nrf51_uart.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. /*
  2. * nRF51 SoC UART emulation
  3. *
  4. * See nRF51 Series Reference Manual, "29 Universal Asynchronous
  5. * Receiver/Transmitter" for hardware specifications:
  6. * http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
  7. *
  8. * Copyright (c) 2018 Julia Suvorova <jusual@mail.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 or
  12. * (at your option) any later version.
  13. */
  14. #include "qemu/osdep.h"
  15. #include "qemu/log.h"
  16. #include "qemu/module.h"
  17. #include "hw/char/nrf51_uart.h"
  18. #include "hw/irq.h"
  19. #include "hw/qdev-properties.h"
  20. #include "migration/vmstate.h"
  21. #include "trace.h"
  22. static void nrf51_uart_update_irq(NRF51UARTState *s)
  23. {
  24. bool irq = false;
  25. irq |= (s->reg[R_UART_RXDRDY] &&
  26. (s->reg[R_UART_INTEN] & R_UART_INTEN_RXDRDY_MASK));
  27. irq |= (s->reg[R_UART_TXDRDY] &&
  28. (s->reg[R_UART_INTEN] & R_UART_INTEN_TXDRDY_MASK));
  29. irq |= (s->reg[R_UART_ERROR] &&
  30. (s->reg[R_UART_INTEN] & R_UART_INTEN_ERROR_MASK));
  31. irq |= (s->reg[R_UART_RXTO] &&
  32. (s->reg[R_UART_INTEN] & R_UART_INTEN_RXTO_MASK));
  33. qemu_set_irq(s->irq, irq);
  34. }
  35. static uint64_t uart_read(void *opaque, hwaddr addr, unsigned int size)
  36. {
  37. NRF51UARTState *s = NRF51_UART(opaque);
  38. uint64_t r;
  39. if (!s->enabled) {
  40. return 0;
  41. }
  42. switch (addr) {
  43. case A_UART_RXD:
  44. r = s->rx_fifo[s->rx_fifo_pos];
  45. if (s->rx_started && s->rx_fifo_len) {
  46. s->rx_fifo_pos = (s->rx_fifo_pos + 1) % UART_FIFO_LENGTH;
  47. s->rx_fifo_len--;
  48. if (s->rx_fifo_len) {
  49. s->reg[R_UART_RXDRDY] = 1;
  50. nrf51_uart_update_irq(s);
  51. }
  52. qemu_chr_fe_accept_input(&s->chr);
  53. }
  54. break;
  55. case A_UART_INTENSET:
  56. case A_UART_INTENCLR:
  57. case A_UART_INTEN:
  58. r = s->reg[R_UART_INTEN];
  59. break;
  60. default:
  61. r = s->reg[addr / 4];
  62. break;
  63. }
  64. trace_nrf51_uart_read(addr, r, size);
  65. return r;
  66. }
  67. static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque)
  68. {
  69. NRF51UARTState *s = NRF51_UART(opaque);
  70. int r;
  71. uint8_t c = s->reg[R_UART_TXD];
  72. s->watch_tag = 0;
  73. r = qemu_chr_fe_write(&s->chr, &c, 1);
  74. if (r <= 0) {
  75. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  76. uart_transmit, s);
  77. if (!s->watch_tag) {
  78. /* The hardware has no transmit error reporting,
  79. * so silently drop the byte
  80. */
  81. goto buffer_drained;
  82. }
  83. return FALSE;
  84. }
  85. buffer_drained:
  86. s->reg[R_UART_TXDRDY] = 1;
  87. s->pending_tx_byte = false;
  88. return FALSE;
  89. }
  90. static void uart_cancel_transmit(NRF51UARTState *s)
  91. {
  92. if (s->watch_tag) {
  93. g_source_remove(s->watch_tag);
  94. s->watch_tag = 0;
  95. }
  96. }
  97. static void uart_write(void *opaque, hwaddr addr,
  98. uint64_t value, unsigned int size)
  99. {
  100. NRF51UARTState *s = NRF51_UART(opaque);
  101. trace_nrf51_uart_write(addr, value, size);
  102. if (!s->enabled && (addr != A_UART_ENABLE)) {
  103. return;
  104. }
  105. switch (addr) {
  106. case A_UART_TXD:
  107. if (!s->pending_tx_byte && s->tx_started) {
  108. s->reg[R_UART_TXD] = value;
  109. s->pending_tx_byte = true;
  110. uart_transmit(NULL, G_IO_OUT, s);
  111. }
  112. break;
  113. case A_UART_INTEN:
  114. s->reg[R_UART_INTEN] = value;
  115. break;
  116. case A_UART_INTENSET:
  117. s->reg[R_UART_INTEN] |= value;
  118. break;
  119. case A_UART_INTENCLR:
  120. s->reg[R_UART_INTEN] &= ~value;
  121. break;
  122. case A_UART_TXDRDY ... A_UART_RXTO:
  123. s->reg[addr / 4] = value;
  124. break;
  125. case A_UART_ERRORSRC:
  126. s->reg[addr / 4] &= ~value;
  127. break;
  128. case A_UART_RXD:
  129. break;
  130. case A_UART_RXDRDY:
  131. if (value == 0) {
  132. s->reg[R_UART_RXDRDY] = 0;
  133. }
  134. break;
  135. case A_UART_STARTTX:
  136. if (value == 1) {
  137. s->tx_started = true;
  138. }
  139. break;
  140. case A_UART_STARTRX:
  141. if (value == 1) {
  142. s->rx_started = true;
  143. }
  144. break;
  145. case A_UART_ENABLE:
  146. if (value) {
  147. if (value == 4) {
  148. s->enabled = true;
  149. }
  150. break;
  151. }
  152. s->enabled = false;
  153. value = 1;
  154. /* fall through */
  155. case A_UART_SUSPEND:
  156. case A_UART_STOPTX:
  157. if (value == 1) {
  158. s->tx_started = false;
  159. }
  160. /* fall through */
  161. case A_UART_STOPRX:
  162. if (addr != A_UART_STOPTX && value == 1) {
  163. s->rx_started = false;
  164. s->reg[R_UART_RXTO] = 1;
  165. }
  166. break;
  167. default:
  168. s->reg[addr / 4] = value;
  169. break;
  170. }
  171. nrf51_uart_update_irq(s);
  172. }
  173. static const MemoryRegionOps uart_ops = {
  174. .read = uart_read,
  175. .write = uart_write,
  176. .endianness = DEVICE_LITTLE_ENDIAN,
  177. };
  178. static void nrf51_uart_reset(DeviceState *dev)
  179. {
  180. NRF51UARTState *s = NRF51_UART(dev);
  181. s->pending_tx_byte = 0;
  182. uart_cancel_transmit(s);
  183. memset(s->reg, 0, sizeof(s->reg));
  184. s->reg[R_UART_PSELRTS] = 0xFFFFFFFF;
  185. s->reg[R_UART_PSELTXD] = 0xFFFFFFFF;
  186. s->reg[R_UART_PSELCTS] = 0xFFFFFFFF;
  187. s->reg[R_UART_PSELRXD] = 0xFFFFFFFF;
  188. s->reg[R_UART_BAUDRATE] = 0x4000000;
  189. s->rx_fifo_len = 0;
  190. s->rx_fifo_pos = 0;
  191. s->rx_started = false;
  192. s->tx_started = false;
  193. s->enabled = false;
  194. }
  195. static void uart_receive(void *opaque, const uint8_t *buf, int size)
  196. {
  197. NRF51UARTState *s = NRF51_UART(opaque);
  198. int i;
  199. if (size == 0 || s->rx_fifo_len >= UART_FIFO_LENGTH) {
  200. return;
  201. }
  202. for (i = 0; i < size; i++) {
  203. uint32_t pos = (s->rx_fifo_pos + s->rx_fifo_len) % UART_FIFO_LENGTH;
  204. s->rx_fifo[pos] = buf[i];
  205. s->rx_fifo_len++;
  206. }
  207. s->reg[R_UART_RXDRDY] = 1;
  208. nrf51_uart_update_irq(s);
  209. }
  210. static int uart_can_receive(void *opaque)
  211. {
  212. NRF51UARTState *s = NRF51_UART(opaque);
  213. return s->rx_started ? (UART_FIFO_LENGTH - s->rx_fifo_len) : 0;
  214. }
  215. static void uart_event(void *opaque, int event)
  216. {
  217. NRF51UARTState *s = NRF51_UART(opaque);
  218. if (event == CHR_EVENT_BREAK) {
  219. s->reg[R_UART_ERRORSRC] |= 3;
  220. s->reg[R_UART_ERROR] = 1;
  221. nrf51_uart_update_irq(s);
  222. }
  223. }
  224. static void nrf51_uart_realize(DeviceState *dev, Error **errp)
  225. {
  226. NRF51UARTState *s = NRF51_UART(dev);
  227. qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
  228. uart_event, NULL, s, NULL, true);
  229. }
  230. static void nrf51_uart_init(Object *obj)
  231. {
  232. NRF51UARTState *s = NRF51_UART(obj);
  233. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  234. memory_region_init_io(&s->iomem, obj, &uart_ops, s,
  235. "nrf51_soc.uart", UART_SIZE);
  236. sysbus_init_mmio(sbd, &s->iomem);
  237. sysbus_init_irq(sbd, &s->irq);
  238. }
  239. static int nrf51_uart_post_load(void *opaque, int version_id)
  240. {
  241. NRF51UARTState *s = NRF51_UART(opaque);
  242. if (s->pending_tx_byte) {
  243. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  244. uart_transmit, s);
  245. }
  246. return 0;
  247. }
  248. static const VMStateDescription nrf51_uart_vmstate = {
  249. .name = "nrf51_soc.uart",
  250. .post_load = nrf51_uart_post_load,
  251. .fields = (VMStateField[]) {
  252. VMSTATE_UINT32_ARRAY(reg, NRF51UARTState, 0x56C),
  253. VMSTATE_UINT8_ARRAY(rx_fifo, NRF51UARTState, UART_FIFO_LENGTH),
  254. VMSTATE_UINT32(rx_fifo_pos, NRF51UARTState),
  255. VMSTATE_UINT32(rx_fifo_len, NRF51UARTState),
  256. VMSTATE_BOOL(rx_started, NRF51UARTState),
  257. VMSTATE_BOOL(tx_started, NRF51UARTState),
  258. VMSTATE_BOOL(pending_tx_byte, NRF51UARTState),
  259. VMSTATE_BOOL(enabled, NRF51UARTState),
  260. VMSTATE_END_OF_LIST()
  261. }
  262. };
  263. static Property nrf51_uart_properties[] = {
  264. DEFINE_PROP_CHR("chardev", NRF51UARTState, chr),
  265. DEFINE_PROP_END_OF_LIST(),
  266. };
  267. static void nrf51_uart_class_init(ObjectClass *klass, void *data)
  268. {
  269. DeviceClass *dc = DEVICE_CLASS(klass);
  270. dc->reset = nrf51_uart_reset;
  271. dc->realize = nrf51_uart_realize;
  272. dc->props = nrf51_uart_properties;
  273. dc->vmsd = &nrf51_uart_vmstate;
  274. }
  275. static const TypeInfo nrf51_uart_info = {
  276. .name = TYPE_NRF51_UART,
  277. .parent = TYPE_SYS_BUS_DEVICE,
  278. .instance_size = sizeof(NRF51UARTState),
  279. .instance_init = nrf51_uart_init,
  280. .class_init = nrf51_uart_class_init
  281. };
  282. static void nrf51_uart_register_types(void)
  283. {
  284. type_register_static(&nrf51_uart_info);
  285. }
  286. type_init(nrf51_uart_register_types)