intel-hda.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. *
  4. * written by Gerd Hoffmann <kraxel@redhat.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "hw/pci/pci.h"
  21. #include "hw/qdev-properties.h"
  22. #include "hw/pci/msi.h"
  23. #include "qemu/timer.h"
  24. #include "qemu/bitops.h"
  25. #include "qemu/log.h"
  26. #include "qemu/module.h"
  27. #include "hw/audio/soundhw.h"
  28. #include "intel-hda.h"
  29. #include "migration/vmstate.h"
  30. #include "intel-hda-defs.h"
  31. #include "sysemu/dma.h"
  32. #include "qapi/error.h"
  33. /* --------------------------------------------------------------------- */
  34. /* hda bus */
  35. static Property hda_props[] = {
  36. DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
  37. DEFINE_PROP_END_OF_LIST()
  38. };
  39. static const TypeInfo hda_codec_bus_info = {
  40. .name = TYPE_HDA_BUS,
  41. .parent = TYPE_BUS,
  42. .instance_size = sizeof(HDACodecBus),
  43. };
  44. void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size,
  45. hda_codec_response_func response,
  46. hda_codec_xfer_func xfer)
  47. {
  48. qbus_create_inplace(bus, bus_size, TYPE_HDA_BUS, dev, NULL);
  49. bus->response = response;
  50. bus->xfer = xfer;
  51. }
  52. static void hda_codec_dev_realize(DeviceState *qdev, Error **errp)
  53. {
  54. HDACodecBus *bus = HDA_BUS(qdev->parent_bus);
  55. HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
  56. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  57. if (dev->cad == -1) {
  58. dev->cad = bus->next_cad;
  59. }
  60. if (dev->cad >= 15) {
  61. error_setg(errp, "HDA audio codec address is full");
  62. return;
  63. }
  64. bus->next_cad = dev->cad + 1;
  65. if (cdc->init(dev) != 0) {
  66. error_setg(errp, "HDA audio init failed");
  67. }
  68. }
  69. static void hda_codec_dev_unrealize(DeviceState *qdev, Error **errp)
  70. {
  71. HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
  72. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  73. if (cdc->exit) {
  74. cdc->exit(dev);
  75. }
  76. }
  77. HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
  78. {
  79. BusChild *kid;
  80. HDACodecDevice *cdev;
  81. QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) {
  82. DeviceState *qdev = kid->child;
  83. cdev = HDA_CODEC_DEVICE(qdev);
  84. if (cdev->cad == cad) {
  85. return cdev;
  86. }
  87. }
  88. return NULL;
  89. }
  90. void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  91. {
  92. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  93. bus->response(dev, solicited, response);
  94. }
  95. bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  96. uint8_t *buf, uint32_t len)
  97. {
  98. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  99. return bus->xfer(dev, stnr, output, buf, len);
  100. }
  101. /* --------------------------------------------------------------------- */
  102. /* intel hda emulation */
  103. typedef struct IntelHDAStream IntelHDAStream;
  104. typedef struct IntelHDAState IntelHDAState;
  105. typedef struct IntelHDAReg IntelHDAReg;
  106. typedef struct bpl {
  107. uint64_t addr;
  108. uint32_t len;
  109. uint32_t flags;
  110. } bpl;
  111. struct IntelHDAStream {
  112. /* registers */
  113. uint32_t ctl;
  114. uint32_t lpib;
  115. uint32_t cbl;
  116. uint32_t lvi;
  117. uint32_t fmt;
  118. uint32_t bdlp_lbase;
  119. uint32_t bdlp_ubase;
  120. /* state */
  121. bpl *bpl;
  122. uint32_t bentries;
  123. uint32_t bsize, be, bp;
  124. };
  125. struct IntelHDAState {
  126. PCIDevice pci;
  127. const char *name;
  128. HDACodecBus codecs;
  129. /* registers */
  130. uint32_t g_ctl;
  131. uint32_t wake_en;
  132. uint32_t state_sts;
  133. uint32_t int_ctl;
  134. uint32_t int_sts;
  135. uint32_t wall_clk;
  136. uint32_t corb_lbase;
  137. uint32_t corb_ubase;
  138. uint32_t corb_rp;
  139. uint32_t corb_wp;
  140. uint32_t corb_ctl;
  141. uint32_t corb_sts;
  142. uint32_t corb_size;
  143. uint32_t rirb_lbase;
  144. uint32_t rirb_ubase;
  145. uint32_t rirb_wp;
  146. uint32_t rirb_cnt;
  147. uint32_t rirb_ctl;
  148. uint32_t rirb_sts;
  149. uint32_t rirb_size;
  150. uint32_t dp_lbase;
  151. uint32_t dp_ubase;
  152. uint32_t icw;
  153. uint32_t irr;
  154. uint32_t ics;
  155. /* streams */
  156. IntelHDAStream st[8];
  157. /* state */
  158. MemoryRegion mmio;
  159. uint32_t rirb_count;
  160. int64_t wall_base_ns;
  161. /* debug logging */
  162. const IntelHDAReg *last_reg;
  163. uint32_t last_val;
  164. uint32_t last_write;
  165. uint32_t last_sec;
  166. uint32_t repeat_count;
  167. /* properties */
  168. uint32_t debug;
  169. OnOffAuto msi;
  170. bool old_msi_addr;
  171. };
  172. #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic"
  173. #define INTEL_HDA(obj) \
  174. OBJECT_CHECK(IntelHDAState, (obj), TYPE_INTEL_HDA_GENERIC)
  175. struct IntelHDAReg {
  176. const char *name; /* register name */
  177. uint32_t size; /* size in bytes */
  178. uint32_t reset; /* reset value */
  179. uint32_t wmask; /* write mask */
  180. uint32_t wclear; /* write 1 to clear bits */
  181. uint32_t offset; /* location in IntelHDAState */
  182. uint32_t shift; /* byte access entries for dwords */
  183. uint32_t stream;
  184. void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
  185. void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
  186. };
  187. static void intel_hda_reset(DeviceState *dev);
  188. /* --------------------------------------------------------------------- */
  189. static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase)
  190. {
  191. return ((uint64_t)ubase << 32) | lbase;
  192. }
  193. static void intel_hda_update_int_sts(IntelHDAState *d)
  194. {
  195. uint32_t sts = 0;
  196. uint32_t i;
  197. /* update controller status */
  198. if (d->rirb_sts & ICH6_RBSTS_IRQ) {
  199. sts |= (1 << 30);
  200. }
  201. if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
  202. sts |= (1 << 30);
  203. }
  204. if (d->state_sts & d->wake_en) {
  205. sts |= (1 << 30);
  206. }
  207. /* update stream status */
  208. for (i = 0; i < 8; i++) {
  209. /* buffer completion interrupt */
  210. if (d->st[i].ctl & (1 << 26)) {
  211. sts |= (1 << i);
  212. }
  213. }
  214. /* update global status */
  215. if (sts & d->int_ctl) {
  216. sts |= (1U << 31);
  217. }
  218. d->int_sts = sts;
  219. }
  220. static void intel_hda_update_irq(IntelHDAState *d)
  221. {
  222. bool msi = msi_enabled(&d->pci);
  223. int level;
  224. intel_hda_update_int_sts(d);
  225. if (d->int_sts & (1U << 31) && d->int_ctl & (1U << 31)) {
  226. level = 1;
  227. } else {
  228. level = 0;
  229. }
  230. dprint(d, 2, "%s: level %d [%s]\n", __func__,
  231. level, msi ? "msi" : "intx");
  232. if (msi) {
  233. if (level) {
  234. msi_notify(&d->pci, 0);
  235. }
  236. } else {
  237. pci_set_irq(&d->pci, level);
  238. }
  239. }
  240. static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
  241. {
  242. uint32_t cad, nid, data;
  243. HDACodecDevice *codec;
  244. HDACodecDeviceClass *cdc;
  245. cad = (verb >> 28) & 0x0f;
  246. if (verb & (1 << 27)) {
  247. /* indirect node addressing, not specified in HDA 1.0 */
  248. dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __func__);
  249. return -1;
  250. }
  251. nid = (verb >> 20) & 0x7f;
  252. data = verb & 0xfffff;
  253. codec = hda_codec_find(&d->codecs, cad);
  254. if (codec == NULL) {
  255. dprint(d, 1, "%s: addressed non-existing codec\n", __func__);
  256. return -1;
  257. }
  258. cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
  259. cdc->command(codec, nid, data);
  260. return 0;
  261. }
  262. static void intel_hda_corb_run(IntelHDAState *d)
  263. {
  264. hwaddr addr;
  265. uint32_t rp, verb;
  266. if (d->ics & ICH6_IRS_BUSY) {
  267. dprint(d, 2, "%s: [icw] verb 0x%08x\n", __func__, d->icw);
  268. intel_hda_send_command(d, d->icw);
  269. return;
  270. }
  271. for (;;) {
  272. if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
  273. dprint(d, 2, "%s: !run\n", __func__);
  274. return;
  275. }
  276. if ((d->corb_rp & 0xff) == d->corb_wp) {
  277. dprint(d, 2, "%s: corb ring empty\n", __func__);
  278. return;
  279. }
  280. if (d->rirb_count == d->rirb_cnt) {
  281. dprint(d, 2, "%s: rirb count reached\n", __func__);
  282. return;
  283. }
  284. rp = (d->corb_rp + 1) & 0xff;
  285. addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
  286. verb = ldl_le_pci_dma(&d->pci, addr + 4*rp);
  287. d->corb_rp = rp;
  288. dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __func__, rp, verb);
  289. intel_hda_send_command(d, verb);
  290. }
  291. }
  292. static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  293. {
  294. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  295. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  296. hwaddr addr;
  297. uint32_t wp, ex;
  298. if (d->ics & ICH6_IRS_BUSY) {
  299. dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
  300. __func__, response, dev->cad);
  301. d->irr = response;
  302. d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
  303. d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
  304. return;
  305. }
  306. if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
  307. dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __func__);
  308. return;
  309. }
  310. ex = (solicited ? 0 : (1 << 4)) | dev->cad;
  311. wp = (d->rirb_wp + 1) & 0xff;
  312. addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
  313. stl_le_pci_dma(&d->pci, addr + 8*wp, response);
  314. stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex);
  315. d->rirb_wp = wp;
  316. dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
  317. __func__, wp, response, ex);
  318. d->rirb_count++;
  319. if (d->rirb_count == d->rirb_cnt) {
  320. dprint(d, 2, "%s: rirb count reached (%d)\n", __func__, d->rirb_count);
  321. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  322. d->rirb_sts |= ICH6_RBSTS_IRQ;
  323. intel_hda_update_irq(d);
  324. }
  325. } else if ((d->corb_rp & 0xff) == d->corb_wp) {
  326. dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __func__,
  327. d->rirb_count, d->rirb_cnt);
  328. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  329. d->rirb_sts |= ICH6_RBSTS_IRQ;
  330. intel_hda_update_irq(d);
  331. }
  332. }
  333. }
  334. static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  335. uint8_t *buf, uint32_t len)
  336. {
  337. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  338. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  339. hwaddr addr;
  340. uint32_t s, copy, left;
  341. IntelHDAStream *st;
  342. bool irq = false;
  343. st = output ? d->st + 4 : d->st;
  344. for (s = 0; s < 4; s++) {
  345. if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
  346. st = st + s;
  347. break;
  348. }
  349. }
  350. if (s == 4) {
  351. return false;
  352. }
  353. if (st->bpl == NULL) {
  354. return false;
  355. }
  356. left = len;
  357. s = st->bentries;
  358. while (left > 0 && s-- > 0) {
  359. copy = left;
  360. if (copy > st->bsize - st->lpib)
  361. copy = st->bsize - st->lpib;
  362. if (copy > st->bpl[st->be].len - st->bp)
  363. copy = st->bpl[st->be].len - st->bp;
  364. dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
  365. st->be, st->bp, st->bpl[st->be].len, copy);
  366. pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output);
  367. st->lpib += copy;
  368. st->bp += copy;
  369. buf += copy;
  370. left -= copy;
  371. if (st->bpl[st->be].len == st->bp) {
  372. /* bpl entry filled */
  373. if (st->bpl[st->be].flags & 0x01) {
  374. irq = true;
  375. }
  376. st->bp = 0;
  377. st->be++;
  378. if (st->be == st->bentries) {
  379. /* bpl wrap around */
  380. st->be = 0;
  381. st->lpib = 0;
  382. }
  383. }
  384. }
  385. if (d->dp_lbase & 0x01) {
  386. s = st - d->st;
  387. addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
  388. stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib);
  389. }
  390. dprint(d, 3, "dma: --\n");
  391. if (irq) {
  392. st->ctl |= (1 << 26); /* buffer completion interrupt */
  393. intel_hda_update_irq(d);
  394. }
  395. return true;
  396. }
  397. static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
  398. {
  399. hwaddr addr;
  400. uint8_t buf[16];
  401. uint32_t i;
  402. addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
  403. st->bentries = st->lvi +1;
  404. g_free(st->bpl);
  405. st->bpl = g_malloc(sizeof(bpl) * st->bentries);
  406. for (i = 0; i < st->bentries; i++, addr += 16) {
  407. pci_dma_read(&d->pci, addr, buf, 16);
  408. st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
  409. st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
  410. st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
  411. dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
  412. i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
  413. }
  414. st->bsize = st->cbl;
  415. st->lpib = 0;
  416. st->be = 0;
  417. st->bp = 0;
  418. }
  419. static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
  420. {
  421. BusChild *kid;
  422. HDACodecDevice *cdev;
  423. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  424. DeviceState *qdev = kid->child;
  425. HDACodecDeviceClass *cdc;
  426. cdev = HDA_CODEC_DEVICE(qdev);
  427. cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
  428. if (cdc->stream) {
  429. cdc->stream(cdev, stream, running, output);
  430. }
  431. }
  432. }
  433. /* --------------------------------------------------------------------- */
  434. static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  435. {
  436. if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
  437. intel_hda_reset(DEVICE(d));
  438. }
  439. }
  440. static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  441. {
  442. intel_hda_update_irq(d);
  443. }
  444. static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  445. {
  446. intel_hda_update_irq(d);
  447. }
  448. static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  449. {
  450. intel_hda_update_irq(d);
  451. }
  452. static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
  453. {
  454. int64_t ns;
  455. ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns;
  456. d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
  457. }
  458. static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  459. {
  460. intel_hda_corb_run(d);
  461. }
  462. static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  463. {
  464. intel_hda_corb_run(d);
  465. }
  466. static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  467. {
  468. if (d->rirb_wp & ICH6_RIRBWP_RST) {
  469. d->rirb_wp = 0;
  470. }
  471. }
  472. static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  473. {
  474. intel_hda_update_irq(d);
  475. if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
  476. /* cleared ICH6_RBSTS_IRQ */
  477. d->rirb_count = 0;
  478. intel_hda_corb_run(d);
  479. }
  480. }
  481. static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  482. {
  483. if (d->ics & ICH6_IRS_BUSY) {
  484. intel_hda_corb_run(d);
  485. }
  486. }
  487. static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  488. {
  489. bool output = reg->stream >= 4;
  490. IntelHDAStream *st = d->st + reg->stream;
  491. if (st->ctl & 0x01) {
  492. /* reset */
  493. dprint(d, 1, "st #%d: reset\n", reg->stream);
  494. st->ctl = SD_STS_FIFO_READY << 24;
  495. }
  496. if ((st->ctl & 0x02) != (old & 0x02)) {
  497. uint32_t stnr = (st->ctl >> 20) & 0x0f;
  498. /* run bit flipped */
  499. if (st->ctl & 0x02) {
  500. /* start */
  501. dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
  502. reg->stream, stnr, st->cbl);
  503. intel_hda_parse_bdl(d, st);
  504. intel_hda_notify_codecs(d, stnr, true, output);
  505. } else {
  506. /* stop */
  507. dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
  508. intel_hda_notify_codecs(d, stnr, false, output);
  509. }
  510. }
  511. intel_hda_update_irq(d);
  512. }
  513. /* --------------------------------------------------------------------- */
  514. #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
  515. static const struct IntelHDAReg regtab[] = {
  516. /* global */
  517. [ ICH6_REG_GCAP ] = {
  518. .name = "GCAP",
  519. .size = 2,
  520. .reset = 0x4401,
  521. },
  522. [ ICH6_REG_VMIN ] = {
  523. .name = "VMIN",
  524. .size = 1,
  525. },
  526. [ ICH6_REG_VMAJ ] = {
  527. .name = "VMAJ",
  528. .size = 1,
  529. .reset = 1,
  530. },
  531. [ ICH6_REG_OUTPAY ] = {
  532. .name = "OUTPAY",
  533. .size = 2,
  534. .reset = 0x3c,
  535. },
  536. [ ICH6_REG_INPAY ] = {
  537. .name = "INPAY",
  538. .size = 2,
  539. .reset = 0x1d,
  540. },
  541. [ ICH6_REG_GCTL ] = {
  542. .name = "GCTL",
  543. .size = 4,
  544. .wmask = 0x0103,
  545. .offset = offsetof(IntelHDAState, g_ctl),
  546. .whandler = intel_hda_set_g_ctl,
  547. },
  548. [ ICH6_REG_WAKEEN ] = {
  549. .name = "WAKEEN",
  550. .size = 2,
  551. .wmask = 0x7fff,
  552. .offset = offsetof(IntelHDAState, wake_en),
  553. .whandler = intel_hda_set_wake_en,
  554. },
  555. [ ICH6_REG_STATESTS ] = {
  556. .name = "STATESTS",
  557. .size = 2,
  558. .wmask = 0x7fff,
  559. .wclear = 0x7fff,
  560. .offset = offsetof(IntelHDAState, state_sts),
  561. .whandler = intel_hda_set_state_sts,
  562. },
  563. /* interrupts */
  564. [ ICH6_REG_INTCTL ] = {
  565. .name = "INTCTL",
  566. .size = 4,
  567. .wmask = 0xc00000ff,
  568. .offset = offsetof(IntelHDAState, int_ctl),
  569. .whandler = intel_hda_set_int_ctl,
  570. },
  571. [ ICH6_REG_INTSTS ] = {
  572. .name = "INTSTS",
  573. .size = 4,
  574. .wmask = 0xc00000ff,
  575. .wclear = 0xc00000ff,
  576. .offset = offsetof(IntelHDAState, int_sts),
  577. },
  578. /* misc */
  579. [ ICH6_REG_WALLCLK ] = {
  580. .name = "WALLCLK",
  581. .size = 4,
  582. .offset = offsetof(IntelHDAState, wall_clk),
  583. .rhandler = intel_hda_get_wall_clk,
  584. },
  585. [ ICH6_REG_WALLCLK + 0x2000 ] = {
  586. .name = "WALLCLK(alias)",
  587. .size = 4,
  588. .offset = offsetof(IntelHDAState, wall_clk),
  589. .rhandler = intel_hda_get_wall_clk,
  590. },
  591. /* dma engine */
  592. [ ICH6_REG_CORBLBASE ] = {
  593. .name = "CORBLBASE",
  594. .size = 4,
  595. .wmask = 0xffffff80,
  596. .offset = offsetof(IntelHDAState, corb_lbase),
  597. },
  598. [ ICH6_REG_CORBUBASE ] = {
  599. .name = "CORBUBASE",
  600. .size = 4,
  601. .wmask = 0xffffffff,
  602. .offset = offsetof(IntelHDAState, corb_ubase),
  603. },
  604. [ ICH6_REG_CORBWP ] = {
  605. .name = "CORBWP",
  606. .size = 2,
  607. .wmask = 0xff,
  608. .offset = offsetof(IntelHDAState, corb_wp),
  609. .whandler = intel_hda_set_corb_wp,
  610. },
  611. [ ICH6_REG_CORBRP ] = {
  612. .name = "CORBRP",
  613. .size = 2,
  614. .wmask = 0x80ff,
  615. .offset = offsetof(IntelHDAState, corb_rp),
  616. },
  617. [ ICH6_REG_CORBCTL ] = {
  618. .name = "CORBCTL",
  619. .size = 1,
  620. .wmask = 0x03,
  621. .offset = offsetof(IntelHDAState, corb_ctl),
  622. .whandler = intel_hda_set_corb_ctl,
  623. },
  624. [ ICH6_REG_CORBSTS ] = {
  625. .name = "CORBSTS",
  626. .size = 1,
  627. .wmask = 0x01,
  628. .wclear = 0x01,
  629. .offset = offsetof(IntelHDAState, corb_sts),
  630. },
  631. [ ICH6_REG_CORBSIZE ] = {
  632. .name = "CORBSIZE",
  633. .size = 1,
  634. .reset = 0x42,
  635. .offset = offsetof(IntelHDAState, corb_size),
  636. },
  637. [ ICH6_REG_RIRBLBASE ] = {
  638. .name = "RIRBLBASE",
  639. .size = 4,
  640. .wmask = 0xffffff80,
  641. .offset = offsetof(IntelHDAState, rirb_lbase),
  642. },
  643. [ ICH6_REG_RIRBUBASE ] = {
  644. .name = "RIRBUBASE",
  645. .size = 4,
  646. .wmask = 0xffffffff,
  647. .offset = offsetof(IntelHDAState, rirb_ubase),
  648. },
  649. [ ICH6_REG_RIRBWP ] = {
  650. .name = "RIRBWP",
  651. .size = 2,
  652. .wmask = 0x8000,
  653. .offset = offsetof(IntelHDAState, rirb_wp),
  654. .whandler = intel_hda_set_rirb_wp,
  655. },
  656. [ ICH6_REG_RINTCNT ] = {
  657. .name = "RINTCNT",
  658. .size = 2,
  659. .wmask = 0xff,
  660. .offset = offsetof(IntelHDAState, rirb_cnt),
  661. },
  662. [ ICH6_REG_RIRBCTL ] = {
  663. .name = "RIRBCTL",
  664. .size = 1,
  665. .wmask = 0x07,
  666. .offset = offsetof(IntelHDAState, rirb_ctl),
  667. },
  668. [ ICH6_REG_RIRBSTS ] = {
  669. .name = "RIRBSTS",
  670. .size = 1,
  671. .wmask = 0x05,
  672. .wclear = 0x05,
  673. .offset = offsetof(IntelHDAState, rirb_sts),
  674. .whandler = intel_hda_set_rirb_sts,
  675. },
  676. [ ICH6_REG_RIRBSIZE ] = {
  677. .name = "RIRBSIZE",
  678. .size = 1,
  679. .reset = 0x42,
  680. .offset = offsetof(IntelHDAState, rirb_size),
  681. },
  682. [ ICH6_REG_DPLBASE ] = {
  683. .name = "DPLBASE",
  684. .size = 4,
  685. .wmask = 0xffffff81,
  686. .offset = offsetof(IntelHDAState, dp_lbase),
  687. },
  688. [ ICH6_REG_DPUBASE ] = {
  689. .name = "DPUBASE",
  690. .size = 4,
  691. .wmask = 0xffffffff,
  692. .offset = offsetof(IntelHDAState, dp_ubase),
  693. },
  694. [ ICH6_REG_IC ] = {
  695. .name = "ICW",
  696. .size = 4,
  697. .wmask = 0xffffffff,
  698. .offset = offsetof(IntelHDAState, icw),
  699. },
  700. [ ICH6_REG_IR ] = {
  701. .name = "IRR",
  702. .size = 4,
  703. .offset = offsetof(IntelHDAState, irr),
  704. },
  705. [ ICH6_REG_IRS ] = {
  706. .name = "ICS",
  707. .size = 2,
  708. .wmask = 0x0003,
  709. .wclear = 0x0002,
  710. .offset = offsetof(IntelHDAState, ics),
  711. .whandler = intel_hda_set_ics,
  712. },
  713. #define HDA_STREAM(_t, _i) \
  714. [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
  715. .stream = _i, \
  716. .name = _t stringify(_i) " CTL", \
  717. .size = 4, \
  718. .wmask = 0x1cff001f, \
  719. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  720. .whandler = intel_hda_set_st_ctl, \
  721. }, \
  722. [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
  723. .stream = _i, \
  724. .name = _t stringify(_i) " CTL(stnr)", \
  725. .size = 1, \
  726. .shift = 16, \
  727. .wmask = 0x00ff0000, \
  728. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  729. .whandler = intel_hda_set_st_ctl, \
  730. }, \
  731. [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
  732. .stream = _i, \
  733. .name = _t stringify(_i) " CTL(sts)", \
  734. .size = 1, \
  735. .shift = 24, \
  736. .wmask = 0x1c000000, \
  737. .wclear = 0x1c000000, \
  738. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  739. .whandler = intel_hda_set_st_ctl, \
  740. .reset = SD_STS_FIFO_READY << 24 \
  741. }, \
  742. [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
  743. .stream = _i, \
  744. .name = _t stringify(_i) " LPIB", \
  745. .size = 4, \
  746. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  747. }, \
  748. [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
  749. .stream = _i, \
  750. .name = _t stringify(_i) " LPIB(alias)", \
  751. .size = 4, \
  752. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  753. }, \
  754. [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
  755. .stream = _i, \
  756. .name = _t stringify(_i) " CBL", \
  757. .size = 4, \
  758. .wmask = 0xffffffff, \
  759. .offset = offsetof(IntelHDAState, st[_i].cbl), \
  760. }, \
  761. [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
  762. .stream = _i, \
  763. .name = _t stringify(_i) " LVI", \
  764. .size = 2, \
  765. .wmask = 0x00ff, \
  766. .offset = offsetof(IntelHDAState, st[_i].lvi), \
  767. }, \
  768. [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
  769. .stream = _i, \
  770. .name = _t stringify(_i) " FIFOS", \
  771. .size = 2, \
  772. .reset = HDA_BUFFER_SIZE, \
  773. }, \
  774. [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
  775. .stream = _i, \
  776. .name = _t stringify(_i) " FMT", \
  777. .size = 2, \
  778. .wmask = 0x7f7f, \
  779. .offset = offsetof(IntelHDAState, st[_i].fmt), \
  780. }, \
  781. [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
  782. .stream = _i, \
  783. .name = _t stringify(_i) " BDLPL", \
  784. .size = 4, \
  785. .wmask = 0xffffff80, \
  786. .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
  787. }, \
  788. [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
  789. .stream = _i, \
  790. .name = _t stringify(_i) " BDLPU", \
  791. .size = 4, \
  792. .wmask = 0xffffffff, \
  793. .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
  794. }, \
  795. HDA_STREAM("IN", 0)
  796. HDA_STREAM("IN", 1)
  797. HDA_STREAM("IN", 2)
  798. HDA_STREAM("IN", 3)
  799. HDA_STREAM("OUT", 4)
  800. HDA_STREAM("OUT", 5)
  801. HDA_STREAM("OUT", 6)
  802. HDA_STREAM("OUT", 7)
  803. };
  804. static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr)
  805. {
  806. const IntelHDAReg *reg;
  807. if (addr >= ARRAY_SIZE(regtab)) {
  808. goto noreg;
  809. }
  810. reg = regtab+addr;
  811. if (reg->name == NULL) {
  812. goto noreg;
  813. }
  814. return reg;
  815. noreg:
  816. dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
  817. return NULL;
  818. }
  819. static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
  820. {
  821. uint8_t *addr = (void*)d;
  822. addr += reg->offset;
  823. return (uint32_t*)addr;
  824. }
  825. static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
  826. uint32_t wmask)
  827. {
  828. uint32_t *addr;
  829. uint32_t old;
  830. if (!reg) {
  831. return;
  832. }
  833. if (!reg->wmask) {
  834. qemu_log_mask(LOG_GUEST_ERROR, "intel-hda: write to r/o reg %s\n",
  835. reg->name);
  836. return;
  837. }
  838. if (d->debug) {
  839. time_t now = time(NULL);
  840. if (d->last_write && d->last_reg == reg && d->last_val == val) {
  841. d->repeat_count++;
  842. if (d->last_sec != now) {
  843. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  844. d->last_sec = now;
  845. d->repeat_count = 0;
  846. }
  847. } else {
  848. if (d->repeat_count) {
  849. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  850. }
  851. dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
  852. d->last_write = 1;
  853. d->last_reg = reg;
  854. d->last_val = val;
  855. d->last_sec = now;
  856. d->repeat_count = 0;
  857. }
  858. }
  859. assert(reg->offset != 0);
  860. addr = intel_hda_reg_addr(d, reg);
  861. old = *addr;
  862. if (reg->shift) {
  863. val <<= reg->shift;
  864. wmask <<= reg->shift;
  865. }
  866. wmask &= reg->wmask;
  867. *addr &= ~wmask;
  868. *addr |= wmask & val;
  869. *addr &= ~(val & reg->wclear);
  870. if (reg->whandler) {
  871. reg->whandler(d, reg, old);
  872. }
  873. }
  874. static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
  875. uint32_t rmask)
  876. {
  877. uint32_t *addr, ret;
  878. if (!reg) {
  879. return 0;
  880. }
  881. if (reg->rhandler) {
  882. reg->rhandler(d, reg);
  883. }
  884. if (reg->offset == 0) {
  885. /* constant read-only register */
  886. ret = reg->reset;
  887. } else {
  888. addr = intel_hda_reg_addr(d, reg);
  889. ret = *addr;
  890. if (reg->shift) {
  891. ret >>= reg->shift;
  892. }
  893. ret &= rmask;
  894. }
  895. if (d->debug) {
  896. time_t now = time(NULL);
  897. if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
  898. d->repeat_count++;
  899. if (d->last_sec != now) {
  900. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  901. d->last_sec = now;
  902. d->repeat_count = 0;
  903. }
  904. } else {
  905. if (d->repeat_count) {
  906. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  907. }
  908. dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
  909. d->last_write = 0;
  910. d->last_reg = reg;
  911. d->last_val = ret;
  912. d->last_sec = now;
  913. d->repeat_count = 0;
  914. }
  915. }
  916. return ret;
  917. }
  918. static void intel_hda_regs_reset(IntelHDAState *d)
  919. {
  920. uint32_t *addr;
  921. int i;
  922. for (i = 0; i < ARRAY_SIZE(regtab); i++) {
  923. if (regtab[i].name == NULL) {
  924. continue;
  925. }
  926. if (regtab[i].offset == 0) {
  927. continue;
  928. }
  929. addr = intel_hda_reg_addr(d, regtab + i);
  930. *addr = regtab[i].reset;
  931. }
  932. }
  933. /* --------------------------------------------------------------------- */
  934. static void intel_hda_mmio_write(void *opaque, hwaddr addr, uint64_t val,
  935. unsigned size)
  936. {
  937. IntelHDAState *d = opaque;
  938. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  939. intel_hda_reg_write(d, reg, val, MAKE_64BIT_MASK(0, size * 8));
  940. }
  941. static uint64_t intel_hda_mmio_read(void *opaque, hwaddr addr, unsigned size)
  942. {
  943. IntelHDAState *d = opaque;
  944. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  945. return intel_hda_reg_read(d, reg, MAKE_64BIT_MASK(0, size * 8));
  946. }
  947. static const MemoryRegionOps intel_hda_mmio_ops = {
  948. .read = intel_hda_mmio_read,
  949. .write = intel_hda_mmio_write,
  950. .impl = {
  951. .min_access_size = 1,
  952. .max_access_size = 4,
  953. },
  954. .endianness = DEVICE_NATIVE_ENDIAN,
  955. };
  956. /* --------------------------------------------------------------------- */
  957. static void intel_hda_reset(DeviceState *dev)
  958. {
  959. BusChild *kid;
  960. IntelHDAState *d = INTEL_HDA(dev);
  961. HDACodecDevice *cdev;
  962. intel_hda_regs_reset(d);
  963. d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  964. /* reset codecs */
  965. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  966. DeviceState *qdev = kid->child;
  967. cdev = HDA_CODEC_DEVICE(qdev);
  968. device_reset(DEVICE(cdev));
  969. d->state_sts |= (1 << cdev->cad);
  970. }
  971. intel_hda_update_irq(d);
  972. }
  973. static void intel_hda_realize(PCIDevice *pci, Error **errp)
  974. {
  975. IntelHDAState *d = INTEL_HDA(pci);
  976. uint8_t *conf = d->pci.config;
  977. Error *err = NULL;
  978. int ret;
  979. d->name = object_get_typename(OBJECT(d));
  980. pci_config_set_interrupt_pin(conf, 1);
  981. /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
  982. conf[0x40] = 0x01;
  983. if (d->msi != ON_OFF_AUTO_OFF) {
  984. ret = msi_init(&d->pci, d->old_msi_addr ? 0x50 : 0x60,
  985. 1, true, false, &err);
  986. /* Any error other than -ENOTSUP(board's MSI support is broken)
  987. * is a programming error */
  988. assert(!ret || ret == -ENOTSUP);
  989. if (ret && d->msi == ON_OFF_AUTO_ON) {
  990. /* Can't satisfy user's explicit msi=on request, fail */
  991. error_append_hint(&err, "You have to use msi=auto (default) or "
  992. "msi=off with this machine type.\n");
  993. error_propagate(errp, err);
  994. return;
  995. }
  996. assert(!err || d->msi == ON_OFF_AUTO_AUTO);
  997. /* With msi=auto, we fall back to MSI off silently */
  998. error_free(err);
  999. }
  1000. memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d,
  1001. "intel-hda", 0x4000);
  1002. pci_register_bar(&d->pci, 0, 0, &d->mmio);
  1003. hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs),
  1004. intel_hda_response, intel_hda_xfer);
  1005. }
  1006. static void intel_hda_exit(PCIDevice *pci)
  1007. {
  1008. IntelHDAState *d = INTEL_HDA(pci);
  1009. msi_uninit(&d->pci);
  1010. }
  1011. static int intel_hda_post_load(void *opaque, int version)
  1012. {
  1013. IntelHDAState* d = opaque;
  1014. int i;
  1015. dprint(d, 1, "%s\n", __func__);
  1016. for (i = 0; i < ARRAY_SIZE(d->st); i++) {
  1017. if (d->st[i].ctl & 0x02) {
  1018. intel_hda_parse_bdl(d, &d->st[i]);
  1019. }
  1020. }
  1021. intel_hda_update_irq(d);
  1022. return 0;
  1023. }
  1024. static const VMStateDescription vmstate_intel_hda_stream = {
  1025. .name = "intel-hda-stream",
  1026. .version_id = 1,
  1027. .fields = (VMStateField[]) {
  1028. VMSTATE_UINT32(ctl, IntelHDAStream),
  1029. VMSTATE_UINT32(lpib, IntelHDAStream),
  1030. VMSTATE_UINT32(cbl, IntelHDAStream),
  1031. VMSTATE_UINT32(lvi, IntelHDAStream),
  1032. VMSTATE_UINT32(fmt, IntelHDAStream),
  1033. VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
  1034. VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
  1035. VMSTATE_END_OF_LIST()
  1036. }
  1037. };
  1038. static const VMStateDescription vmstate_intel_hda = {
  1039. .name = "intel-hda",
  1040. .version_id = 1,
  1041. .post_load = intel_hda_post_load,
  1042. .fields = (VMStateField[]) {
  1043. VMSTATE_PCI_DEVICE(pci, IntelHDAState),
  1044. /* registers */
  1045. VMSTATE_UINT32(g_ctl, IntelHDAState),
  1046. VMSTATE_UINT32(wake_en, IntelHDAState),
  1047. VMSTATE_UINT32(state_sts, IntelHDAState),
  1048. VMSTATE_UINT32(int_ctl, IntelHDAState),
  1049. VMSTATE_UINT32(int_sts, IntelHDAState),
  1050. VMSTATE_UINT32(wall_clk, IntelHDAState),
  1051. VMSTATE_UINT32(corb_lbase, IntelHDAState),
  1052. VMSTATE_UINT32(corb_ubase, IntelHDAState),
  1053. VMSTATE_UINT32(corb_rp, IntelHDAState),
  1054. VMSTATE_UINT32(corb_wp, IntelHDAState),
  1055. VMSTATE_UINT32(corb_ctl, IntelHDAState),
  1056. VMSTATE_UINT32(corb_sts, IntelHDAState),
  1057. VMSTATE_UINT32(corb_size, IntelHDAState),
  1058. VMSTATE_UINT32(rirb_lbase, IntelHDAState),
  1059. VMSTATE_UINT32(rirb_ubase, IntelHDAState),
  1060. VMSTATE_UINT32(rirb_wp, IntelHDAState),
  1061. VMSTATE_UINT32(rirb_cnt, IntelHDAState),
  1062. VMSTATE_UINT32(rirb_ctl, IntelHDAState),
  1063. VMSTATE_UINT32(rirb_sts, IntelHDAState),
  1064. VMSTATE_UINT32(rirb_size, IntelHDAState),
  1065. VMSTATE_UINT32(dp_lbase, IntelHDAState),
  1066. VMSTATE_UINT32(dp_ubase, IntelHDAState),
  1067. VMSTATE_UINT32(icw, IntelHDAState),
  1068. VMSTATE_UINT32(irr, IntelHDAState),
  1069. VMSTATE_UINT32(ics, IntelHDAState),
  1070. VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
  1071. vmstate_intel_hda_stream,
  1072. IntelHDAStream),
  1073. /* additional state info */
  1074. VMSTATE_UINT32(rirb_count, IntelHDAState),
  1075. VMSTATE_INT64(wall_base_ns, IntelHDAState),
  1076. VMSTATE_END_OF_LIST()
  1077. }
  1078. };
  1079. static Property intel_hda_properties[] = {
  1080. DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
  1081. DEFINE_PROP_ON_OFF_AUTO("msi", IntelHDAState, msi, ON_OFF_AUTO_AUTO),
  1082. DEFINE_PROP_BOOL("old_msi_addr", IntelHDAState, old_msi_addr, false),
  1083. DEFINE_PROP_END_OF_LIST(),
  1084. };
  1085. static void intel_hda_class_init(ObjectClass *klass, void *data)
  1086. {
  1087. DeviceClass *dc = DEVICE_CLASS(klass);
  1088. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1089. k->realize = intel_hda_realize;
  1090. k->exit = intel_hda_exit;
  1091. k->vendor_id = PCI_VENDOR_ID_INTEL;
  1092. k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO;
  1093. dc->reset = intel_hda_reset;
  1094. dc->vmsd = &vmstate_intel_hda;
  1095. dc->props = intel_hda_properties;
  1096. }
  1097. static void intel_hda_class_init_ich6(ObjectClass *klass, void *data)
  1098. {
  1099. DeviceClass *dc = DEVICE_CLASS(klass);
  1100. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1101. k->device_id = 0x2668;
  1102. k->revision = 1;
  1103. set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
  1104. dc->desc = "Intel HD Audio Controller (ich6)";
  1105. }
  1106. static void intel_hda_class_init_ich9(ObjectClass *klass, void *data)
  1107. {
  1108. DeviceClass *dc = DEVICE_CLASS(klass);
  1109. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1110. k->device_id = 0x293e;
  1111. k->revision = 3;
  1112. set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
  1113. dc->desc = "Intel HD Audio Controller (ich9)";
  1114. }
  1115. static const TypeInfo intel_hda_info = {
  1116. .name = TYPE_INTEL_HDA_GENERIC,
  1117. .parent = TYPE_PCI_DEVICE,
  1118. .instance_size = sizeof(IntelHDAState),
  1119. .class_init = intel_hda_class_init,
  1120. .abstract = true,
  1121. .interfaces = (InterfaceInfo[]) {
  1122. { INTERFACE_CONVENTIONAL_PCI_DEVICE },
  1123. { },
  1124. },
  1125. };
  1126. static const TypeInfo intel_hda_info_ich6 = {
  1127. .name = "intel-hda",
  1128. .parent = TYPE_INTEL_HDA_GENERIC,
  1129. .class_init = intel_hda_class_init_ich6,
  1130. };
  1131. static const TypeInfo intel_hda_info_ich9 = {
  1132. .name = "ich9-intel-hda",
  1133. .parent = TYPE_INTEL_HDA_GENERIC,
  1134. .class_init = intel_hda_class_init_ich9,
  1135. };
  1136. static void hda_codec_device_class_init(ObjectClass *klass, void *data)
  1137. {
  1138. DeviceClass *k = DEVICE_CLASS(klass);
  1139. k->realize = hda_codec_dev_realize;
  1140. k->unrealize = hda_codec_dev_unrealize;
  1141. set_bit(DEVICE_CATEGORY_SOUND, k->categories);
  1142. k->bus_type = TYPE_HDA_BUS;
  1143. k->props = hda_props;
  1144. }
  1145. static const TypeInfo hda_codec_device_type_info = {
  1146. .name = TYPE_HDA_CODEC_DEVICE,
  1147. .parent = TYPE_DEVICE,
  1148. .instance_size = sizeof(HDACodecDevice),
  1149. .abstract = true,
  1150. .class_size = sizeof(HDACodecDeviceClass),
  1151. .class_init = hda_codec_device_class_init,
  1152. };
  1153. /*
  1154. * create intel hda controller with codec attached to it,
  1155. * so '-soundhw hda' works.
  1156. */
  1157. static int intel_hda_and_codec_init(PCIBus *bus)
  1158. {
  1159. DeviceState *controller;
  1160. BusState *hdabus;
  1161. DeviceState *codec;
  1162. controller = DEVICE(pci_create_simple(bus, -1, "intel-hda"));
  1163. hdabus = QLIST_FIRST(&controller->child_bus);
  1164. codec = qdev_create(hdabus, "hda-duplex");
  1165. qdev_init_nofail(codec);
  1166. return 0;
  1167. }
  1168. static void intel_hda_register_types(void)
  1169. {
  1170. type_register_static(&hda_codec_bus_info);
  1171. type_register_static(&intel_hda_info);
  1172. type_register_static(&intel_hda_info_ich6);
  1173. type_register_static(&intel_hda_info_ich9);
  1174. type_register_static(&hda_codec_device_type_info);
  1175. pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init);
  1176. }
  1177. type_init(intel_hda_register_types)