omap_dss.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093
  1. /*
  2. * OMAP2 Display Subsystem.
  3. *
  4. * Copyright (C) 2008 Nokia Corporation
  5. * Written by Andrzej Zaborowski <andrew@openedhand.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation; either version 2 or
  10. * (at your option) version 3 of the License.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include "qemu/osdep.h"
  21. #include "hw/hw.h"
  22. #include "hw/irq.h"
  23. #include "ui/console.h"
  24. #include "hw/arm/omap.h"
  25. struct omap_dss_s {
  26. qemu_irq irq;
  27. qemu_irq drq;
  28. DisplayState *state;
  29. MemoryRegion iomem_diss1, iomem_disc1, iomem_rfbi1, iomem_venc1, iomem_im3;
  30. int autoidle;
  31. int control;
  32. int enable;
  33. struct omap_dss_panel_s {
  34. int enable;
  35. int nx;
  36. int ny;
  37. int x;
  38. int y;
  39. } dig, lcd;
  40. struct {
  41. uint32_t idlemode;
  42. uint32_t irqst;
  43. uint32_t irqen;
  44. uint32_t control;
  45. uint32_t config;
  46. uint32_t capable;
  47. uint32_t timing[4];
  48. int line;
  49. uint32_t bg[2];
  50. uint32_t trans[2];
  51. struct omap_dss_plane_s {
  52. int enable;
  53. int bpp;
  54. int posx;
  55. int posy;
  56. int nx;
  57. int ny;
  58. hwaddr addr[3];
  59. uint32_t attr;
  60. uint32_t tresh;
  61. int rowinc;
  62. int colinc;
  63. int wininc;
  64. } l[3];
  65. int invalidate;
  66. uint16_t palette[256];
  67. } dispc;
  68. struct {
  69. int idlemode;
  70. uint32_t control;
  71. int enable;
  72. int pixels;
  73. int busy;
  74. int skiplines;
  75. uint16_t rxbuf;
  76. uint32_t config[2];
  77. uint32_t time[4];
  78. uint32_t data[6];
  79. uint16_t vsync;
  80. uint16_t hsync;
  81. struct rfbi_chip_s *chip[2];
  82. } rfbi;
  83. };
  84. static void omap_dispc_interrupt_update(struct omap_dss_s *s)
  85. {
  86. qemu_set_irq(s->irq, s->dispc.irqst & s->dispc.irqen);
  87. }
  88. static void omap_rfbi_reset(struct omap_dss_s *s)
  89. {
  90. s->rfbi.idlemode = 0;
  91. s->rfbi.control = 2;
  92. s->rfbi.enable = 0;
  93. s->rfbi.pixels = 0;
  94. s->rfbi.skiplines = 0;
  95. s->rfbi.busy = 0;
  96. s->rfbi.config[0] = 0x00310000;
  97. s->rfbi.config[1] = 0x00310000;
  98. s->rfbi.time[0] = 0;
  99. s->rfbi.time[1] = 0;
  100. s->rfbi.time[2] = 0;
  101. s->rfbi.time[3] = 0;
  102. s->rfbi.data[0] = 0;
  103. s->rfbi.data[1] = 0;
  104. s->rfbi.data[2] = 0;
  105. s->rfbi.data[3] = 0;
  106. s->rfbi.data[4] = 0;
  107. s->rfbi.data[5] = 0;
  108. s->rfbi.vsync = 0;
  109. s->rfbi.hsync = 0;
  110. }
  111. void omap_dss_reset(struct omap_dss_s *s)
  112. {
  113. s->autoidle = 0;
  114. s->control = 0;
  115. s->enable = 0;
  116. s->dig.enable = 0;
  117. s->dig.nx = 1;
  118. s->dig.ny = 1;
  119. s->lcd.enable = 0;
  120. s->lcd.nx = 1;
  121. s->lcd.ny = 1;
  122. s->dispc.idlemode = 0;
  123. s->dispc.irqst = 0;
  124. s->dispc.irqen = 0;
  125. s->dispc.control = 0;
  126. s->dispc.config = 0;
  127. s->dispc.capable = 0x161;
  128. s->dispc.timing[0] = 0;
  129. s->dispc.timing[1] = 0;
  130. s->dispc.timing[2] = 0;
  131. s->dispc.timing[3] = 0;
  132. s->dispc.line = 0;
  133. s->dispc.bg[0] = 0;
  134. s->dispc.bg[1] = 0;
  135. s->dispc.trans[0] = 0;
  136. s->dispc.trans[1] = 0;
  137. s->dispc.l[0].enable = 0;
  138. s->dispc.l[0].bpp = 0;
  139. s->dispc.l[0].addr[0] = 0;
  140. s->dispc.l[0].addr[1] = 0;
  141. s->dispc.l[0].addr[2] = 0;
  142. s->dispc.l[0].posx = 0;
  143. s->dispc.l[0].posy = 0;
  144. s->dispc.l[0].nx = 1;
  145. s->dispc.l[0].ny = 1;
  146. s->dispc.l[0].attr = 0;
  147. s->dispc.l[0].tresh = 0;
  148. s->dispc.l[0].rowinc = 1;
  149. s->dispc.l[0].colinc = 1;
  150. s->dispc.l[0].wininc = 0;
  151. omap_rfbi_reset(s);
  152. omap_dispc_interrupt_update(s);
  153. }
  154. static uint64_t omap_diss_read(void *opaque, hwaddr addr,
  155. unsigned size)
  156. {
  157. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  158. if (size != 4) {
  159. return omap_badwidth_read32(opaque, addr);
  160. }
  161. switch (addr) {
  162. case 0x00: /* DSS_REVISIONNUMBER */
  163. return 0x20;
  164. case 0x10: /* DSS_SYSCONFIG */
  165. return s->autoidle;
  166. case 0x14: /* DSS_SYSSTATUS */
  167. return 1; /* RESETDONE */
  168. case 0x40: /* DSS_CONTROL */
  169. return s->control;
  170. case 0x50: /* DSS_PSA_LCD_REG_1 */
  171. case 0x54: /* DSS_PSA_LCD_REG_2 */
  172. case 0x58: /* DSS_PSA_VIDEO_REG */
  173. /* TODO: fake some values when appropriate s->control bits are set */
  174. return 0;
  175. case 0x5c: /* DSS_STATUS */
  176. return 1 + (s->control & 1);
  177. default:
  178. break;
  179. }
  180. OMAP_BAD_REG(addr);
  181. return 0;
  182. }
  183. static void omap_diss_write(void *opaque, hwaddr addr,
  184. uint64_t value, unsigned size)
  185. {
  186. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  187. if (size != 4) {
  188. omap_badwidth_write32(opaque, addr, value);
  189. return;
  190. }
  191. switch (addr) {
  192. case 0x00: /* DSS_REVISIONNUMBER */
  193. case 0x14: /* DSS_SYSSTATUS */
  194. case 0x50: /* DSS_PSA_LCD_REG_1 */
  195. case 0x54: /* DSS_PSA_LCD_REG_2 */
  196. case 0x58: /* DSS_PSA_VIDEO_REG */
  197. case 0x5c: /* DSS_STATUS */
  198. OMAP_RO_REG(addr);
  199. break;
  200. case 0x10: /* DSS_SYSCONFIG */
  201. if (value & 2) /* SOFTRESET */
  202. omap_dss_reset(s);
  203. s->autoidle = value & 1;
  204. break;
  205. case 0x40: /* DSS_CONTROL */
  206. s->control = value & 0x3dd;
  207. break;
  208. default:
  209. OMAP_BAD_REG(addr);
  210. }
  211. }
  212. static const MemoryRegionOps omap_diss_ops = {
  213. .read = omap_diss_read,
  214. .write = omap_diss_write,
  215. .endianness = DEVICE_NATIVE_ENDIAN,
  216. };
  217. static uint64_t omap_disc_read(void *opaque, hwaddr addr,
  218. unsigned size)
  219. {
  220. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  221. if (size != 4) {
  222. return omap_badwidth_read32(opaque, addr);
  223. }
  224. switch (addr) {
  225. case 0x000: /* DISPC_REVISION */
  226. return 0x20;
  227. case 0x010: /* DISPC_SYSCONFIG */
  228. return s->dispc.idlemode;
  229. case 0x014: /* DISPC_SYSSTATUS */
  230. return 1; /* RESETDONE */
  231. case 0x018: /* DISPC_IRQSTATUS */
  232. return s->dispc.irqst;
  233. case 0x01c: /* DISPC_IRQENABLE */
  234. return s->dispc.irqen;
  235. case 0x040: /* DISPC_CONTROL */
  236. return s->dispc.control;
  237. case 0x044: /* DISPC_CONFIG */
  238. return s->dispc.config;
  239. case 0x048: /* DISPC_CAPABLE */
  240. return s->dispc.capable;
  241. case 0x04c: /* DISPC_DEFAULT_COLOR0 */
  242. return s->dispc.bg[0];
  243. case 0x050: /* DISPC_DEFAULT_COLOR1 */
  244. return s->dispc.bg[1];
  245. case 0x054: /* DISPC_TRANS_COLOR0 */
  246. return s->dispc.trans[0];
  247. case 0x058: /* DISPC_TRANS_COLOR1 */
  248. return s->dispc.trans[1];
  249. case 0x05c: /* DISPC_LINE_STATUS */
  250. return 0x7ff;
  251. case 0x060: /* DISPC_LINE_NUMBER */
  252. return s->dispc.line;
  253. case 0x064: /* DISPC_TIMING_H */
  254. return s->dispc.timing[0];
  255. case 0x068: /* DISPC_TIMING_V */
  256. return s->dispc.timing[1];
  257. case 0x06c: /* DISPC_POL_FREQ */
  258. return s->dispc.timing[2];
  259. case 0x070: /* DISPC_DIVISOR */
  260. return s->dispc.timing[3];
  261. case 0x078: /* DISPC_SIZE_DIG */
  262. return ((s->dig.ny - 1) << 16) | (s->dig.nx - 1);
  263. case 0x07c: /* DISPC_SIZE_LCD */
  264. return ((s->lcd.ny - 1) << 16) | (s->lcd.nx - 1);
  265. case 0x080: /* DISPC_GFX_BA0 */
  266. return s->dispc.l[0].addr[0];
  267. case 0x084: /* DISPC_GFX_BA1 */
  268. return s->dispc.l[0].addr[1];
  269. case 0x088: /* DISPC_GFX_POSITION */
  270. return (s->dispc.l[0].posy << 16) | s->dispc.l[0].posx;
  271. case 0x08c: /* DISPC_GFX_SIZE */
  272. return ((s->dispc.l[0].ny - 1) << 16) | (s->dispc.l[0].nx - 1);
  273. case 0x0a0: /* DISPC_GFX_ATTRIBUTES */
  274. return s->dispc.l[0].attr;
  275. case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */
  276. return s->dispc.l[0].tresh;
  277. case 0x0a8: /* DISPC_GFX_FIFO_SIZE_STATUS */
  278. return 256;
  279. case 0x0ac: /* DISPC_GFX_ROW_INC */
  280. return s->dispc.l[0].rowinc;
  281. case 0x0b0: /* DISPC_GFX_PIXEL_INC */
  282. return s->dispc.l[0].colinc;
  283. case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */
  284. return s->dispc.l[0].wininc;
  285. case 0x0b8: /* DISPC_GFX_TABLE_BA */
  286. return s->dispc.l[0].addr[2];
  287. case 0x0bc: /* DISPC_VID1_BA0 */
  288. case 0x0c0: /* DISPC_VID1_BA1 */
  289. case 0x0c4: /* DISPC_VID1_POSITION */
  290. case 0x0c8: /* DISPC_VID1_SIZE */
  291. case 0x0cc: /* DISPC_VID1_ATTRIBUTES */
  292. case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */
  293. case 0x0d4: /* DISPC_VID1_FIFO_SIZE_STATUS */
  294. case 0x0d8: /* DISPC_VID1_ROW_INC */
  295. case 0x0dc: /* DISPC_VID1_PIXEL_INC */
  296. case 0x0e0: /* DISPC_VID1_FIR */
  297. case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */
  298. case 0x0e8: /* DISPC_VID1_ACCU0 */
  299. case 0x0ec: /* DISPC_VID1_ACCU1 */
  300. case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */
  301. case 0x14c: /* DISPC_VID2_BA0 */
  302. case 0x150: /* DISPC_VID2_BA1 */
  303. case 0x154: /* DISPC_VID2_POSITION */
  304. case 0x158: /* DISPC_VID2_SIZE */
  305. case 0x15c: /* DISPC_VID2_ATTRIBUTES */
  306. case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */
  307. case 0x164: /* DISPC_VID2_FIFO_SIZE_STATUS */
  308. case 0x168: /* DISPC_VID2_ROW_INC */
  309. case 0x16c: /* DISPC_VID2_PIXEL_INC */
  310. case 0x170: /* DISPC_VID2_FIR */
  311. case 0x174: /* DISPC_VID2_PICTURE_SIZE */
  312. case 0x178: /* DISPC_VID2_ACCU0 */
  313. case 0x17c: /* DISPC_VID2_ACCU1 */
  314. case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */
  315. case 0x1d4: /* DISPC_DATA_CYCLE1 */
  316. case 0x1d8: /* DISPC_DATA_CYCLE2 */
  317. case 0x1dc: /* DISPC_DATA_CYCLE3 */
  318. return 0;
  319. default:
  320. break;
  321. }
  322. OMAP_BAD_REG(addr);
  323. return 0;
  324. }
  325. static void omap_disc_write(void *opaque, hwaddr addr,
  326. uint64_t value, unsigned size)
  327. {
  328. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  329. if (size != 4) {
  330. omap_badwidth_write32(opaque, addr, value);
  331. return;
  332. }
  333. switch (addr) {
  334. case 0x010: /* DISPC_SYSCONFIG */
  335. if (value & 2) /* SOFTRESET */
  336. omap_dss_reset(s);
  337. s->dispc.idlemode = value & 0x301b;
  338. break;
  339. case 0x018: /* DISPC_IRQSTATUS */
  340. s->dispc.irqst &= ~value;
  341. omap_dispc_interrupt_update(s);
  342. break;
  343. case 0x01c: /* DISPC_IRQENABLE */
  344. s->dispc.irqen = value & 0xffff;
  345. omap_dispc_interrupt_update(s);
  346. break;
  347. case 0x040: /* DISPC_CONTROL */
  348. s->dispc.control = value & 0x07ff9fff;
  349. s->dig.enable = (value >> 1) & 1;
  350. s->lcd.enable = (value >> 0) & 1;
  351. if (value & (1 << 12)) /* OVERLAY_OPTIMIZATION */
  352. if (!((s->dispc.l[1].attr | s->dispc.l[2].attr) & 1)) {
  353. fprintf(stderr, "%s: Overlay Optimization when no overlay "
  354. "region effectively exists leads to "
  355. "unpredictable behaviour!\n", __func__);
  356. }
  357. if (value & (1 << 6)) { /* GODIGITAL */
  358. /* XXX: Shadowed fields are:
  359. * s->dispc.config
  360. * s->dispc.capable
  361. * s->dispc.bg[0]
  362. * s->dispc.bg[1]
  363. * s->dispc.trans[0]
  364. * s->dispc.trans[1]
  365. * s->dispc.line
  366. * s->dispc.timing[0]
  367. * s->dispc.timing[1]
  368. * s->dispc.timing[2]
  369. * s->dispc.timing[3]
  370. * s->lcd.nx
  371. * s->lcd.ny
  372. * s->dig.nx
  373. * s->dig.ny
  374. * s->dispc.l[0].addr[0]
  375. * s->dispc.l[0].addr[1]
  376. * s->dispc.l[0].addr[2]
  377. * s->dispc.l[0].posx
  378. * s->dispc.l[0].posy
  379. * s->dispc.l[0].nx
  380. * s->dispc.l[0].ny
  381. * s->dispc.l[0].tresh
  382. * s->dispc.l[0].rowinc
  383. * s->dispc.l[0].colinc
  384. * s->dispc.l[0].wininc
  385. * All they need to be loaded here from their shadow registers.
  386. */
  387. }
  388. if (value & (1 << 5)) { /* GOLCD */
  389. /* XXX: Likewise for LCD here. */
  390. }
  391. s->dispc.invalidate = 1;
  392. break;
  393. case 0x044: /* DISPC_CONFIG */
  394. s->dispc.config = value & 0x3fff;
  395. /* XXX:
  396. * bits 2:1 (LOADMODE) reset to 0 after set to 1 and palette loaded
  397. * bits 2:1 (LOADMODE) reset to 2 after set to 3 and palette loaded
  398. */
  399. s->dispc.invalidate = 1;
  400. break;
  401. case 0x048: /* DISPC_CAPABLE */
  402. s->dispc.capable = value & 0x3ff;
  403. break;
  404. case 0x04c: /* DISPC_DEFAULT_COLOR0 */
  405. s->dispc.bg[0] = value & 0xffffff;
  406. s->dispc.invalidate = 1;
  407. break;
  408. case 0x050: /* DISPC_DEFAULT_COLOR1 */
  409. s->dispc.bg[1] = value & 0xffffff;
  410. s->dispc.invalidate = 1;
  411. break;
  412. case 0x054: /* DISPC_TRANS_COLOR0 */
  413. s->dispc.trans[0] = value & 0xffffff;
  414. s->dispc.invalidate = 1;
  415. break;
  416. case 0x058: /* DISPC_TRANS_COLOR1 */
  417. s->dispc.trans[1] = value & 0xffffff;
  418. s->dispc.invalidate = 1;
  419. break;
  420. case 0x060: /* DISPC_LINE_NUMBER */
  421. s->dispc.line = value & 0x7ff;
  422. break;
  423. case 0x064: /* DISPC_TIMING_H */
  424. s->dispc.timing[0] = value & 0x0ff0ff3f;
  425. break;
  426. case 0x068: /* DISPC_TIMING_V */
  427. s->dispc.timing[1] = value & 0x0ff0ff3f;
  428. break;
  429. case 0x06c: /* DISPC_POL_FREQ */
  430. s->dispc.timing[2] = value & 0x0003ffff;
  431. break;
  432. case 0x070: /* DISPC_DIVISOR */
  433. s->dispc.timing[3] = value & 0x00ff00ff;
  434. break;
  435. case 0x078: /* DISPC_SIZE_DIG */
  436. s->dig.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */
  437. s->dig.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */
  438. s->dispc.invalidate = 1;
  439. break;
  440. case 0x07c: /* DISPC_SIZE_LCD */
  441. s->lcd.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */
  442. s->lcd.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */
  443. s->dispc.invalidate = 1;
  444. break;
  445. case 0x080: /* DISPC_GFX_BA0 */
  446. s->dispc.l[0].addr[0] = (hwaddr) value;
  447. s->dispc.invalidate = 1;
  448. break;
  449. case 0x084: /* DISPC_GFX_BA1 */
  450. s->dispc.l[0].addr[1] = (hwaddr) value;
  451. s->dispc.invalidate = 1;
  452. break;
  453. case 0x088: /* DISPC_GFX_POSITION */
  454. s->dispc.l[0].posx = ((value >> 0) & 0x7ff); /* GFXPOSX */
  455. s->dispc.l[0].posy = ((value >> 16) & 0x7ff); /* GFXPOSY */
  456. s->dispc.invalidate = 1;
  457. break;
  458. case 0x08c: /* DISPC_GFX_SIZE */
  459. s->dispc.l[0].nx = ((value >> 0) & 0x7ff) + 1; /* GFXSIZEX */
  460. s->dispc.l[0].ny = ((value >> 16) & 0x7ff) + 1; /* GFXSIZEY */
  461. s->dispc.invalidate = 1;
  462. break;
  463. case 0x0a0: /* DISPC_GFX_ATTRIBUTES */
  464. s->dispc.l[0].attr = value & 0x7ff;
  465. if (value & (3 << 9))
  466. fprintf(stderr, "%s: Big-endian pixel format not supported\n",
  467. __func__);
  468. s->dispc.l[0].enable = value & 1;
  469. s->dispc.l[0].bpp = (value >> 1) & 0xf;
  470. s->dispc.invalidate = 1;
  471. break;
  472. case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */
  473. s->dispc.l[0].tresh = value & 0x01ff01ff;
  474. break;
  475. case 0x0ac: /* DISPC_GFX_ROW_INC */
  476. s->dispc.l[0].rowinc = value;
  477. s->dispc.invalidate = 1;
  478. break;
  479. case 0x0b0: /* DISPC_GFX_PIXEL_INC */
  480. s->dispc.l[0].colinc = value;
  481. s->dispc.invalidate = 1;
  482. break;
  483. case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */
  484. s->dispc.l[0].wininc = value;
  485. break;
  486. case 0x0b8: /* DISPC_GFX_TABLE_BA */
  487. s->dispc.l[0].addr[2] = (hwaddr) value;
  488. s->dispc.invalidate = 1;
  489. break;
  490. case 0x0bc: /* DISPC_VID1_BA0 */
  491. case 0x0c0: /* DISPC_VID1_BA1 */
  492. case 0x0c4: /* DISPC_VID1_POSITION */
  493. case 0x0c8: /* DISPC_VID1_SIZE */
  494. case 0x0cc: /* DISPC_VID1_ATTRIBUTES */
  495. case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */
  496. case 0x0d8: /* DISPC_VID1_ROW_INC */
  497. case 0x0dc: /* DISPC_VID1_PIXEL_INC */
  498. case 0x0e0: /* DISPC_VID1_FIR */
  499. case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */
  500. case 0x0e8: /* DISPC_VID1_ACCU0 */
  501. case 0x0ec: /* DISPC_VID1_ACCU1 */
  502. case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */
  503. case 0x14c: /* DISPC_VID2_BA0 */
  504. case 0x150: /* DISPC_VID2_BA1 */
  505. case 0x154: /* DISPC_VID2_POSITION */
  506. case 0x158: /* DISPC_VID2_SIZE */
  507. case 0x15c: /* DISPC_VID2_ATTRIBUTES */
  508. case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */
  509. case 0x168: /* DISPC_VID2_ROW_INC */
  510. case 0x16c: /* DISPC_VID2_PIXEL_INC */
  511. case 0x170: /* DISPC_VID2_FIR */
  512. case 0x174: /* DISPC_VID2_PICTURE_SIZE */
  513. case 0x178: /* DISPC_VID2_ACCU0 */
  514. case 0x17c: /* DISPC_VID2_ACCU1 */
  515. case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */
  516. case 0x1d4: /* DISPC_DATA_CYCLE1 */
  517. case 0x1d8: /* DISPC_DATA_CYCLE2 */
  518. case 0x1dc: /* DISPC_DATA_CYCLE3 */
  519. break;
  520. default:
  521. OMAP_BAD_REG(addr);
  522. }
  523. }
  524. static const MemoryRegionOps omap_disc_ops = {
  525. .read = omap_disc_read,
  526. .write = omap_disc_write,
  527. .endianness = DEVICE_NATIVE_ENDIAN,
  528. };
  529. static void omap_rfbi_transfer_stop(struct omap_dss_s *s)
  530. {
  531. if (!s->rfbi.busy)
  532. return;
  533. /* TODO: in non-Bypass mode we probably need to just deassert the DRQ. */
  534. s->rfbi.busy = 0;
  535. }
  536. static void omap_rfbi_transfer_start(struct omap_dss_s *s)
  537. {
  538. void *data;
  539. hwaddr len;
  540. hwaddr data_addr;
  541. int pitch;
  542. static void *bounce_buffer;
  543. static hwaddr bounce_len;
  544. if (!s->rfbi.enable || s->rfbi.busy)
  545. return;
  546. if (s->rfbi.control & (1 << 1)) { /* BYPASS */
  547. /* TODO: in non-Bypass mode we probably need to just assert the
  548. * DRQ and wait for DMA to write the pixels. */
  549. fprintf(stderr, "%s: Bypass mode unimplemented\n", __func__);
  550. return;
  551. }
  552. if (!(s->dispc.control & (1 << 11))) /* RFBIMODE */
  553. return;
  554. /* TODO: check that LCD output is enabled in DISPC. */
  555. s->rfbi.busy = 1;
  556. len = s->rfbi.pixels * 2;
  557. data_addr = s->dispc.l[0].addr[0];
  558. data = cpu_physical_memory_map(data_addr, &len, 0);
  559. if (data && len != s->rfbi.pixels * 2) {
  560. cpu_physical_memory_unmap(data, len, 0, 0);
  561. data = NULL;
  562. len = s->rfbi.pixels * 2;
  563. }
  564. if (!data) {
  565. if (len > bounce_len) {
  566. bounce_buffer = g_realloc(bounce_buffer, len);
  567. }
  568. data = bounce_buffer;
  569. cpu_physical_memory_read(data_addr, data, len);
  570. }
  571. /* TODO bpp */
  572. s->rfbi.pixels = 0;
  573. /* TODO: negative values */
  574. pitch = s->dispc.l[0].nx + (s->dispc.l[0].rowinc - 1) / 2;
  575. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  576. s->rfbi.chip[0]->block(s->rfbi.chip[0]->opaque, 1, data, len, pitch);
  577. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  578. s->rfbi.chip[1]->block(s->rfbi.chip[1]->opaque, 1, data, len, pitch);
  579. if (data != bounce_buffer) {
  580. cpu_physical_memory_unmap(data, len, 0, len);
  581. }
  582. omap_rfbi_transfer_stop(s);
  583. /* TODO */
  584. s->dispc.irqst |= 1; /* FRAMEDONE */
  585. omap_dispc_interrupt_update(s);
  586. }
  587. static uint64_t omap_rfbi_read(void *opaque, hwaddr addr,
  588. unsigned size)
  589. {
  590. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  591. if (size != 4) {
  592. return omap_badwidth_read32(opaque, addr);
  593. }
  594. switch (addr) {
  595. case 0x00: /* RFBI_REVISION */
  596. return 0x10;
  597. case 0x10: /* RFBI_SYSCONFIG */
  598. return s->rfbi.idlemode;
  599. case 0x14: /* RFBI_SYSSTATUS */
  600. return 1 | (s->rfbi.busy << 8); /* RESETDONE */
  601. case 0x40: /* RFBI_CONTROL */
  602. return s->rfbi.control;
  603. case 0x44: /* RFBI_PIXELCNT */
  604. return s->rfbi.pixels;
  605. case 0x48: /* RFBI_LINE_NUMBER */
  606. return s->rfbi.skiplines;
  607. case 0x58: /* RFBI_READ */
  608. case 0x5c: /* RFBI_STATUS */
  609. return s->rfbi.rxbuf;
  610. case 0x60: /* RFBI_CONFIG0 */
  611. return s->rfbi.config[0];
  612. case 0x64: /* RFBI_ONOFF_TIME0 */
  613. return s->rfbi.time[0];
  614. case 0x68: /* RFBI_CYCLE_TIME0 */
  615. return s->rfbi.time[1];
  616. case 0x6c: /* RFBI_DATA_CYCLE1_0 */
  617. return s->rfbi.data[0];
  618. case 0x70: /* RFBI_DATA_CYCLE2_0 */
  619. return s->rfbi.data[1];
  620. case 0x74: /* RFBI_DATA_CYCLE3_0 */
  621. return s->rfbi.data[2];
  622. case 0x78: /* RFBI_CONFIG1 */
  623. return s->rfbi.config[1];
  624. case 0x7c: /* RFBI_ONOFF_TIME1 */
  625. return s->rfbi.time[2];
  626. case 0x80: /* RFBI_CYCLE_TIME1 */
  627. return s->rfbi.time[3];
  628. case 0x84: /* RFBI_DATA_CYCLE1_1 */
  629. return s->rfbi.data[3];
  630. case 0x88: /* RFBI_DATA_CYCLE2_1 */
  631. return s->rfbi.data[4];
  632. case 0x8c: /* RFBI_DATA_CYCLE3_1 */
  633. return s->rfbi.data[5];
  634. case 0x90: /* RFBI_VSYNC_WIDTH */
  635. return s->rfbi.vsync;
  636. case 0x94: /* RFBI_HSYNC_WIDTH */
  637. return s->rfbi.hsync;
  638. }
  639. OMAP_BAD_REG(addr);
  640. return 0;
  641. }
  642. static void omap_rfbi_write(void *opaque, hwaddr addr,
  643. uint64_t value, unsigned size)
  644. {
  645. struct omap_dss_s *s = (struct omap_dss_s *) opaque;
  646. if (size != 4) {
  647. omap_badwidth_write32(opaque, addr, value);
  648. return;
  649. }
  650. switch (addr) {
  651. case 0x10: /* RFBI_SYSCONFIG */
  652. if (value & 2) /* SOFTRESET */
  653. omap_rfbi_reset(s);
  654. s->rfbi.idlemode = value & 0x19;
  655. break;
  656. case 0x40: /* RFBI_CONTROL */
  657. s->rfbi.control = value & 0xf;
  658. s->rfbi.enable = value & 1;
  659. if (value & (1 << 4) && /* ITE */
  660. !(s->rfbi.config[0] & s->rfbi.config[1] & 0xc))
  661. omap_rfbi_transfer_start(s);
  662. break;
  663. case 0x44: /* RFBI_PIXELCNT */
  664. s->rfbi.pixels = value;
  665. break;
  666. case 0x48: /* RFBI_LINE_NUMBER */
  667. s->rfbi.skiplines = value & 0x7ff;
  668. break;
  669. case 0x4c: /* RFBI_CMD */
  670. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  671. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 0, value & 0xffff);
  672. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  673. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 0, value & 0xffff);
  674. break;
  675. case 0x50: /* RFBI_PARAM */
  676. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  677. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff);
  678. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  679. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff);
  680. break;
  681. case 0x54: /* RFBI_DATA */
  682. /* TODO: take into account the format set up in s->rfbi.config[?] and
  683. * s->rfbi.data[?], but special-case the most usual scenario so that
  684. * speed doesn't suffer. */
  685. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) {
  686. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff);
  687. s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value >> 16);
  688. }
  689. if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) {
  690. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff);
  691. s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value >> 16);
  692. }
  693. if (!-- s->rfbi.pixels)
  694. omap_rfbi_transfer_stop(s);
  695. break;
  696. case 0x58: /* RFBI_READ */
  697. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  698. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1);
  699. else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  700. s->rfbi.rxbuf = s->rfbi.chip[1]->read(s->rfbi.chip[1]->opaque, 1);
  701. if (!-- s->rfbi.pixels)
  702. omap_rfbi_transfer_stop(s);
  703. break;
  704. case 0x5c: /* RFBI_STATUS */
  705. if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
  706. s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0);
  707. else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
  708. s->rfbi.rxbuf = s->rfbi.chip[1]->read(s->rfbi.chip[1]->opaque, 0);
  709. if (!-- s->rfbi.pixels)
  710. omap_rfbi_transfer_stop(s);
  711. break;
  712. case 0x60: /* RFBI_CONFIG0 */
  713. s->rfbi.config[0] = value & 0x003f1fff;
  714. break;
  715. case 0x64: /* RFBI_ONOFF_TIME0 */
  716. s->rfbi.time[0] = value & 0x3fffffff;
  717. break;
  718. case 0x68: /* RFBI_CYCLE_TIME0 */
  719. s->rfbi.time[1] = value & 0x0fffffff;
  720. break;
  721. case 0x6c: /* RFBI_DATA_CYCLE1_0 */
  722. s->rfbi.data[0] = value & 0x0f1f0f1f;
  723. break;
  724. case 0x70: /* RFBI_DATA_CYCLE2_0 */
  725. s->rfbi.data[1] = value & 0x0f1f0f1f;
  726. break;
  727. case 0x74: /* RFBI_DATA_CYCLE3_0 */
  728. s->rfbi.data[2] = value & 0x0f1f0f1f;
  729. break;
  730. case 0x78: /* RFBI_CONFIG1 */
  731. s->rfbi.config[1] = value & 0x003f1fff;
  732. break;
  733. case 0x7c: /* RFBI_ONOFF_TIME1 */
  734. s->rfbi.time[2] = value & 0x3fffffff;
  735. break;
  736. case 0x80: /* RFBI_CYCLE_TIME1 */
  737. s->rfbi.time[3] = value & 0x0fffffff;
  738. break;
  739. case 0x84: /* RFBI_DATA_CYCLE1_1 */
  740. s->rfbi.data[3] = value & 0x0f1f0f1f;
  741. break;
  742. case 0x88: /* RFBI_DATA_CYCLE2_1 */
  743. s->rfbi.data[4] = value & 0x0f1f0f1f;
  744. break;
  745. case 0x8c: /* RFBI_DATA_CYCLE3_1 */
  746. s->rfbi.data[5] = value & 0x0f1f0f1f;
  747. break;
  748. case 0x90: /* RFBI_VSYNC_WIDTH */
  749. s->rfbi.vsync = value & 0xffff;
  750. break;
  751. case 0x94: /* RFBI_HSYNC_WIDTH */
  752. s->rfbi.hsync = value & 0xffff;
  753. break;
  754. default:
  755. OMAP_BAD_REG(addr);
  756. }
  757. }
  758. static const MemoryRegionOps omap_rfbi_ops = {
  759. .read = omap_rfbi_read,
  760. .write = omap_rfbi_write,
  761. .endianness = DEVICE_NATIVE_ENDIAN,
  762. };
  763. static uint64_t omap_venc_read(void *opaque, hwaddr addr,
  764. unsigned size)
  765. {
  766. if (size != 4) {
  767. return omap_badwidth_read32(opaque, addr);
  768. }
  769. switch (addr) {
  770. case 0x00: /* REV_ID */
  771. case 0x04: /* STATUS */
  772. case 0x08: /* F_CONTROL */
  773. case 0x10: /* VIDOUT_CTRL */
  774. case 0x14: /* SYNC_CTRL */
  775. case 0x1c: /* LLEN */
  776. case 0x20: /* FLENS */
  777. case 0x24: /* HFLTR_CTRL */
  778. case 0x28: /* CC_CARR_WSS_CARR */
  779. case 0x2c: /* C_PHASE */
  780. case 0x30: /* GAIN_U */
  781. case 0x34: /* GAIN_V */
  782. case 0x38: /* GAIN_Y */
  783. case 0x3c: /* BLACK_LEVEL */
  784. case 0x40: /* BLANK_LEVEL */
  785. case 0x44: /* X_COLOR */
  786. case 0x48: /* M_CONTROL */
  787. case 0x4c: /* BSTAMP_WSS_DATA */
  788. case 0x50: /* S_CARR */
  789. case 0x54: /* LINE21 */
  790. case 0x58: /* LN_SEL */
  791. case 0x5c: /* L21__WC_CTL */
  792. case 0x60: /* HTRIGGER_VTRIGGER */
  793. case 0x64: /* SAVID__EAVID */
  794. case 0x68: /* FLEN__FAL */
  795. case 0x6c: /* LAL__PHASE_RESET */
  796. case 0x70: /* HS_INT_START_STOP_X */
  797. case 0x74: /* HS_EXT_START_STOP_X */
  798. case 0x78: /* VS_INT_START_X */
  799. case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */
  800. case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */
  801. case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */
  802. case 0x88: /* VS_EXT_STOP_Y */
  803. case 0x90: /* AVID_START_STOP_X */
  804. case 0x94: /* AVID_START_STOP_Y */
  805. case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */
  806. case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */
  807. case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */
  808. case 0xb0: /* TVDETGP_INT_START_STOP_X */
  809. case 0xb4: /* TVDETGP_INT_START_STOP_Y */
  810. case 0xb8: /* GEN_CTRL */
  811. case 0xc4: /* DAC_TST__DAC_A */
  812. case 0xc8: /* DAC_B__DAC_C */
  813. return 0;
  814. default:
  815. break;
  816. }
  817. OMAP_BAD_REG(addr);
  818. return 0;
  819. }
  820. static void omap_venc_write(void *opaque, hwaddr addr,
  821. uint64_t value, unsigned size)
  822. {
  823. if (size != 4) {
  824. omap_badwidth_write32(opaque, addr, size);
  825. return;
  826. }
  827. switch (addr) {
  828. case 0x08: /* F_CONTROL */
  829. case 0x10: /* VIDOUT_CTRL */
  830. case 0x14: /* SYNC_CTRL */
  831. case 0x1c: /* LLEN */
  832. case 0x20: /* FLENS */
  833. case 0x24: /* HFLTR_CTRL */
  834. case 0x28: /* CC_CARR_WSS_CARR */
  835. case 0x2c: /* C_PHASE */
  836. case 0x30: /* GAIN_U */
  837. case 0x34: /* GAIN_V */
  838. case 0x38: /* GAIN_Y */
  839. case 0x3c: /* BLACK_LEVEL */
  840. case 0x40: /* BLANK_LEVEL */
  841. case 0x44: /* X_COLOR */
  842. case 0x48: /* M_CONTROL */
  843. case 0x4c: /* BSTAMP_WSS_DATA */
  844. case 0x50: /* S_CARR */
  845. case 0x54: /* LINE21 */
  846. case 0x58: /* LN_SEL */
  847. case 0x5c: /* L21__WC_CTL */
  848. case 0x60: /* HTRIGGER_VTRIGGER */
  849. case 0x64: /* SAVID__EAVID */
  850. case 0x68: /* FLEN__FAL */
  851. case 0x6c: /* LAL__PHASE_RESET */
  852. case 0x70: /* HS_INT_START_STOP_X */
  853. case 0x74: /* HS_EXT_START_STOP_X */
  854. case 0x78: /* VS_INT_START_X */
  855. case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */
  856. case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */
  857. case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */
  858. case 0x88: /* VS_EXT_STOP_Y */
  859. case 0x90: /* AVID_START_STOP_X */
  860. case 0x94: /* AVID_START_STOP_Y */
  861. case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */
  862. case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */
  863. case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */
  864. case 0xb0: /* TVDETGP_INT_START_STOP_X */
  865. case 0xb4: /* TVDETGP_INT_START_STOP_Y */
  866. case 0xb8: /* GEN_CTRL */
  867. case 0xc4: /* DAC_TST__DAC_A */
  868. case 0xc8: /* DAC_B__DAC_C */
  869. break;
  870. default:
  871. OMAP_BAD_REG(addr);
  872. }
  873. }
  874. static const MemoryRegionOps omap_venc_ops = {
  875. .read = omap_venc_read,
  876. .write = omap_venc_write,
  877. .endianness = DEVICE_NATIVE_ENDIAN,
  878. };
  879. static uint64_t omap_im3_read(void *opaque, hwaddr addr,
  880. unsigned size)
  881. {
  882. if (size != 4) {
  883. return omap_badwidth_read32(opaque, addr);
  884. }
  885. switch (addr) {
  886. case 0x0a8: /* SBIMERRLOGA */
  887. case 0x0b0: /* SBIMERRLOG */
  888. case 0x190: /* SBIMSTATE */
  889. case 0x198: /* SBTMSTATE_L */
  890. case 0x19c: /* SBTMSTATE_H */
  891. case 0x1a8: /* SBIMCONFIG_L */
  892. case 0x1ac: /* SBIMCONFIG_H */
  893. case 0x1f8: /* SBID_L */
  894. case 0x1fc: /* SBID_H */
  895. return 0;
  896. default:
  897. break;
  898. }
  899. OMAP_BAD_REG(addr);
  900. return 0;
  901. }
  902. static void omap_im3_write(void *opaque, hwaddr addr,
  903. uint64_t value, unsigned size)
  904. {
  905. if (size != 4) {
  906. omap_badwidth_write32(opaque, addr, value);
  907. return;
  908. }
  909. switch (addr) {
  910. case 0x0b0: /* SBIMERRLOG */
  911. case 0x190: /* SBIMSTATE */
  912. case 0x198: /* SBTMSTATE_L */
  913. case 0x19c: /* SBTMSTATE_H */
  914. case 0x1a8: /* SBIMCONFIG_L */
  915. case 0x1ac: /* SBIMCONFIG_H */
  916. break;
  917. default:
  918. OMAP_BAD_REG(addr);
  919. }
  920. }
  921. static const MemoryRegionOps omap_im3_ops = {
  922. .read = omap_im3_read,
  923. .write = omap_im3_write,
  924. .endianness = DEVICE_NATIVE_ENDIAN,
  925. };
  926. struct omap_dss_s *omap_dss_init(struct omap_target_agent_s *ta,
  927. MemoryRegion *sysmem,
  928. hwaddr l3_base,
  929. qemu_irq irq, qemu_irq drq,
  930. omap_clk fck1, omap_clk fck2, omap_clk ck54m,
  931. omap_clk ick1, omap_clk ick2)
  932. {
  933. struct omap_dss_s *s = g_new0(struct omap_dss_s, 1);
  934. s->irq = irq;
  935. s->drq = drq;
  936. omap_dss_reset(s);
  937. memory_region_init_io(&s->iomem_diss1, NULL, &omap_diss_ops, s, "omap.diss1",
  938. omap_l4_region_size(ta, 0));
  939. memory_region_init_io(&s->iomem_disc1, NULL, &omap_disc_ops, s, "omap.disc1",
  940. omap_l4_region_size(ta, 1));
  941. memory_region_init_io(&s->iomem_rfbi1, NULL, &omap_rfbi_ops, s, "omap.rfbi1",
  942. omap_l4_region_size(ta, 2));
  943. memory_region_init_io(&s->iomem_venc1, NULL, &omap_venc_ops, s, "omap.venc1",
  944. omap_l4_region_size(ta, 3));
  945. memory_region_init_io(&s->iomem_im3, NULL, &omap_im3_ops, s,
  946. "omap.im3", 0x1000);
  947. omap_l4_attach(ta, 0, &s->iomem_diss1);
  948. omap_l4_attach(ta, 1, &s->iomem_disc1);
  949. omap_l4_attach(ta, 2, &s->iomem_rfbi1);
  950. omap_l4_attach(ta, 3, &s->iomem_venc1);
  951. memory_region_add_subregion(sysmem, l3_base, &s->iomem_im3);
  952. #if 0
  953. s->state = graphic_console_init(omap_update_display,
  954. omap_invalidate_display, omap_screen_dump, s);
  955. #endif
  956. return s;
  957. }
  958. void omap_rfbi_attach(struct omap_dss_s *s, int cs, struct rfbi_chip_s *chip)
  959. {
  960. if (cs < 0 || cs > 1)
  961. hw_error("%s: wrong CS %i\n", __func__, cs);
  962. s->rfbi.chip[cs] = chip;
  963. }