sparc32_dma.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449
  1. /*
  2. * QEMU Sparc32 DMA controller emulation
  3. *
  4. * Copyright (c) 2006 Fabrice Bellard
  5. *
  6. * Modifications:
  7. * 2010-Feb-14 Artyom Tarasenko : reworked irq generation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. */
  27. #include "qemu/osdep.h"
  28. #include "hw/irq.h"
  29. #include "hw/qdev-properties.h"
  30. #include "hw/sparc/sparc32_dma.h"
  31. #include "hw/sparc/sun4m_iommu.h"
  32. #include "hw/sysbus.h"
  33. #include "migration/vmstate.h"
  34. #include "sysemu/dma.h"
  35. #include "qapi/error.h"
  36. #include "qemu/module.h"
  37. #include "trace.h"
  38. /*
  39. * This is the DMA controller part of chip STP2000 (Master I/O), also
  40. * produced as NCR89C100. See
  41. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
  42. * and
  43. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
  44. */
  45. #define DMA_SIZE (4 * sizeof(uint32_t))
  46. /* We need the mask, because one instance of the device is not page
  47. aligned (ledma, start address 0x0010) */
  48. #define DMA_MASK (DMA_SIZE - 1)
  49. /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
  50. #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
  51. #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
  52. #define DMA_VER 0xa0000000
  53. #define DMA_INTR 1
  54. #define DMA_INTREN 0x10
  55. #define DMA_WRITE_MEM 0x100
  56. #define DMA_EN 0x200
  57. #define DMA_LOADED 0x04000000
  58. #define DMA_DRAIN_FIFO 0x40
  59. #define DMA_RESET 0x80
  60. /* XXX SCSI and ethernet should have different read-only bit masks */
  61. #define DMA_CSR_RO_MASK 0xfe000007
  62. enum {
  63. GPIO_RESET = 0,
  64. GPIO_DMA,
  65. };
  66. /* Note: on sparc, the lance 16 bit bus is swapped */
  67. void ledma_memory_read(void *opaque, hwaddr addr,
  68. uint8_t *buf, int len, int do_bswap)
  69. {
  70. DMADeviceState *s = opaque;
  71. IOMMUState *is = (IOMMUState *)s->iommu;
  72. int i;
  73. addr |= s->dmaregs[3];
  74. trace_ledma_memory_read(addr, len);
  75. if (do_bswap) {
  76. dma_memory_read(&is->iommu_as, addr, buf, len);
  77. } else {
  78. addr &= ~1;
  79. len &= ~1;
  80. dma_memory_read(&is->iommu_as, addr, buf, len);
  81. for(i = 0; i < len; i += 2) {
  82. bswap16s((uint16_t *)(buf + i));
  83. }
  84. }
  85. }
  86. void ledma_memory_write(void *opaque, hwaddr addr,
  87. uint8_t *buf, int len, int do_bswap)
  88. {
  89. DMADeviceState *s = opaque;
  90. IOMMUState *is = (IOMMUState *)s->iommu;
  91. int l, i;
  92. uint16_t tmp_buf[32];
  93. addr |= s->dmaregs[3];
  94. trace_ledma_memory_write(addr, len);
  95. if (do_bswap) {
  96. dma_memory_write(&is->iommu_as, addr, buf, len);
  97. } else {
  98. addr &= ~1;
  99. len &= ~1;
  100. while (len > 0) {
  101. l = len;
  102. if (l > sizeof(tmp_buf))
  103. l = sizeof(tmp_buf);
  104. for(i = 0; i < l; i += 2) {
  105. tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
  106. }
  107. dma_memory_write(&is->iommu_as, addr, tmp_buf, l);
  108. len -= l;
  109. buf += l;
  110. addr += l;
  111. }
  112. }
  113. }
  114. static void dma_set_irq(void *opaque, int irq, int level)
  115. {
  116. DMADeviceState *s = opaque;
  117. if (level) {
  118. s->dmaregs[0] |= DMA_INTR;
  119. if (s->dmaregs[0] & DMA_INTREN) {
  120. trace_sparc32_dma_set_irq_raise();
  121. qemu_irq_raise(s->irq);
  122. }
  123. } else {
  124. if (s->dmaregs[0] & DMA_INTR) {
  125. s->dmaregs[0] &= ~DMA_INTR;
  126. if (s->dmaregs[0] & DMA_INTREN) {
  127. trace_sparc32_dma_set_irq_lower();
  128. qemu_irq_lower(s->irq);
  129. }
  130. }
  131. }
  132. }
  133. void espdma_memory_read(void *opaque, uint8_t *buf, int len)
  134. {
  135. DMADeviceState *s = opaque;
  136. IOMMUState *is = (IOMMUState *)s->iommu;
  137. trace_espdma_memory_read(s->dmaregs[1], len);
  138. dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len);
  139. s->dmaregs[1] += len;
  140. }
  141. void espdma_memory_write(void *opaque, uint8_t *buf, int len)
  142. {
  143. DMADeviceState *s = opaque;
  144. IOMMUState *is = (IOMMUState *)s->iommu;
  145. trace_espdma_memory_write(s->dmaregs[1], len);
  146. dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len);
  147. s->dmaregs[1] += len;
  148. }
  149. static uint64_t dma_mem_read(void *opaque, hwaddr addr,
  150. unsigned size)
  151. {
  152. DMADeviceState *s = opaque;
  153. uint32_t saddr;
  154. saddr = (addr & DMA_MASK) >> 2;
  155. trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
  156. return s->dmaregs[saddr];
  157. }
  158. static void dma_mem_write(void *opaque, hwaddr addr,
  159. uint64_t val, unsigned size)
  160. {
  161. DMADeviceState *s = opaque;
  162. uint32_t saddr;
  163. saddr = (addr & DMA_MASK) >> 2;
  164. trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
  165. switch (saddr) {
  166. case 0:
  167. if (val & DMA_INTREN) {
  168. if (s->dmaregs[0] & DMA_INTR) {
  169. trace_sparc32_dma_set_irq_raise();
  170. qemu_irq_raise(s->irq);
  171. }
  172. } else {
  173. if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
  174. trace_sparc32_dma_set_irq_lower();
  175. qemu_irq_lower(s->irq);
  176. }
  177. }
  178. if (val & DMA_RESET) {
  179. qemu_irq_raise(s->gpio[GPIO_RESET]);
  180. qemu_irq_lower(s->gpio[GPIO_RESET]);
  181. } else if (val & DMA_DRAIN_FIFO) {
  182. val &= ~DMA_DRAIN_FIFO;
  183. } else if (val == 0)
  184. val = DMA_DRAIN_FIFO;
  185. if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
  186. trace_sparc32_dma_enable_raise();
  187. qemu_irq_raise(s->gpio[GPIO_DMA]);
  188. } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
  189. trace_sparc32_dma_enable_lower();
  190. qemu_irq_lower(s->gpio[GPIO_DMA]);
  191. }
  192. val &= ~DMA_CSR_RO_MASK;
  193. val |= DMA_VER;
  194. s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
  195. break;
  196. case 1:
  197. s->dmaregs[0] |= DMA_LOADED;
  198. /* fall through */
  199. default:
  200. s->dmaregs[saddr] = val;
  201. break;
  202. }
  203. }
  204. static const MemoryRegionOps dma_mem_ops = {
  205. .read = dma_mem_read,
  206. .write = dma_mem_write,
  207. .endianness = DEVICE_NATIVE_ENDIAN,
  208. .valid = {
  209. .min_access_size = 4,
  210. .max_access_size = 4,
  211. },
  212. };
  213. static void sparc32_dma_device_reset(DeviceState *d)
  214. {
  215. DMADeviceState *s = SPARC32_DMA_DEVICE(d);
  216. memset(s->dmaregs, 0, DMA_SIZE);
  217. s->dmaregs[0] = DMA_VER;
  218. }
  219. static const VMStateDescription vmstate_sparc32_dma_device = {
  220. .name ="sparc32_dma",
  221. .version_id = 2,
  222. .minimum_version_id = 2,
  223. .fields = (VMStateField[]) {
  224. VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
  225. VMSTATE_END_OF_LIST()
  226. }
  227. };
  228. static void sparc32_dma_device_init(Object *obj)
  229. {
  230. DeviceState *dev = DEVICE(obj);
  231. DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
  232. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  233. sysbus_init_irq(sbd, &s->irq);
  234. sysbus_init_mmio(sbd, &s->iomem);
  235. object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
  236. (Object **) &s->iommu,
  237. qdev_prop_allow_set_link_before_realize,
  238. 0, NULL);
  239. qdev_init_gpio_in(dev, dma_set_irq, 1);
  240. qdev_init_gpio_out(dev, s->gpio, 2);
  241. }
  242. static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
  243. {
  244. DeviceClass *dc = DEVICE_CLASS(klass);
  245. dc->reset = sparc32_dma_device_reset;
  246. dc->vmsd = &vmstate_sparc32_dma_device;
  247. }
  248. static const TypeInfo sparc32_dma_device_info = {
  249. .name = TYPE_SPARC32_DMA_DEVICE,
  250. .parent = TYPE_SYS_BUS_DEVICE,
  251. .abstract = true,
  252. .instance_size = sizeof(DMADeviceState),
  253. .instance_init = sparc32_dma_device_init,
  254. .class_init = sparc32_dma_device_class_init,
  255. };
  256. static void sparc32_espdma_device_init(Object *obj)
  257. {
  258. DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
  259. memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
  260. "espdma-mmio", DMA_SIZE);
  261. }
  262. static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
  263. {
  264. DeviceState *d;
  265. SysBusESPState *sysbus;
  266. ESPState *esp;
  267. d = qdev_create(NULL, TYPE_ESP);
  268. object_property_add_child(OBJECT(dev), "esp", OBJECT(d), errp);
  269. sysbus = ESP_STATE(d);
  270. esp = &sysbus->esp;
  271. esp->dma_memory_read = espdma_memory_read;
  272. esp->dma_memory_write = espdma_memory_write;
  273. esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
  274. sysbus->it_shift = 2;
  275. esp->dma_enabled = 1;
  276. qdev_init_nofail(d);
  277. }
  278. static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
  279. {
  280. DeviceClass *dc = DEVICE_CLASS(klass);
  281. dc->realize = sparc32_espdma_device_realize;
  282. }
  283. static const TypeInfo sparc32_espdma_device_info = {
  284. .name = TYPE_SPARC32_ESPDMA_DEVICE,
  285. .parent = TYPE_SPARC32_DMA_DEVICE,
  286. .instance_size = sizeof(ESPDMADeviceState),
  287. .instance_init = sparc32_espdma_device_init,
  288. .class_init = sparc32_espdma_device_class_init,
  289. };
  290. static void sparc32_ledma_device_init(Object *obj)
  291. {
  292. DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
  293. memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
  294. "ledma-mmio", DMA_SIZE);
  295. }
  296. static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
  297. {
  298. DeviceState *d;
  299. NICInfo *nd = &nd_table[0];
  300. qemu_check_nic_model(nd, TYPE_LANCE);
  301. d = qdev_create(NULL, TYPE_LANCE);
  302. object_property_add_child(OBJECT(dev), "lance", OBJECT(d), errp);
  303. qdev_set_nic_properties(d, nd);
  304. qdev_prop_set_ptr(d, "dma", dev);
  305. qdev_init_nofail(d);
  306. }
  307. static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
  308. {
  309. DeviceClass *dc = DEVICE_CLASS(klass);
  310. dc->realize = sparc32_ledma_device_realize;
  311. }
  312. static const TypeInfo sparc32_ledma_device_info = {
  313. .name = TYPE_SPARC32_LEDMA_DEVICE,
  314. .parent = TYPE_SPARC32_DMA_DEVICE,
  315. .instance_size = sizeof(LEDMADeviceState),
  316. .instance_init = sparc32_ledma_device_init,
  317. .class_init = sparc32_ledma_device_class_init,
  318. };
  319. static void sparc32_dma_realize(DeviceState *dev, Error **errp)
  320. {
  321. SPARC32DMAState *s = SPARC32_DMA(dev);
  322. DeviceState *espdma, *esp, *ledma, *lance;
  323. SysBusDevice *sbd;
  324. Object *iommu;
  325. iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
  326. if (!iommu) {
  327. error_setg(errp, "unable to locate sun4m IOMMU device");
  328. return;
  329. }
  330. espdma = qdev_create(NULL, TYPE_SPARC32_ESPDMA_DEVICE);
  331. object_property_set_link(OBJECT(espdma), iommu, "iommu", errp);
  332. object_property_add_child(OBJECT(s), "espdma", OBJECT(espdma), errp);
  333. qdev_init_nofail(espdma);
  334. esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
  335. sbd = SYS_BUS_DEVICE(esp);
  336. sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
  337. qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
  338. qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
  339. sbd = SYS_BUS_DEVICE(espdma);
  340. memory_region_add_subregion(&s->dmamem, 0x0,
  341. sysbus_mmio_get_region(sbd, 0));
  342. ledma = qdev_create(NULL, TYPE_SPARC32_LEDMA_DEVICE);
  343. object_property_set_link(OBJECT(ledma), iommu, "iommu", errp);
  344. object_property_add_child(OBJECT(s), "ledma", OBJECT(ledma), errp);
  345. qdev_init_nofail(ledma);
  346. lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
  347. sbd = SYS_BUS_DEVICE(lance);
  348. sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
  349. qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
  350. sbd = SYS_BUS_DEVICE(ledma);
  351. memory_region_add_subregion(&s->dmamem, 0x10,
  352. sysbus_mmio_get_region(sbd, 0));
  353. /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
  354. memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
  355. sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
  356. memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
  357. }
  358. static void sparc32_dma_init(Object *obj)
  359. {
  360. SPARC32DMAState *s = SPARC32_DMA(obj);
  361. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  362. memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
  363. sysbus_init_mmio(sbd, &s->dmamem);
  364. }
  365. static void sparc32_dma_class_init(ObjectClass *klass, void *data)
  366. {
  367. DeviceClass *dc = DEVICE_CLASS(klass);
  368. dc->realize = sparc32_dma_realize;
  369. }
  370. static const TypeInfo sparc32_dma_info = {
  371. .name = TYPE_SPARC32_DMA,
  372. .parent = TYPE_SYS_BUS_DEVICE,
  373. .instance_size = sizeof(SPARC32DMAState),
  374. .instance_init = sparc32_dma_init,
  375. .class_init = sparc32_dma_class_init,
  376. };
  377. static void sparc32_dma_register_types(void)
  378. {
  379. type_register_static(&sparc32_dma_device_info);
  380. type_register_static(&sparc32_espdma_device_info);
  381. type_register_static(&sparc32_ledma_device_info);
  382. type_register_static(&sparc32_dma_info);
  383. }
  384. type_init(sparc32_dma_register_types)