num;
  2060. addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
  2061. sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
  2062. devfn = sid & 0xff;
  2063. bus_num = sid >> 8;
  2064. size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
  2065. if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
  2066. (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
  2067. error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
  2068. ", lo=%"PRIx64" (reserved nonzero)", __func__,
  2069. inv_desc->hi, inv_desc->lo);
  2070. return false;
  2071. }
  2072. vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
  2073. if (!vtd_bus) {
  2074. goto done;
  2075. }
  2076. vtd_dev_as = vtd_bus->dev_as[devfn];
  2077. if (!vtd_dev_as) {
  2078. goto done;
  2079. }
  2080. /* According to ATS spec table 2.4:
  2081. * S = 0, bits 15:12 = xxxx range size: 4K
  2082. * S = 1, bits 15:12 = xxx0 range size: 8K
  2083. * S = 1, bits 15:12 = xx01 range size: 16K
  2084. * S = 1, bits 15:12 = x011 range size: 32K
  2085. * S = 1, bits 15:12 = 0111 range size: 64K
  2086. * ...
  2087. */
  2088. if (size) {
  2089. sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
  2090. addr &= ~(sz - 1);
  2091. } else {
  2092. sz = VTD_PAGE_SIZE;
  2093. }
  2094. entry.target_as = &vtd_dev_as->as;
  2095. entry.addr_mask = sz - 1;
  2096. entry.iova = addr;
  2097. entry.perm = IOMMU_NONE;
  2098. entry.translated_addr = 0;
  2099. memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
  2100. done:
  2101. return true;
  2102. }
  2103. static bool vtd_process_inv_desc(IntelIOMMUState *s)
  2104. {
  2105. VTDInvDesc inv_desc;
  2106. uint8_t desc_type;
  2107. trace_vtd_inv_qi_head(s->iq_head);
  2108. if (!vtd_get_inv_desc(s, &inv_desc)) {
  2109. s->iq_last_desc_type = VTD_INV_DESC_NONE;
  2110. return false;
  2111. }
  2112. desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
  2113. /* FIXME: should update at first or at last? */
  2114. s->iq_last_desc_type = desc_type;
  2115. switch (desc_type) {
  2116. case VTD_INV_DESC_CC:
  2117. trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
  2118. if (!vtd_process_context_cache_desc(s, &inv_desc)) {
  2119. return false;
  2120. }
  2121. break;
  2122. case VTD_INV_DESC_IOTLB:
  2123. trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
  2124. if (!vtd_process_iotlb_desc(s, &inv_desc)) {
  2125. return false;
  2126. }
  2127. break;
  2128. /*
  2129. * TODO: the entity of below two cases will be implemented in future series.
  2130. * To make guest (which integrates scalable mode support patch set in
  2131. * iommu driver) work, just return true is enough so far.
  2132. */
  2133. case VTD_INV_DESC_PC:
  2134. break;
  2135. case VTD_INV_DESC_PIOTLB:
  2136. break;
  2137. case VTD_INV_DESC_WAIT:
  2138. trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
  2139. if (!vtd_process_wait_desc(s, &inv_desc)) {
  2140. return false;
  2141. }
  2142. break;
  2143. case VTD_INV_DESC_IEC:
  2144. trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
  2145. if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
  2146. return false;
  2147. }
  2148. break;
  2149. case VTD_INV_DESC_DEVICE:
  2150. trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
  2151. if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
  2152. return false;
  2153. }
  2154. break;
  2155. default:
  2156. error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
  2157. " (unknown type)", __func__, inv_desc.hi,
  2158. inv_desc.lo);
  2159. return false;
  2160. }
  2161. s->iq_head++;
  2162. if (s->iq_head == s->iq_size) {
  2163. s->iq_head = 0;
  2164. }
  2165. return true;
  2166. }
  2167. /* Try to fetch and process more Invalidation Descriptors */
  2168. static void vtd_fetch_inv_desc(IntelIOMMUState *s)
  2169. {
  2170. trace_vtd_inv_qi_fetch();
  2171. if (s->iq_tail >= s->iq_size) {
  2172. /* Detects an invalid Tail pointer */
  2173. error_report_once("%s: detected invalid QI tail "
  2174. "(tail=0x%x, size=0x%x)",
  2175. __func__, s->iq_tail, s->iq_size);
  2176. vtd_handle_inv_queue_error(s);
  2177. return;
  2178. }
  2179. while (s->iq_head != s->iq_tail) {
  2180. if (!vtd_process_inv_desc(s)) {
  2181. /* Invalidation Queue Errors */
  2182. vtd_handle_inv_queue_error(s);
  2183. break;
  2184. }
  2185. /* Must update the IQH_REG in time */
  2186. vtd_set_quad_raw(s, DMAR_IQH_REG,
  2187. (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
  2188. VTD_IQH_QH_MASK);
  2189. }
  2190. }
  2191. /* Handle write to Invalidation Queue Tail Register */
  2192. static void vtd_handle_iqt_write(IntelIOMMUState *s)
  2193. {
  2194. uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
  2195. if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
  2196. error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
  2197. __func__, val);
  2198. return;
  2199. }
  2200. s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
  2201. trace_vtd_inv_qi_tail(s->iq_tail);
  2202. if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
  2203. /* Process Invalidation Queue here */
  2204. vtd_fetch_inv_desc(s);
  2205. }
  2206. }
  2207. static void vtd_handle_fsts_write(IntelIOMMUState *s)
  2208. {
  2209. uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
  2210. uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
  2211. uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
  2212. if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
  2213. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  2214. trace_vtd_fsts_clear_ip();
  2215. }
  2216. /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
  2217. * Descriptors if there are any when Queued Invalidation is enabled?
  2218. */
  2219. }
  2220. static void vtd_handle_fectl_write(IntelIOMMUState *s)
  2221. {
  2222. uint32_t fectl_reg;
  2223. /* FIXME: when software clears the IM field, check the IP field. But do we
  2224. * need to compare the old value and the new value to conclude that
  2225. * software clears the IM field? Or just check if the IM field is zero?
  2226. */
  2227. fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
  2228. trace_vtd_reg_write_fectl(fectl_reg);
  2229. if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
  2230. vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
  2231. vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
  2232. }
  2233. }
  2234. static void vtd_handle_ics_write(IntelIOMMUState *s)
  2235. {
  2236. uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
  2237. uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
  2238. if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
  2239. trace_vtd_reg_ics_clear_ip();
  2240. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  2241. }
  2242. }
  2243. static void vtd_handle_iectl_write(IntelIOMMUState *s)
  2244. {
  2245. uint32_t iectl_reg;
  2246. /* FIXME: when software clears the IM field, check the IP field. But do we
  2247. * need to compare the old value and the new value to conclude that
  2248. * software clears the IM field? Or just check if the IM field is zero?
  2249. */
  2250. iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
  2251. trace_vtd_reg_write_iectl(iectl_reg);
  2252. if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
  2253. vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
  2254. vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
  2255. }
  2256. }
  2257. static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
  2258. {
  2259. IntelIOMMUState *s = opaque;
  2260. uint64_t val;
  2261. trace_vtd_reg_read(addr, size);
  2262. if (addr + size > DMAR_REG_SIZE) {
  2263. error_report_once("%s: MMIO over range: addr=0x%" PRIx64
  2264. " size=0x%u", __func__, addr, size);
  2265. return (uint64_t)-1;
  2266. }
  2267. switch (addr) {
  2268. /* Root Table Address Register, 64-bit */
  2269. case DMAR_RTADDR_REG:
  2270. if (size == 4) {
  2271. val = s->root & ((1ULL << 32) - 1);
  2272. } else {
  2273. val = s->root;
  2274. }
  2275. break;
  2276. case DMAR_RTADDR_REG_HI:
  2277. assert(size == 4);
  2278. val = s->root >> 32;
  2279. break;
  2280. /* Invalidation Queue Address Register, 64-bit */
  2281. case DMAR_IQA_REG:
  2282. val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
  2283. if (size == 4) {
  2284. val = val & ((1ULL << 32) - 1);
  2285. }
  2286. break;
  2287. case DMAR_IQA_REG_HI:
  2288. assert(size == 4);
  2289. val = s->iq >> 32;
  2290. break;
  2291. default:
  2292. if (size == 4) {
  2293. val = vtd_get_long(s, addr);
  2294. } else {
  2295. val = vtd_get_quad(s, addr);
  2296. }
  2297. }
  2298. return val;
  2299. }
  2300. static void vtd_mem_write(void *opaque, hwaddr addr,
  2301. uint64_t val, unsigned size)
  2302. {
  2303. IntelIOMMUState *s = opaque;
  2304. trace_vtd_reg_write(addr, size, val);
  2305. if (addr + size > DMAR_REG_SIZE) {
  2306. error_report_once("%s: MMIO over range: addr=0x%" PRIx64
  2307. " size=0x%u", __func__, addr, size);
  2308. return;
  2309. }
  2310. switch (addr) {
  2311. /* Global Command Register, 32-bit */
  2312. case DMAR_GCMD_REG:
  2313. vtd_set_long(s, addr, val);
  2314. vtd_handle_gcmd_write(s);
  2315. break;
  2316. /* Context Command Register, 64-bit */
  2317. case DMAR_CCMD_REG:
  2318. if (size == 4) {
  2319. vtd_set_long(s, addr, val);
  2320. } else {
  2321. vtd_set_quad(s, addr, val);
  2322. vtd_handle_ccmd_write(s);
  2323. }
  2324. break;
  2325. case DMAR_CCMD_REG_HI:
  2326. assert(size == 4);
  2327. vtd_set_long(s, addr, val);
  2328. vtd_handle_ccmd_write(s);
  2329. break;
  2330. /* IOTLB Invalidation Register, 64-bit */
  2331. case DMAR_IOTLB_REG:
  2332. if (size == 4) {
  2333. vtd_set_long(s, addr, val);
  2334. } else {
  2335. vtd_set_quad(s, addr, val);
  2336. vtd_handle_iotlb_write(s);
  2337. }
  2338. break;
  2339. case DMAR_IOTLB_REG_HI:
  2340. assert(size == 4);
  2341. vtd_set_long(s, addr, val);
  2342. vtd_handle_iotlb_write(s);
  2343. break;
  2344. /* Invalidate Address Register, 64-bit */
  2345. case DMAR_IVA_REG:
  2346. if (size == 4) {
  2347. vtd_set_long(s, addr, val);
  2348. } else {
  2349. vtd_set_quad(s, addr, val);
  2350. }
  2351. break;
  2352. case DMAR_IVA_REG_HI:
  2353. assert(size == 4);
  2354. vtd_set_long(s, addr, val);
  2355. break;
  2356. /* Fault Status Register, 32-bit */
  2357. case DMAR_FSTS_REG:
  2358. assert(size == 4);
  2359. vtd_set_long(s, addr, val);
  2360. vtd_handle_fsts_write(s);
  2361. break;
  2362. /* Fault Event Control Register, 32-bit */
  2363. case DMAR_FECTL_REG:
  2364. assert(size == 4);
  2365. vtd_set_long(s, addr, val);
  2366. vtd_handle_fectl_write(s);
  2367. break;
  2368. /* Fault Event Data Register, 32-bit */
  2369. case DMAR_FEDATA_REG:
  2370. assert(size == 4);
  2371. vtd_set_long(s, addr, val);
  2372. break;
  2373. /* Fault Event Address Register, 32-bit */
  2374. case DMAR_FEADDR_REG:
  2375. if (size == 4) {
  2376. vtd_set_long(s, addr, val);
  2377. } else {
  2378. /*
  2379. * While the register is 32-bit only, some guests (Xen...) write to
  2380. * it with 64-bit.
  2381. */
  2382. vtd_set_quad(s, addr, val);
  2383. }
  2384. break;
  2385. /* Fault Event Upper Address Register, 32-bit */
  2386. case DMAR_FEUADDR_REG:
  2387. assert(size == 4);
  2388. vtd_set_long(s, addr, val);
  2389. break;
  2390. /* Protected Memory Enable Register, 32-bit */
  2391. case DMAR_PMEN_REG:
  2392. assert(size == 4);
  2393. vtd_set_long(s, addr, val);
  2394. break;
  2395. /* Root Table Address Register, 64-bit */
  2396. case DMAR_RTADDR_REG:
  2397. if (size == 4) {
  2398. vtd_set_long(s, addr, val);
  2399. } else {
  2400. vtd_set_quad(s, addr, val);
  2401. }
  2402. break;
  2403. case DMAR_RTADDR_REG_HI:
  2404. assert(size == 4);
  2405. vtd_set_long(s, addr, val);
  2406. break;
  2407. /* Invalidation Queue Tail Register, 64-bit */
  2408. case DMAR_IQT_REG:
  2409. if (size == 4) {
  2410. vtd_set_long(s, addr, val);
  2411. } else {
  2412. vtd_set_quad(s, addr, val);
  2413. }
  2414. vtd_handle_iqt_write(s);
  2415. break;
  2416. case DMAR_IQT_REG_HI:
  2417. assert(size == 4);
  2418. vtd_set_long(s, addr, val);
  2419. /* 19:63 of IQT_REG is RsvdZ, do nothing here */
  2420. break;
  2421. /* Invalidation Queue Address Register, 64-bit */
  2422. case DMAR_IQA_REG:
  2423. if (size == 4) {
  2424. vtd_set_long(s, addr, val);
  2425. } else {
  2426. vtd_set_quad(s, addr, val);
  2427. }
  2428. if (s->ecap & VTD_ECAP_SMTS &&
  2429. val & VTD_IQA_DW_MASK) {
  2430. s->iq_dw = true;
  2431. } else {
  2432. s->iq_dw = false;
  2433. }
  2434. break;
  2435. case DMAR_IQA_REG_HI:
  2436. assert(size == 4);
  2437. vtd_set_long(s, addr, val);
  2438. break;
  2439. /* Invalidation Completion Status Register, 32-bit */
  2440. case DMAR_ICS_REG:
  2441. assert(size == 4);
  2442. vtd_set_long(s, addr, val);
  2443. vtd_handle_ics_write(s);
  2444. break;
  2445. /* Invalidation Event Control Register, 32-bit */
  2446. case DMAR_IECTL_REG:
  2447. assert(size == 4);
  2448. vtd_set_long(s, addr, val);
  2449. vtd_handle_iectl_write(s);
  2450. break;
  2451. /* Invalidation Event Data Register, 32-bit */
  2452. case DMAR_IEDATA_REG:
  2453. assert(size == 4);
  2454. vtd_set_long(s, addr, val);
  2455. break;
  2456. /* Invalidation Event Address Register, 32-bit */
  2457. case DMAR_IEADDR_REG:
  2458. assert(size == 4);
  2459. vtd_set_long(s, addr, val);
  2460. break;
  2461. /* Invalidation Event Upper Address Register, 32-bit */
  2462. case DMAR_IEUADDR_REG:
  2463. assert(size == 4);
  2464. vtd_set_long(s, addr, val);
  2465. break;
  2466. /* Fault Recording Registers, 128-bit */
  2467. case DMAR_FRCD_REG_0_0:
  2468. if (size == 4) {
  2469. vtd_set_long(s, addr, val);
  2470. } else {
  2471. vtd_set_quad(s, addr, val);
  2472. }
  2473. break;
  2474. case DMAR_FRCD_REG_0_1:
  2475. assert(size == 4);
  2476. vtd_set_long(s, addr, val);
  2477. break;
  2478. case DMAR_FRCD_REG_0_2:
  2479. if (size == 4) {
  2480. vtd_set_long(s, addr, val);
  2481. } else {
  2482. vtd_set_quad(s, addr, val);
  2483. /* May clear bit 127 (Fault), update PPF */
  2484. vtd_update_fsts_ppf(s);
  2485. }
  2486. break;
  2487. case DMAR_FRCD_REG_0_3:
  2488. assert(size == 4);
  2489. vtd_set_long(s, addr, val);
  2490. /* May clear bit 127 (Fault), update PPF */
  2491. vtd_update_fsts_ppf(s);
  2492. break;
  2493. case DMAR_IRTA_REG:
  2494. if (size == 4) {
  2495. vtd_set_long(s, addr, val);
  2496. } else {
  2497. vtd_set_quad(s, addr, val);
  2498. }
  2499. break;
  2500. case DMAR_IRTA_REG_HI:
  2501. assert(size == 4);
  2502. vtd_set_long(s, addr, val);
  2503. break;
  2504. default:
  2505. if (size == 4) {
  2506. vtd_set_long(s, addr, val);
  2507. } else {
  2508. vtd_set_quad(s, addr, val);
  2509. }
  2510. }
  2511. }
  2512. static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
  2513. IOMMUAccessFlags flag, int iommu_idx)
  2514. {
  2515. VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
  2516. IntelIOMMUState *s = vtd_as->iommu_state;
  2517. IOMMUTLBEntry iotlb = {
  2518. /* We'll fill in the rest later. */
  2519. .target_as = &address_space_memory,
  2520. };
  2521. bool success;
  2522. if (likely(s->dmar_enabled)) {
  2523. success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
  2524. addr, flag & IOMMU_WO, &iotlb);
  2525. } else {
  2526. /* DMAR disabled, passthrough, use 4k-page*/
  2527. iotlb.iova = addr & VTD_PAGE_MASK_4K;
  2528. iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
  2529. iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
  2530. iotlb.perm = IOMMU_RW;
  2531. success = true;
  2532. }
  2533. if (likely(success)) {
  2534. trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
  2535. VTD_PCI_SLOT(vtd_as->devfn),
  2536. VTD_PCI_FUNC(vtd_as->devfn),
  2537. iotlb.iova, iotlb.translated_addr,
  2538. iotlb.addr_mask);
  2539. } else {
  2540. error_report_once("%s: detected translation failure "
  2541. "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
  2542. __func__, pci_bus_num(vtd_as->bus),
  2543. VTD_PCI_SLOT(vtd_as->devfn),
  2544. VTD_PCI_FUNC(vtd_as->devfn),
  2545. addr);
  2546. }
  2547. return iotlb;
  2548. }
  2549. static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
  2550. IOMMUNotifierFlag old,
  2551. IOMMUNotifierFlag new,
  2552. Error **errp)
  2553. {
  2554. VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
  2555. IntelIOMMUState *s = vtd_as->iommu_state;
  2556. /* Update per-address-space notifier flags */
  2557. vtd_as->notifier_flags = new;
  2558. if (old == IOMMU_NOTIFIER_NONE) {
  2559. QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
  2560. } else if (new == IOMMU_NOTIFIER_NONE) {
  2561. QLIST_REMOVE(vtd_as, next);
  2562. }
  2563. return 0;
  2564. }
  2565. static int vtd_post_load(void *opaque, int version_id)
  2566. {
  2567. IntelIOMMUState *iommu = opaque;
  2568. /*
  2569. * Memory regions are dynamically turned on/off depending on
  2570. * context entry configurations from the guest. After migration,
  2571. * we need to make sure the memory regions are still correct.
  2572. */
  2573. vtd_switch_address_space_all(iommu);
  2574. /*
  2575. * We don't need to migrate the root_scalable because we can
  2576. * simply do the calculation after the loading is complete. We
  2577. * can actually do similar things with root, dmar_enabled, etc.
  2578. * however since we've had them already so we'd better keep them
  2579. * for compatibility of migration.
  2580. */
  2581. vtd_update_scalable_state(iommu);
  2582. return 0;
  2583. }
  2584. static const VMStateDescription vtd_vmstate = {
  2585. .name = "iommu-intel",
  2586. .version_id = 1,
  2587. .minimum_version_id = 1,
  2588. .priority = MIG_PRI_IOMMU,
  2589. .post_load = vtd_post_load,
  2590. .fields = (VMStateField[]) {
  2591. VMSTATE_UINT64(root, IntelIOMMUState),
  2592. VMSTATE_UINT64(intr_root, IntelIOMMUState),
  2593. VMSTATE_UINT64(iq, IntelIOMMUState),
  2594. VMSTATE_UINT32(intr_size, IntelIOMMUState),
  2595. VMSTATE_UINT16(iq_head, IntelIOMMUState),
  2596. VMSTATE_UINT16(iq_tail, IntelIOMMUState),
  2597. VMSTATE_UINT16(iq_size, IntelIOMMUState),
  2598. VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
  2599. VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
  2600. VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
  2601. VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
  2602. VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
  2603. VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
  2604. VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
  2605. VMSTATE_BOOL(intr_eime, IntelIOMMUState),
  2606. VMSTATE_END_OF_LIST()
  2607. }
  2608. };
  2609. static const MemoryRegionOps vtd_mem_ops = {
  2610. .read = vtd_mem_read,
  2611. .write = vtd_mem_write,
  2612. .endianness = DEVICE_LITTLE_ENDIAN,
  2613. .impl = {
  2614. .min_access_size = 4,
  2615. .max_access_size = 8,
  2616. },
  2617. .valid = {
  2618. .min_access_size = 4,
  2619. .max_access_size = 8,
  2620. },
  2621. };
  2622. static Property vtd_properties[] = {
  2623. DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
  2624. DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
  2625. ON_OFF_AUTO_AUTO),
  2626. DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
  2627. DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
  2628. VTD_HOST_ADDRESS_WIDTH),
  2629. DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
  2630. DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
  2631. DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
  2632. DEFINE_PROP_END_OF_LIST(),
  2633. };
  2634. /* Read IRTE entry with specific index */
  2635. static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
  2636. VTD_IR_TableEntry *entry, uint16_t sid)
  2637. {
  2638. static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
  2639. {0xffff, 0xfffb, 0xfff9, 0xfff8};
  2640. dma_addr_t addr = 0x00;
  2641. uint16_t mask, source_id;
  2642. uint8_t bus, bus_max, bus_min;
  2643. addr = iommu->intr_root + index * sizeof(*entry);
  2644. if (dma_memory_read(&address_space_memory, addr, entry,
  2645. sizeof(*entry))) {
  2646. error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
  2647. __func__, index, addr);
  2648. return -VTD_FR_IR_ROOT_INVAL;
  2649. }
  2650. trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
  2651. le64_to_cpu(entry->data[0]));
  2652. if (!entry->irte.present) {
  2653. error_report_once("%s: detected non-present IRTE "
  2654. "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
  2655. __func__, index, le64_to_cpu(entry->data[1]),
  2656. le64_to_cpu(entry->data[0]));
  2657. return -VTD_FR_IR_ENTRY_P;
  2658. }
  2659. if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
  2660. entry->irte.__reserved_2) {
  2661. error_report_once("%s: detected non-zero reserved IRTE "
  2662. "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
  2663. __func__, index, le64_to_cpu(entry->data[1]),
  2664. le64_to_cpu(entry->data[0]));
  2665. return -VTD_FR_IR_IRTE_RSVD;
  2666. }
  2667. if (sid != X86_IOMMU_SID_INVALID) {
  2668. /* Validate IRTE SID */
  2669. source_id = le32_to_cpu(entry->irte.source_id);
  2670. switch (entry->irte.sid_vtype) {
  2671. case VTD_SVT_NONE:
  2672. break;
  2673. case VTD_SVT_ALL:
  2674. mask = vtd_svt_mask[entry->irte.sid_q];
  2675. if ((source_id & mask) != (sid & mask)) {
  2676. error_report_once("%s: invalid IRTE SID "
  2677. "(index=%u, sid=%u, source_id=%u)",
  2678. __func__, index, sid, source_id);
  2679. return -VTD_FR_IR_SID_ERR;
  2680. }
  2681. break;
  2682. case VTD_SVT_BUS:
  2683. bus_max = source_id >> 8;
  2684. bus_min = source_id & 0xff;
  2685. bus = sid >> 8;
  2686. if (bus > bus_max || bus < bus_min) {
  2687. error_report_once("%s: invalid SVT_BUS "
  2688. "(index=%u, bus=%u, min=%u, max=%u)",
  2689. __func__, index, bus, bus_min, bus_max);
  2690. return -VTD_FR_IR_SID_ERR;
  2691. }
  2692. break;
  2693. default:
  2694. error_report_once("%s: detected invalid IRTE SVT "
  2695. "(index=%u, type=%d)", __func__,
  2696. index, entry->irte.sid_vtype);
  2697. /* Take this as verification failure. */
  2698. return -VTD_FR_IR_SID_ERR;
  2699. break;
  2700. }
  2701. }
  2702. return 0;
  2703. }
  2704. /* Fetch IRQ information of specific IR index */
  2705. static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
  2706. X86IOMMUIrq *irq, uint16_t sid)
  2707. {
  2708. VTD_IR_TableEntry irte = {};
  2709. int ret = 0;
  2710. ret = vtd_irte_get(iommu, index, &irte, sid);
  2711. if (ret) {
  2712. return ret;
  2713. }
  2714. irq->trigger_mode = irte.irte.trigger_mode;
  2715. irq->vector = irte.irte.vector;
  2716. irq->delivery_mode = irte.irte.delivery_mode;
  2717. irq->dest = le32_to_cpu(irte.irte.dest_id);
  2718. if (!iommu->intr_eime) {
  2719. #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
  2720. #define VTD_IR_APIC_DEST_SHIFT (8)
  2721. irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
  2722. VTD_IR_APIC_DEST_SHIFT;
  2723. }
  2724. irq->dest_mode = irte.irte.dest_mode;
  2725. irq->redir_hint = irte.irte.redir_hint;
  2726. trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
  2727. irq->delivery_mode, irq->dest, irq->dest_mode);
  2728. return 0;
  2729. }
  2730. /* Interrupt remapping for MSI/MSI-X entry */
  2731. static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
  2732. MSIMessage *origin,
  2733. MSIMessage *translated,
  2734. uint16_t sid)
  2735. {
  2736. int ret = 0;
  2737. VTD_IR_MSIAddress addr;
  2738. uint16_t index;
  2739. X86IOMMUIrq irq = {};
  2740. assert(origin && translated);
  2741. trace_vtd_ir_remap_msi_req(origin->address, origin->data);
  2742. if (!iommu || !iommu->intr_enabled) {
  2743. memcpy(translated, origin, sizeof(*origin));
  2744. goto out;
  2745. }
  2746. if (origin->address & VTD_MSI_ADDR_HI_MASK) {
  2747. error_report_once("%s: MSI address high 32 bits non-zero detected: "
  2748. "address=0x%" PRIx64, __func__, origin->address);
  2749. return -VTD_FR_IR_REQ_RSVD;
  2750. }
  2751. addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
  2752. if (addr.addr.__head != 0xfee) {
  2753. error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
  2754. __func__, addr.data);
  2755. return -VTD_FR_IR_REQ_RSVD;
  2756. }
  2757. /* This is compatible mode. */
  2758. if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
  2759. memcpy(translated, origin, sizeof(*origin));
  2760. goto out;
  2761. }
  2762. index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
  2763. #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
  2764. #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
  2765. if (addr.addr.sub_valid) {
  2766. /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
  2767. index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
  2768. }
  2769. ret = vtd_remap_irq_get(iommu, index, &irq, sid);
  2770. if (ret) {
  2771. return ret;
  2772. }
  2773. if (addr.addr.sub_valid) {
  2774. trace_vtd_ir_remap_type("MSI");
  2775. if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
  2776. error_report_once("%s: invalid IR MSI "
  2777. "(sid=%u, address=0x%" PRIx64
  2778. ", data=0x%" PRIx32 ")",
  2779. __func__, sid, origin->address, origin->data);
  2780. return -VTD_FR_IR_REQ_RSVD;
  2781. }
  2782. } else {
  2783. uint8_t vector = origin->data & 0xff;
  2784. uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
  2785. trace_vtd_ir_remap_type("IOAPIC");
  2786. /* IOAPIC entry vector should be aligned with IRTE vector
  2787. * (see vt-d spec 5.1.5.1). */
  2788. if (vector != irq.vector) {
  2789. trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
  2790. }
  2791. /* The Trigger Mode field must match the Trigger Mode in the IRTE.
  2792. * (see vt-d spec 5.1.5.1). */
  2793. if (trigger_mode != irq.trigger_mode) {
  2794. trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
  2795. irq.trigger_mode);
  2796. }
  2797. }
  2798. /*
  2799. * We'd better keep the last two bits, assuming that guest OS
  2800. * might modify it. Keep it does not hurt after all.
  2801. */
  2802. irq.msi_addr_last_bits = addr.addr.__not_care;
  2803. /* Translate X86IOMMUIrq to MSI message */
  2804. x86_iommu_irq_to_msi_message(&irq, translated);
  2805. out:
  2806. trace_vtd_ir_remap_msi(origin->address, origin->data,
  2807. translated->address, translated->data);
  2808. return 0;
  2809. }
  2810. static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
  2811. MSIMessage *dst, uint16_t sid)
  2812. {
  2813. return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
  2814. src, dst, sid);
  2815. }
  2816. static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
  2817. uint64_t *data, unsigned size,
  2818. MemTxAttrs attrs)
  2819. {
  2820. return MEMTX_OK;
  2821. }
  2822. static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
  2823. uint64_t value, unsigned size,
  2824. MemTxAttrs attrs)
  2825. {
  2826. int ret = 0;
  2827. MSIMessage from = {}, to = {};
  2828. uint16_t sid = X86_IOMMU_SID_INVALID;
  2829. from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
  2830. from.data = (uint32_t) value;
  2831. if (!attrs.unspecified) {
  2832. /* We have explicit Source ID */
  2833. sid = attrs.requester_id;
  2834. }
  2835. ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
  2836. if (ret) {
  2837. /* TODO: report error */
  2838. /* Drop this interrupt */
  2839. return MEMTX_ERROR;
  2840. }
  2841. apic_get_class()->send_msi(&to);
  2842. return MEMTX_OK;
  2843. }
  2844. static const MemoryRegionOps vtd_mem_ir_ops = {
  2845. .read_with_attrs = vtd_mem_ir_read,
  2846. .write_with_attrs = vtd_mem_ir_write,
  2847. .endianness = DEVICE_LITTLE_ENDIAN,
  2848. .impl = {
  2849. .min_access_size = 4,
  2850. .max_access_size = 4,
  2851. },
  2852. .valid = {
  2853. .min_access_size = 4,
  2854. .max_access_size = 4,
  2855. },
  2856. };
  2857. VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
  2858. {
  2859. uintptr_t key = (uintptr_t)bus;
  2860. VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
  2861. VTDAddressSpace *vtd_dev_as;
  2862. char name[128];
  2863. if (!vtd_bus) {
  2864. uintptr_t *new_key = g_malloc(sizeof(*new_key));
  2865. *new_key = (uintptr_t)bus;
  2866. /* No corresponding free() */
  2867. vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
  2868. PCI_DEVFN_MAX);
  2869. vtd_bus->bus = bus;
  2870. g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
  2871. }
  2872. vtd_dev_as = vtd_bus->dev_as[devfn];
  2873. if (!vtd_dev_as) {
  2874. snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
  2875. PCI_FUNC(devfn));
  2876. vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
  2877. vtd_dev_as->bus = bus;
  2878. vtd_dev_as->devfn = (uint8_t)devfn;
  2879. vtd_dev_as->iommu_state = s;
  2880. vtd_dev_as->context_cache_entry.context_cache_gen = 0;
  2881. vtd_dev_as->iova_tree = iova_tree_new();
  2882. memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
  2883. address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
  2884. /*
  2885. * Build the DMAR-disabled container with aliases to the
  2886. * shared MRs. Note that aliasing to a shared memory region
  2887. * could help the memory API to detect same FlatViews so we
  2888. * can have devices to share the same FlatView when DMAR is
  2889. * disabled (either by not providing "intel_iommu=on" or with
  2890. * "iommu=pt"). It will greatly reduce the total number of
  2891. * FlatViews of the system hence VM runs faster.
  2892. */
  2893. memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
  2894. "vtd-nodmar", &s->mr_nodmar, 0,
  2895. memory_region_size(&s->mr_nodmar));
  2896. /*
  2897. * Build the per-device DMAR-enabled container.
  2898. *
  2899. * TODO: currently we have per-device IOMMU memory region only
  2900. * because we have per-device IOMMU notifiers for devices. If
  2901. * one day we can abstract the IOMMU notifiers out of the
  2902. * memory regions then we can also share the same memory
  2903. * region here just like what we've done above with the nodmar
  2904. * region.
  2905. */
  2906. strcat(name, "-dmar");
  2907. memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
  2908. TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
  2909. name, UINT64_MAX);
  2910. memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
  2911. &s->mr_ir, 0, memory_region_size(&s->mr_ir));
  2912. memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
  2913. VTD_INTERRUPT_ADDR_FIRST,
  2914. &vtd_dev_as->iommu_ir, 1);
  2915. /*
  2916. * Hook both the containers under the root container, we
  2917. * switch between DMAR & noDMAR by enable/disable
  2918. * corresponding sub-containers
  2919. */
  2920. memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
  2921. MEMORY_REGION(&vtd_dev_as->iommu),
  2922. 0);
  2923. memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
  2924. &vtd_dev_as->nodmar, 0);
  2925. vtd_switch_address_space(vtd_dev_as);
  2926. }
  2927. return vtd_dev_as;
  2928. }
  2929. static uint64_t get_naturally_aligned_size(uint64_t start,
  2930. uint64_t size, int gaw)
  2931. {
  2932. uint64_t max_mask = 1ULL << gaw;
  2933. uint64_t alignment = start ? start & -start : max_mask;
  2934. alignment = MIN(alignment, max_mask);
  2935. size = MIN(size, max_mask);
  2936. if (alignment <= size) {
  2937. /* Increase the alignment of start */
  2938. return alignment;
  2939. } else {
  2940. /* Find the largest page mask from size */
  2941. return 1ULL << (63 - clz64(size));
  2942. }
  2943. }
  2944. /* Unmap the whole range in the notifier's scope. */
  2945. static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
  2946. {
  2947. hwaddr size, remain;
  2948. hwaddr start = n->start;
  2949. hwaddr end = n->end;
  2950. IntelIOMMUState *s = as->iommu_state;
  2951. DMAMap map;
  2952. /*
  2953. * Note: all the codes in this function has a assumption that IOVA
  2954. * bits are no more than VTD_MGAW bits (which is restricted by
  2955. * VT-d spec), otherwise we need to consider overflow of 64 bits.
  2956. */
  2957. if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
  2958. /*
  2959. * Don't need to unmap regions that is bigger than the whole
  2960. * VT-d supported address space size
  2961. */
  2962. end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
  2963. }
  2964. assert(start <= end);
  2965. size = remain = end - start + 1;
  2966. while (remain >= VTD_PAGE_SIZE) {
  2967. IOMMUTLBEntry entry;
  2968. uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
  2969. assert(mask);
  2970. entry.iova = start;
  2971. entry.addr_mask = mask - 1;
  2972. entry.target_as = &address_space_memory;
  2973. entry.perm = IOMMU_NONE;
  2974. /* This field is meaningless for unmap */
  2975. entry.translated_addr = 0;
  2976. memory_region_notify_one(n, &entry);
  2977. start += mask;
  2978. remain -= mask;
  2979. }
  2980. assert(!remain);
  2981. trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
  2982. VTD_PCI_SLOT(as->devfn),
  2983. VTD_PCI_FUNC(as->devfn),
  2984. n->start, size);
  2985. map.iova = n->start;
  2986. map.size = size;
  2987. iova_tree_remove(as->iova_tree, &map);
  2988. }
  2989. static void vtd_address_space_unmap_all(IntelIOMMUState *s)
  2990. {
  2991. VTDAddressSpace *vtd_as;
  2992. IOMMUNotifier *n;
  2993. QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
  2994. IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
  2995. vtd_address_space_unmap(vtd_as, n);
  2996. }
  2997. }
  2998. }
  2999. static void vtd_address_space_refresh_all(IntelIOMMUState *s)
  3000. {
  3001. vtd_address_space_unmap_all(s);
  3002. vtd_switch_address_space_all(s);
  3003. }
  3004. static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
  3005. {
  3006. memory_region_notify_one((IOMMUNotifier *)private, entry);
  3007. return 0;
  3008. }
  3009. static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
  3010. {
  3011. VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
  3012. IntelIOMMUState *s = vtd_as->iommu_state;
  3013. uint8_t bus_n = pci_bus_num(vtd_as->bus);
  3014. VTDContextEntry ce;
  3015. /*
  3016. * The replay can be triggered by either a invalidation or a newly
  3017. * created entry. No matter what, we release existing mappings
  3018. * (it means flushing caches for UNMAP-only registers).
  3019. */
  3020. vtd_address_space_unmap(vtd_as, n);
  3021. if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
  3022. trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
  3023. "legacy mode",
  3024. bus_n, PCI_SLOT(vtd_as->devfn),
  3025. PCI_FUNC(vtd_as->devfn),
  3026. vtd_get_domain_id(s, &ce),
  3027. ce.hi, ce.lo);
  3028. if (vtd_as_has_map_notifier(vtd_as)) {
  3029. /* This is required only for MAP typed notifiers */
  3030. vtd_page_walk_info info = {
  3031. .hook_fn = vtd_replay_hook,
  3032. .private = (void *)n,
  3033. .notify_unmap = false,
  3034. .aw = s->aw_bits,
  3035. .as = vtd_as,
  3036. .domain_id = vtd_get_domain_id(s, &ce),
  3037. };
  3038. vtd_page_walk(s, &ce, 0, ~0ULL, &info);
  3039. }
  3040. } else {
  3041. trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
  3042. PCI_FUNC(vtd_as->devfn));
  3043. }
  3044. return;
  3045. }
  3046. /* Do the initialization. It will also be called when reset, so pay
  3047. * attention when adding new initialization stuff.
  3048. */
  3049. static void vtd_init(IntelIOMMUState *s)
  3050. {
  3051. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  3052. memset(s->csr, 0, DMAR_REG_SIZE);
  3053. memset(s->wmask, 0, DMAR_REG_SIZE);
  3054. memset(s->w1cmask, 0, DMAR_REG_SIZE);
  3055. memset(s->womask, 0, DMAR_REG_SIZE);
  3056. s->root = 0;
  3057. s->root_scalable = false;
  3058. s->dmar_enabled = false;
  3059. s->intr_enabled = false;
  3060. s->iq_head = 0;
  3061. s->iq_tail = 0;
  3062. s->iq = 0;
  3063. s->iq_size = 0;
  3064. s->qi_enabled = false;
  3065. s->iq_last_desc_type = VTD_INV_DESC_NONE;
  3066. s->iq_dw = false;
  3067. s->next_frcd_reg = 0;
  3068. s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
  3069. VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
  3070. VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
  3071. if (s->dma_drain) {
  3072. s->cap |= VTD_CAP_DRAIN;
  3073. }
  3074. if (s->aw_bits == VTD_HOST_AW_48BIT) {
  3075. s->cap |= VTD_CAP_SAGAW_48bit;
  3076. }
  3077. s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
  3078. /*
  3079. * Rsvd field masks for spte
  3080. */
  3081. vtd_spte_rsvd[0] = ~0ULL;
  3082. vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
  3083. x86_iommu->dt_supported);
  3084. vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
  3085. vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
  3086. vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
  3087. vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
  3088. x86_iommu->dt_supported);
  3089. vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
  3090. x86_iommu->dt_supported);
  3091. if (x86_iommu_ir_supported(x86_iommu)) {
  3092. s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
  3093. if (s->intr_eim == ON_OFF_AUTO_ON) {
  3094. s->ecap |= VTD_ECAP_EIM;
  3095. }
  3096. assert(s->intr_eim != ON_OFF_AUTO_AUTO);
  3097. }
  3098. if (x86_iommu->dt_supported) {
  3099. s->ecap |= VTD_ECAP_DT;
  3100. }
  3101. if (x86_iommu->pt_supported) {
  3102. s->ecap |= VTD_ECAP_PT;
  3103. }
  3104. if (s->caching_mode) {
  3105. s->cap |= VTD_CAP_CM;
  3106. }
  3107. /* TODO: read cap/ecap from host to decide which cap to be exposed. */
  3108. if (s->scalable_mode) {
  3109. s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
  3110. }
  3111. vtd_reset_caches(s);
  3112. /* Define registers with default values and bit semantics */
  3113. vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
  3114. vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
  3115. vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
  3116. vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
  3117. vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
  3118. vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
  3119. vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
  3120. vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
  3121. vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
  3122. /* Advanced Fault Logging not supported */
  3123. vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
  3124. vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
  3125. vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
  3126. vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
  3127. /* Treated as RsvdZ when EIM in ECAP_REG is not supported
  3128. * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
  3129. */
  3130. vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
  3131. /* Treated as RO for implementations that PLMR and PHMR fields reported
  3132. * as Clear in the CAP_REG.
  3133. * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
  3134. */
  3135. vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
  3136. vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
  3137. vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
  3138. vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
  3139. vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
  3140. vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
  3141. vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
  3142. vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
  3143. /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
  3144. vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
  3145. /* IOTLB registers */
  3146. vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
  3147. vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
  3148. vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
  3149. /* Fault Recording Registers, 128-bit */
  3150. vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
  3151. vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
  3152. /*
  3153. * Interrupt remapping registers.
  3154. */
  3155. vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
  3156. }
  3157. /* Should not reset address_spaces when reset because devices will still use
  3158. * the address space they got at first (won't ask the bus again).
  3159. */
  3160. static void vtd_reset(DeviceState *dev)
  3161. {
  3162. IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
  3163. vtd_init(s);
  3164. vtd_address_space_refresh_all(s);
  3165. }
  3166. static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
  3167. {
  3168. IntelIOMMUState *s = opaque;
  3169. VTDAddressSpace *vtd_as;
  3170. assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
  3171. vtd_as = vtd_find_add_as(s, bus, devfn);
  3172. return &vtd_as->as;
  3173. }
  3174. static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
  3175. {
  3176. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
  3177. if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
  3178. error_setg(errp, "eim=on cannot be selected without intremap=on");
  3179. return false;
  3180. }
  3181. if (s->intr_eim == ON_OFF_AUTO_AUTO) {
  3182. s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
  3183. && x86_iommu_ir_supported(x86_iommu) ?
  3184. ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
  3185. }
  3186. if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
  3187. if (!kvm_irqchip_in_kernel()) {
  3188. error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
  3189. return false;
  3190. }
  3191. if (!kvm_enable_x2apic()) {
  3192. error_setg(errp, "eim=on requires support on the KVM side"
  3193. "(X2APIC_API, first shipped in v4.7)");
  3194. return false;
  3195. }
  3196. }
  3197. /* Currently only address widths supported are 39 and 48 bits */
  3198. if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
  3199. (s->aw_bits != VTD_HOST_AW_48BIT)) {
  3200. error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
  3201. VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
  3202. return false;
  3203. }
  3204. if (s->scalable_mode && !s->dma_drain) {
  3205. error_setg(errp, "Need to set dma_drain for scalable mode");
  3206. return false;
  3207. }
  3208. return true;
  3209. }
  3210. static int vtd_machine_done_notify_one(Object *child, void *unused)
  3211. {
  3212. IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
  3213. /*
  3214. * We hard-coded here because vfio-pci is the only special case
  3215. * here. Let's be more elegant in the future when we can, but so
  3216. * far there seems to be no better way.
  3217. */
  3218. if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
  3219. vtd_panic_require_caching_mode();
  3220. }
  3221. return 0;
  3222. }
  3223. static void vtd_machine_done_hook(Notifier *notifier, void *unused)
  3224. {
  3225. object_child_foreach_recursive(object_get_root(),
  3226. vtd_machine_done_notify_one, NULL);
  3227. }
  3228. static Notifier vtd_machine_done_notify = {
  3229. .notify = vtd_machine_done_hook,
  3230. };
  3231. static void vtd_realize(DeviceState *dev, Error **errp)
  3232. {
  3233. MachineState *ms = MACHINE(qdev_get_machine());
  3234. PCMachineState *pcms = PC_MACHINE(ms);
  3235. X86MachineState *x86ms = X86_MACHINE(ms);
  3236. PCIBus *bus = pcms->bus;
  3237. IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
  3238. X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
  3239. x86_iommu->type = TYPE_INTEL;
  3240. if (!vtd_decide_config(s, errp)) {
  3241. return;
  3242. }
  3243. QLIST_INIT(&s->vtd_as_with_notifiers);
  3244. qemu_mutex_init(&s->iommu_lock);
  3245. memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
  3246. memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
  3247. "intel_iommu", DMAR_REG_SIZE);
  3248. /* Create the shared memory regions by all devices */
  3249. memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
  3250. UINT64_MAX);
  3251. memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
  3252. s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
  3253. memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
  3254. "vtd-sys-alias", get_system_memory(), 0,
  3255. memory_region_size(get_system_memory()));
  3256. memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
  3257. &s->mr_sys_alias, 0);
  3258. memory_region_add_subregion_overlap(&s->mr_nodmar,
  3259. VTD_INTERRUPT_ADDR_FIRST,
  3260. &s->mr_ir, 1);
  3261. sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
  3262. /* No corresponding destroy */
  3263. s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
  3264. g_free, g_free);
  3265. s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
  3266. g_free, g_free);
  3267. vtd_init(s);
  3268. sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
  3269. pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
  3270. /* Pseudo address space under root PCI bus. */
  3271. x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
  3272. qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
  3273. }
  3274. static void vtd_class_init(ObjectClass *klass, void *data)
  3275. {
  3276. DeviceClass *dc = DEVICE_CLASS(klass);
  3277. X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
  3278. dc->reset = vtd_reset;
  3279. dc->vmsd = &vtd_vmstate;
  3280. dc->props = vtd_properties;
  3281. dc->hotpluggable = false;
  3282. x86_class->realize = vtd_realize;
  3283. x86_class->int_remap = vtd_int_remap;
  3284. /* Supported by the pc-q35-* machine types */
  3285. dc->user_creatable = true;
  3286. set_bit(DEVICE_CATEGORY_MISC, dc->categories);
  3287. dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
  3288. }
  3289. static const TypeInfo vtd_info = {
  3290. .name = TYPE_INTEL_IOMMU_DEVICE,
  3291. .parent = TYPE_X86_IOMMU_DEVICE,
  3292. .instance_size = sizeof(IntelIOMMUState),
  3293. .class_init = vtd_class_init,
  3294. };
  3295. static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
  3296. void *data)
  3297. {
  3298. IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
  3299. imrc->translate = vtd_iommu_translate;
  3300. imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
  3301. imrc->replay = vtd_iommu_replay;
  3302. }
  3303. static const TypeInfo vtd_iommu_memory_region_info = {
  3304. .parent = TYPE_IOMMU_MEMORY_REGION,
  3305. .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
  3306. .class_init = vtd_iommu_memory_region_class_init,
  3307. };
  3308. static void vtd_register_types(void)
  3309. {
  3310. type_register_static(&vtd_info);
  3311. type_register_static(&vtd_iommu_memory_region_info);
  3312. }
  3313. type_init(vtd_register_types)