tcx.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
  1. /*
  2. * QEMU TCX Frame buffer
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu-common.h"
  26. #include "qapi/error.h"
  27. #include "ui/console.h"
  28. #include "ui/pixel_ops.h"
  29. #include "hw/loader.h"
  30. #include "hw/qdev-properties.h"
  31. #include "hw/sysbus.h"
  32. #include "migration/vmstate.h"
  33. #include "qemu/error-report.h"
  34. #include "qemu/module.h"
  35. #define TCX_ROM_FILE "QEMU,tcx.bin"
  36. #define FCODE_MAX_ROM_SIZE 0x10000
  37. #define MAXX 1024
  38. #define MAXY 768
  39. #define TCX_DAC_NREGS 16
  40. #define TCX_THC_NREGS 0x1000
  41. #define TCX_DHC_NREGS 0x4000
  42. #define TCX_TEC_NREGS 0x1000
  43. #define TCX_ALT_NREGS 0x8000
  44. #define TCX_STIP_NREGS 0x800000
  45. #define TCX_BLIT_NREGS 0x800000
  46. #define TCX_RSTIP_NREGS 0x800000
  47. #define TCX_RBLIT_NREGS 0x800000
  48. #define TCX_THC_MISC 0x818
  49. #define TCX_THC_CURSXY 0x8fc
  50. #define TCX_THC_CURSMASK 0x900
  51. #define TCX_THC_CURSBITS 0x980
  52. #define TYPE_TCX "SUNW,tcx"
  53. #define TCX(obj) OBJECT_CHECK(TCXState, (obj), TYPE_TCX)
  54. typedef struct TCXState {
  55. SysBusDevice parent_obj;
  56. QemuConsole *con;
  57. qemu_irq irq;
  58. uint8_t *vram;
  59. uint32_t *vram24, *cplane;
  60. hwaddr prom_addr;
  61. MemoryRegion rom;
  62. MemoryRegion vram_mem;
  63. MemoryRegion vram_8bit;
  64. MemoryRegion vram_24bit;
  65. MemoryRegion stip;
  66. MemoryRegion blit;
  67. MemoryRegion vram_cplane;
  68. MemoryRegion rstip;
  69. MemoryRegion rblit;
  70. MemoryRegion tec;
  71. MemoryRegion dac;
  72. MemoryRegion thc;
  73. MemoryRegion dhc;
  74. MemoryRegion alt;
  75. MemoryRegion thc24;
  76. ram_addr_t vram24_offset, cplane_offset;
  77. uint32_t tmpblit;
  78. uint32_t vram_size;
  79. uint32_t palette[260];
  80. uint8_t r[260], g[260], b[260];
  81. uint16_t width, height, depth;
  82. uint8_t dac_index, dac_state;
  83. uint32_t thcmisc;
  84. uint32_t cursmask[32];
  85. uint32_t cursbits[32];
  86. uint16_t cursx;
  87. uint16_t cursy;
  88. } TCXState;
  89. static void tcx_set_dirty(TCXState *s, ram_addr_t addr, int len)
  90. {
  91. memory_region_set_dirty(&s->vram_mem, addr, len);
  92. if (s->depth == 24) {
  93. memory_region_set_dirty(&s->vram_mem, s->vram24_offset + addr * 4,
  94. len * 4);
  95. memory_region_set_dirty(&s->vram_mem, s->cplane_offset + addr * 4,
  96. len * 4);
  97. }
  98. }
  99. static int tcx_check_dirty(TCXState *s, DirtyBitmapSnapshot *snap,
  100. ram_addr_t addr, int len)
  101. {
  102. int ret;
  103. ret = memory_region_snapshot_get_dirty(&s->vram_mem, snap, addr, len);
  104. if (s->depth == 24) {
  105. ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
  106. s->vram24_offset + addr * 4, len * 4);
  107. ret |= memory_region_snapshot_get_dirty(&s->vram_mem, snap,
  108. s->cplane_offset + addr * 4, len * 4);
  109. }
  110. return ret;
  111. }
  112. static void update_palette_entries(TCXState *s, int start, int end)
  113. {
  114. DisplaySurface *surface = qemu_console_surface(s->con);
  115. int i;
  116. for (i = start; i < end; i++) {
  117. if (is_surface_bgr(surface)) {
  118. s->palette[i] = rgb_to_pixel32bgr(s->r[i], s->g[i], s->b[i]);
  119. } else {
  120. s->palette[i] = rgb_to_pixel32(s->r[i], s->g[i], s->b[i]);
  121. }
  122. }
  123. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  124. }
  125. static void tcx_draw_line32(TCXState *s1, uint8_t *d,
  126. const uint8_t *s, int width)
  127. {
  128. int x;
  129. uint8_t val;
  130. uint32_t *p = (uint32_t *)d;
  131. for (x = 0; x < width; x++) {
  132. val = *s++;
  133. *p++ = s1->palette[val];
  134. }
  135. }
  136. static void tcx_draw_cursor32(TCXState *s1, uint8_t *d,
  137. int y, int width)
  138. {
  139. int x, len;
  140. uint32_t mask, bits;
  141. uint32_t *p = (uint32_t *)d;
  142. y = y - s1->cursy;
  143. mask = s1->cursmask[y];
  144. bits = s1->cursbits[y];
  145. len = MIN(width - s1->cursx, 32);
  146. p = &p[s1->cursx];
  147. for (x = 0; x < len; x++) {
  148. if (mask & 0x80000000) {
  149. if (bits & 0x80000000) {
  150. *p = s1->palette[259];
  151. } else {
  152. *p = s1->palette[258];
  153. }
  154. }
  155. p++;
  156. mask <<= 1;
  157. bits <<= 1;
  158. }
  159. }
  160. /*
  161. XXX Could be much more optimal:
  162. * detect if line/page/whole screen is in 24 bit mode
  163. * if destination is also BGR, use memcpy
  164. */
  165. static inline void tcx24_draw_line32(TCXState *s1, uint8_t *d,
  166. const uint8_t *s, int width,
  167. const uint32_t *cplane,
  168. const uint32_t *s24)
  169. {
  170. DisplaySurface *surface = qemu_console_surface(s1->con);
  171. int x, bgr, r, g, b;
  172. uint8_t val, *p8;
  173. uint32_t *p = (uint32_t *)d;
  174. uint32_t dval;
  175. bgr = is_surface_bgr(surface);
  176. for(x = 0; x < width; x++, s++, s24++) {
  177. if (be32_to_cpu(*cplane) & 0x03000000) {
  178. /* 24-bit direct, BGR order */
  179. p8 = (uint8_t *)s24;
  180. p8++;
  181. b = *p8++;
  182. g = *p8++;
  183. r = *p8;
  184. if (bgr)
  185. dval = rgb_to_pixel32bgr(r, g, b);
  186. else
  187. dval = rgb_to_pixel32(r, g, b);
  188. } else {
  189. /* 8-bit pseudocolor */
  190. val = *s;
  191. dval = s1->palette[val];
  192. }
  193. *p++ = dval;
  194. cplane++;
  195. }
  196. }
  197. /* Fixed line length 1024 allows us to do nice tricks not possible on
  198. VGA... */
  199. static void tcx_update_display(void *opaque)
  200. {
  201. TCXState *ts = opaque;
  202. DisplaySurface *surface = qemu_console_surface(ts->con);
  203. ram_addr_t page;
  204. DirtyBitmapSnapshot *snap = NULL;
  205. int y, y_start, dd, ds;
  206. uint8_t *d, *s;
  207. if (surface_bits_per_pixel(surface) != 32) {
  208. return;
  209. }
  210. page = 0;
  211. y_start = -1;
  212. d = surface_data(surface);
  213. s = ts->vram;
  214. dd = surface_stride(surface);
  215. ds = 1024;
  216. snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
  217. memory_region_size(&ts->vram_mem),
  218. DIRTY_MEMORY_VGA);
  219. for (y = 0; y < ts->height; y++, page += ds) {
  220. if (tcx_check_dirty(ts, snap, page, ds)) {
  221. if (y_start < 0)
  222. y_start = y;
  223. tcx_draw_line32(ts, d, s, ts->width);
  224. if (y >= ts->cursy && y < ts->cursy + 32 && ts->cursx < ts->width) {
  225. tcx_draw_cursor32(ts, d, y, ts->width);
  226. }
  227. } else {
  228. if (y_start >= 0) {
  229. /* flush to display */
  230. dpy_gfx_update(ts->con, 0, y_start,
  231. ts->width, y - y_start);
  232. y_start = -1;
  233. }
  234. }
  235. s += ds;
  236. d += dd;
  237. }
  238. if (y_start >= 0) {
  239. /* flush to display */
  240. dpy_gfx_update(ts->con, 0, y_start,
  241. ts->width, y - y_start);
  242. }
  243. g_free(snap);
  244. }
  245. static void tcx24_update_display(void *opaque)
  246. {
  247. TCXState *ts = opaque;
  248. DisplaySurface *surface = qemu_console_surface(ts->con);
  249. ram_addr_t page;
  250. DirtyBitmapSnapshot *snap = NULL;
  251. int y, y_start, dd, ds;
  252. uint8_t *d, *s;
  253. uint32_t *cptr, *s24;
  254. if (surface_bits_per_pixel(surface) != 32) {
  255. return;
  256. }
  257. page = 0;
  258. y_start = -1;
  259. d = surface_data(surface);
  260. s = ts->vram;
  261. s24 = ts->vram24;
  262. cptr = ts->cplane;
  263. dd = surface_stride(surface);
  264. ds = 1024;
  265. snap = memory_region_snapshot_and_clear_dirty(&ts->vram_mem, 0x0,
  266. memory_region_size(&ts->vram_mem),
  267. DIRTY_MEMORY_VGA);
  268. for (y = 0; y < ts->height; y++, page += ds) {
  269. if (tcx_check_dirty(ts, snap, page, ds)) {
  270. if (y_start < 0)
  271. y_start = y;
  272. tcx24_draw_line32(ts, d, s, ts->width, cptr, s24);
  273. if (y >= ts->cursy && y < ts->cursy+32 && ts->cursx < ts->width) {
  274. tcx_draw_cursor32(ts, d, y, ts->width);
  275. }
  276. } else {
  277. if (y_start >= 0) {
  278. /* flush to display */
  279. dpy_gfx_update(ts->con, 0, y_start,
  280. ts->width, y - y_start);
  281. y_start = -1;
  282. }
  283. }
  284. d += dd;
  285. s += ds;
  286. cptr += ds;
  287. s24 += ds;
  288. }
  289. if (y_start >= 0) {
  290. /* flush to display */
  291. dpy_gfx_update(ts->con, 0, y_start,
  292. ts->width, y - y_start);
  293. }
  294. g_free(snap);
  295. }
  296. static void tcx_invalidate_display(void *opaque)
  297. {
  298. TCXState *s = opaque;
  299. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  300. qemu_console_resize(s->con, s->width, s->height);
  301. }
  302. static void tcx24_invalidate_display(void *opaque)
  303. {
  304. TCXState *s = opaque;
  305. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  306. qemu_console_resize(s->con, s->width, s->height);
  307. }
  308. static int vmstate_tcx_post_load(void *opaque, int version_id)
  309. {
  310. TCXState *s = opaque;
  311. update_palette_entries(s, 0, 256);
  312. tcx_set_dirty(s, 0, memory_region_size(&s->vram_mem));
  313. return 0;
  314. }
  315. static const VMStateDescription vmstate_tcx = {
  316. .name ="tcx",
  317. .version_id = 4,
  318. .minimum_version_id = 4,
  319. .post_load = vmstate_tcx_post_load,
  320. .fields = (VMStateField[]) {
  321. VMSTATE_UINT16(height, TCXState),
  322. VMSTATE_UINT16(width, TCXState),
  323. VMSTATE_UINT16(depth, TCXState),
  324. VMSTATE_BUFFER(r, TCXState),
  325. VMSTATE_BUFFER(g, TCXState),
  326. VMSTATE_BUFFER(b, TCXState),
  327. VMSTATE_UINT8(dac_index, TCXState),
  328. VMSTATE_UINT8(dac_state, TCXState),
  329. VMSTATE_END_OF_LIST()
  330. }
  331. };
  332. static void tcx_reset(DeviceState *d)
  333. {
  334. TCXState *s = TCX(d);
  335. /* Initialize palette */
  336. memset(s->r, 0, 260);
  337. memset(s->g, 0, 260);
  338. memset(s->b, 0, 260);
  339. s->r[255] = s->g[255] = s->b[255] = 255;
  340. s->r[256] = s->g[256] = s->b[256] = 255;
  341. s->r[258] = s->g[258] = s->b[258] = 255;
  342. update_palette_entries(s, 0, 260);
  343. memset(s->vram, 0, MAXX*MAXY);
  344. memory_region_reset_dirty(&s->vram_mem, 0, MAXX * MAXY * (1 + 4 + 4),
  345. DIRTY_MEMORY_VGA);
  346. s->dac_index = 0;
  347. s->dac_state = 0;
  348. s->cursx = 0xf000; /* Put cursor off screen */
  349. s->cursy = 0xf000;
  350. }
  351. static uint64_t tcx_dac_readl(void *opaque, hwaddr addr,
  352. unsigned size)
  353. {
  354. TCXState *s = opaque;
  355. uint32_t val = 0;
  356. switch (s->dac_state) {
  357. case 0:
  358. val = s->r[s->dac_index] << 24;
  359. s->dac_state++;
  360. break;
  361. case 1:
  362. val = s->g[s->dac_index] << 24;
  363. s->dac_state++;
  364. break;
  365. case 2:
  366. val = s->b[s->dac_index] << 24;
  367. s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
  368. default:
  369. s->dac_state = 0;
  370. break;
  371. }
  372. return val;
  373. }
  374. static void tcx_dac_writel(void *opaque, hwaddr addr, uint64_t val,
  375. unsigned size)
  376. {
  377. TCXState *s = opaque;
  378. unsigned index;
  379. switch (addr) {
  380. case 0: /* Address */
  381. s->dac_index = val >> 24;
  382. s->dac_state = 0;
  383. break;
  384. case 4: /* Pixel colours */
  385. case 12: /* Overlay (cursor) colours */
  386. if (addr & 8) {
  387. index = (s->dac_index & 3) + 256;
  388. } else {
  389. index = s->dac_index;
  390. }
  391. switch (s->dac_state) {
  392. case 0:
  393. s->r[index] = val >> 24;
  394. update_palette_entries(s, index, index + 1);
  395. s->dac_state++;
  396. break;
  397. case 1:
  398. s->g[index] = val >> 24;
  399. update_palette_entries(s, index, index + 1);
  400. s->dac_state++;
  401. break;
  402. case 2:
  403. s->b[index] = val >> 24;
  404. update_palette_entries(s, index, index + 1);
  405. s->dac_index = (s->dac_index + 1) & 0xff; /* Index autoincrement */
  406. default:
  407. s->dac_state = 0;
  408. break;
  409. }
  410. break;
  411. default: /* Control registers */
  412. break;
  413. }
  414. }
  415. static const MemoryRegionOps tcx_dac_ops = {
  416. .read = tcx_dac_readl,
  417. .write = tcx_dac_writel,
  418. .endianness = DEVICE_NATIVE_ENDIAN,
  419. .valid = {
  420. .min_access_size = 4,
  421. .max_access_size = 4,
  422. },
  423. };
  424. static uint64_t tcx_stip_readl(void *opaque, hwaddr addr,
  425. unsigned size)
  426. {
  427. return 0;
  428. }
  429. static void tcx_stip_writel(void *opaque, hwaddr addr,
  430. uint64_t val, unsigned size)
  431. {
  432. TCXState *s = opaque;
  433. int i;
  434. uint32_t col;
  435. if (!(addr & 4)) {
  436. s->tmpblit = val;
  437. } else {
  438. addr = (addr >> 3) & 0xfffff;
  439. col = cpu_to_be32(s->tmpblit);
  440. if (s->depth == 24) {
  441. for (i = 0; i < 32; i++) {
  442. if (val & 0x80000000) {
  443. s->vram[addr + i] = s->tmpblit;
  444. s->vram24[addr + i] = col;
  445. }
  446. val <<= 1;
  447. }
  448. } else {
  449. for (i = 0; i < 32; i++) {
  450. if (val & 0x80000000) {
  451. s->vram[addr + i] = s->tmpblit;
  452. }
  453. val <<= 1;
  454. }
  455. }
  456. tcx_set_dirty(s, addr, 32);
  457. }
  458. }
  459. static void tcx_rstip_writel(void *opaque, hwaddr addr,
  460. uint64_t val, unsigned size)
  461. {
  462. TCXState *s = opaque;
  463. int i;
  464. uint32_t col;
  465. if (!(addr & 4)) {
  466. s->tmpblit = val;
  467. } else {
  468. addr = (addr >> 3) & 0xfffff;
  469. col = cpu_to_be32(s->tmpblit);
  470. if (s->depth == 24) {
  471. for (i = 0; i < 32; i++) {
  472. if (val & 0x80000000) {
  473. s->vram[addr + i] = s->tmpblit;
  474. s->vram24[addr + i] = col;
  475. s->cplane[addr + i] = col;
  476. }
  477. val <<= 1;
  478. }
  479. } else {
  480. for (i = 0; i < 32; i++) {
  481. if (val & 0x80000000) {
  482. s->vram[addr + i] = s->tmpblit;
  483. }
  484. val <<= 1;
  485. }
  486. }
  487. tcx_set_dirty(s, addr, 32);
  488. }
  489. }
  490. static const MemoryRegionOps tcx_stip_ops = {
  491. .read = tcx_stip_readl,
  492. .write = tcx_stip_writel,
  493. .endianness = DEVICE_NATIVE_ENDIAN,
  494. .valid = {
  495. .min_access_size = 4,
  496. .max_access_size = 4,
  497. },
  498. };
  499. static const MemoryRegionOps tcx_rstip_ops = {
  500. .read = tcx_stip_readl,
  501. .write = tcx_rstip_writel,
  502. .endianness = DEVICE_NATIVE_ENDIAN,
  503. .valid = {
  504. .min_access_size = 4,
  505. .max_access_size = 4,
  506. },
  507. };
  508. static uint64_t tcx_blit_readl(void *opaque, hwaddr addr,
  509. unsigned size)
  510. {
  511. return 0;
  512. }
  513. static void tcx_blit_writel(void *opaque, hwaddr addr,
  514. uint64_t val, unsigned size)
  515. {
  516. TCXState *s = opaque;
  517. uint32_t adsr, len;
  518. int i;
  519. if (!(addr & 4)) {
  520. s->tmpblit = val;
  521. } else {
  522. addr = (addr >> 3) & 0xfffff;
  523. adsr = val & 0xffffff;
  524. len = ((val >> 24) & 0x1f) + 1;
  525. if (adsr == 0xffffff) {
  526. memset(&s->vram[addr], s->tmpblit, len);
  527. if (s->depth == 24) {
  528. val = s->tmpblit & 0xffffff;
  529. val = cpu_to_be32(val);
  530. for (i = 0; i < len; i++) {
  531. s->vram24[addr + i] = val;
  532. }
  533. }
  534. } else {
  535. memcpy(&s->vram[addr], &s->vram[adsr], len);
  536. if (s->depth == 24) {
  537. memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
  538. }
  539. }
  540. tcx_set_dirty(s, addr, len);
  541. }
  542. }
  543. static void tcx_rblit_writel(void *opaque, hwaddr addr,
  544. uint64_t val, unsigned size)
  545. {
  546. TCXState *s = opaque;
  547. uint32_t adsr, len;
  548. int i;
  549. if (!(addr & 4)) {
  550. s->tmpblit = val;
  551. } else {
  552. addr = (addr >> 3) & 0xfffff;
  553. adsr = val & 0xffffff;
  554. len = ((val >> 24) & 0x1f) + 1;
  555. if (adsr == 0xffffff) {
  556. memset(&s->vram[addr], s->tmpblit, len);
  557. if (s->depth == 24) {
  558. val = s->tmpblit & 0xffffff;
  559. val = cpu_to_be32(val);
  560. for (i = 0; i < len; i++) {
  561. s->vram24[addr + i] = val;
  562. s->cplane[addr + i] = val;
  563. }
  564. }
  565. } else {
  566. memcpy(&s->vram[addr], &s->vram[adsr], len);
  567. if (s->depth == 24) {
  568. memcpy(&s->vram24[addr], &s->vram24[adsr], len * 4);
  569. memcpy(&s->cplane[addr], &s->cplane[adsr], len * 4);
  570. }
  571. }
  572. tcx_set_dirty(s, addr, len);
  573. }
  574. }
  575. static const MemoryRegionOps tcx_blit_ops = {
  576. .read = tcx_blit_readl,
  577. .write = tcx_blit_writel,
  578. .endianness = DEVICE_NATIVE_ENDIAN,
  579. .valid = {
  580. .min_access_size = 4,
  581. .max_access_size = 4,
  582. },
  583. };
  584. static const MemoryRegionOps tcx_rblit_ops = {
  585. .read = tcx_blit_readl,
  586. .write = tcx_rblit_writel,
  587. .endianness = DEVICE_NATIVE_ENDIAN,
  588. .valid = {
  589. .min_access_size = 4,
  590. .max_access_size = 4,
  591. },
  592. };
  593. static void tcx_invalidate_cursor_position(TCXState *s)
  594. {
  595. int ymin, ymax, start, end;
  596. /* invalidate only near the cursor */
  597. ymin = s->cursy;
  598. if (ymin >= s->height) {
  599. return;
  600. }
  601. ymax = MIN(s->height, ymin + 32);
  602. start = ymin * 1024;
  603. end = ymax * 1024;
  604. tcx_set_dirty(s, start, end - start);
  605. }
  606. static uint64_t tcx_thc_readl(void *opaque, hwaddr addr,
  607. unsigned size)
  608. {
  609. TCXState *s = opaque;
  610. uint64_t val;
  611. if (addr == TCX_THC_MISC) {
  612. val = s->thcmisc | 0x02000000;
  613. } else {
  614. val = 0;
  615. }
  616. return val;
  617. }
  618. static void tcx_thc_writel(void *opaque, hwaddr addr,
  619. uint64_t val, unsigned size)
  620. {
  621. TCXState *s = opaque;
  622. if (addr == TCX_THC_CURSXY) {
  623. tcx_invalidate_cursor_position(s);
  624. s->cursx = val >> 16;
  625. s->cursy = val;
  626. tcx_invalidate_cursor_position(s);
  627. } else if (addr >= TCX_THC_CURSMASK && addr < TCX_THC_CURSMASK + 128) {
  628. s->cursmask[(addr - TCX_THC_CURSMASK) >> 2] = val;
  629. tcx_invalidate_cursor_position(s);
  630. } else if (addr >= TCX_THC_CURSBITS && addr < TCX_THC_CURSBITS + 128) {
  631. s->cursbits[(addr - TCX_THC_CURSBITS) >> 2] = val;
  632. tcx_invalidate_cursor_position(s);
  633. } else if (addr == TCX_THC_MISC) {
  634. s->thcmisc = val;
  635. }
  636. }
  637. static const MemoryRegionOps tcx_thc_ops = {
  638. .read = tcx_thc_readl,
  639. .write = tcx_thc_writel,
  640. .endianness = DEVICE_NATIVE_ENDIAN,
  641. .valid = {
  642. .min_access_size = 4,
  643. .max_access_size = 4,
  644. },
  645. };
  646. static uint64_t tcx_dummy_readl(void *opaque, hwaddr addr,
  647. unsigned size)
  648. {
  649. return 0;
  650. }
  651. static void tcx_dummy_writel(void *opaque, hwaddr addr,
  652. uint64_t val, unsigned size)
  653. {
  654. return;
  655. }
  656. static const MemoryRegionOps tcx_dummy_ops = {
  657. .read = tcx_dummy_readl,
  658. .write = tcx_dummy_writel,
  659. .endianness = DEVICE_NATIVE_ENDIAN,
  660. .valid = {
  661. .min_access_size = 4,
  662. .max_access_size = 4,
  663. },
  664. };
  665. static const GraphicHwOps tcx_ops = {
  666. .invalidate = tcx_invalidate_display,
  667. .gfx_update = tcx_update_display,
  668. };
  669. static const GraphicHwOps tcx24_ops = {
  670. .invalidate = tcx24_invalidate_display,
  671. .gfx_update = tcx24_update_display,
  672. };
  673. static void tcx_initfn(Object *obj)
  674. {
  675. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  676. TCXState *s = TCX(obj);
  677. memory_region_init_ram_nomigrate(&s->rom, obj, "tcx.prom", FCODE_MAX_ROM_SIZE,
  678. &error_fatal);
  679. memory_region_set_readonly(&s->rom, true);
  680. sysbus_init_mmio(sbd, &s->rom);
  681. /* 2/STIP : Stippler */
  682. memory_region_init_io(&s->stip, obj, &tcx_stip_ops, s, "tcx.stip",
  683. TCX_STIP_NREGS);
  684. sysbus_init_mmio(sbd, &s->stip);
  685. /* 3/BLIT : Blitter */
  686. memory_region_init_io(&s->blit, obj, &tcx_blit_ops, s, "tcx.blit",
  687. TCX_BLIT_NREGS);
  688. sysbus_init_mmio(sbd, &s->blit);
  689. /* 5/RSTIP : Raw Stippler */
  690. memory_region_init_io(&s->rstip, obj, &tcx_rstip_ops, s, "tcx.rstip",
  691. TCX_RSTIP_NREGS);
  692. sysbus_init_mmio(sbd, &s->rstip);
  693. /* 6/RBLIT : Raw Blitter */
  694. memory_region_init_io(&s->rblit, obj, &tcx_rblit_ops, s, "tcx.rblit",
  695. TCX_RBLIT_NREGS);
  696. sysbus_init_mmio(sbd, &s->rblit);
  697. /* 7/TEC : ??? */
  698. memory_region_init_io(&s->tec, obj, &tcx_dummy_ops, s, "tcx.tec",
  699. TCX_TEC_NREGS);
  700. sysbus_init_mmio(sbd, &s->tec);
  701. /* 8/CMAP : DAC */
  702. memory_region_init_io(&s->dac, obj, &tcx_dac_ops, s, "tcx.dac",
  703. TCX_DAC_NREGS);
  704. sysbus_init_mmio(sbd, &s->dac);
  705. /* 9/THC : Cursor */
  706. memory_region_init_io(&s->thc, obj, &tcx_thc_ops, s, "tcx.thc",
  707. TCX_THC_NREGS);
  708. sysbus_init_mmio(sbd, &s->thc);
  709. /* 11/DHC : ??? */
  710. memory_region_init_io(&s->dhc, obj, &tcx_dummy_ops, s, "tcx.dhc",
  711. TCX_DHC_NREGS);
  712. sysbus_init_mmio(sbd, &s->dhc);
  713. /* 12/ALT : ??? */
  714. memory_region_init_io(&s->alt, obj, &tcx_dummy_ops, s, "tcx.alt",
  715. TCX_ALT_NREGS);
  716. sysbus_init_mmio(sbd, &s->alt);
  717. }
  718. static void tcx_realizefn(DeviceState *dev, Error **errp)
  719. {
  720. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  721. TCXState *s = TCX(dev);
  722. ram_addr_t vram_offset = 0;
  723. int size, ret;
  724. uint8_t *vram_base;
  725. char *fcode_filename;
  726. memory_region_init_ram_nomigrate(&s->vram_mem, OBJECT(s), "tcx.vram",
  727. s->vram_size * (1 + 4 + 4), &error_fatal);
  728. vmstate_register_ram_global(&s->vram_mem);
  729. memory_region_set_log(&s->vram_mem, true, DIRTY_MEMORY_VGA);
  730. vram_base = memory_region_get_ram_ptr(&s->vram_mem);
  731. /* 10/ROM : FCode ROM */
  732. vmstate_register_ram_global(&s->rom);
  733. fcode_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, TCX_ROM_FILE);
  734. if (fcode_filename) {
  735. ret = load_image_mr(fcode_filename, &s->rom);
  736. g_free(fcode_filename);
  737. if (ret < 0 || ret > FCODE_MAX_ROM_SIZE) {
  738. warn_report("tcx: could not load prom '%s'", TCX_ROM_FILE);
  739. }
  740. }
  741. /* 0/DFB8 : 8-bit plane */
  742. s->vram = vram_base;
  743. size = s->vram_size;
  744. memory_region_init_alias(&s->vram_8bit, OBJECT(s), "tcx.vram.8bit",
  745. &s->vram_mem, vram_offset, size);
  746. sysbus_init_mmio(sbd, &s->vram_8bit);
  747. vram_offset += size;
  748. vram_base += size;
  749. /* 1/DFB24 : 24bit plane */
  750. size = s->vram_size * 4;
  751. s->vram24 = (uint32_t *)vram_base;
  752. s->vram24_offset = vram_offset;
  753. memory_region_init_alias(&s->vram_24bit, OBJECT(s), "tcx.vram.24bit",
  754. &s->vram_mem, vram_offset, size);
  755. sysbus_init_mmio(sbd, &s->vram_24bit);
  756. vram_offset += size;
  757. vram_base += size;
  758. /* 4/RDFB32 : Raw Framebuffer */
  759. size = s->vram_size * 4;
  760. s->cplane = (uint32_t *)vram_base;
  761. s->cplane_offset = vram_offset;
  762. memory_region_init_alias(&s->vram_cplane, OBJECT(s), "tcx.vram.cplane",
  763. &s->vram_mem, vram_offset, size);
  764. sysbus_init_mmio(sbd, &s->vram_cplane);
  765. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  766. if (s->depth == 8) {
  767. memory_region_init_io(&s->thc24, OBJECT(s), &tcx_dummy_ops, s,
  768. "tcx.thc24", TCX_THC_NREGS);
  769. sysbus_init_mmio(sbd, &s->thc24);
  770. }
  771. sysbus_init_irq(sbd, &s->irq);
  772. if (s->depth == 8) {
  773. s->con = graphic_console_init(DEVICE(dev), 0, &tcx_ops, s);
  774. } else {
  775. s->con = graphic_console_init(DEVICE(dev), 0, &tcx24_ops, s);
  776. }
  777. s->thcmisc = 0;
  778. qemu_console_resize(s->con, s->width, s->height);
  779. }
  780. static Property tcx_properties[] = {
  781. DEFINE_PROP_UINT32("vram_size", TCXState, vram_size, -1),
  782. DEFINE_PROP_UINT16("width", TCXState, width, -1),
  783. DEFINE_PROP_UINT16("height", TCXState, height, -1),
  784. DEFINE_PROP_UINT16("depth", TCXState, depth, -1),
  785. DEFINE_PROP_END_OF_LIST(),
  786. };
  787. static void tcx_class_init(ObjectClass *klass, void *data)
  788. {
  789. DeviceClass *dc = DEVICE_CLASS(klass);
  790. dc->realize = tcx_realizefn;
  791. dc->reset = tcx_reset;
  792. dc->vmsd = &vmstate_tcx;
  793. dc->props = tcx_properties;
  794. }
  795. static const TypeInfo tcx_info = {
  796. .name = TYPE_TCX,
  797. .parent = TYPE_SYS_BUS_DEVICE,
  798. .instance_size = sizeof(TCXState),
  799. .instance_init = tcx_initfn,
  800. .class_init = tcx_class_init,
  801. };
  802. static void tcx_register_types(void)
  803. {
  804. type_register_static(&tcx_info);
  805. }
  806. type_init(tcx_register_types)