2
0

xlnx-versal-virt.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. /*
  2. * Xilinx Versal Virtual board.
  3. *
  4. * Copyright (c) 2018 Xilinx Inc.
  5. * Written by Edgar E. Iglesias
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 or
  9. * (at your option) any later version.
  10. */
  11. #include "qemu/osdep.h"
  12. #include "qemu/log.h"
  13. #include "qemu/error-report.h"
  14. #include "qapi/error.h"
  15. #include "sysemu/device_tree.h"
  16. #include "exec/address-spaces.h"
  17. #include "hw/boards.h"
  18. #include "hw/sysbus.h"
  19. #include "hw/arm/sysbus-fdt.h"
  20. #include "hw/arm/fdt.h"
  21. #include "cpu.h"
  22. #include "hw/arm/xlnx-versal.h"
  23. #define TYPE_XLNX_VERSAL_VIRT_MACHINE MACHINE_TYPE_NAME("xlnx-versal-virt")
  24. #define XLNX_VERSAL_VIRT_MACHINE(obj) \
  25. OBJECT_CHECK(VersalVirt, (obj), TYPE_XLNX_VERSAL_VIRT_MACHINE)
  26. typedef struct VersalVirt {
  27. MachineState parent_obj;
  28. Versal soc;
  29. MemoryRegion mr_ddr;
  30. void *fdt;
  31. int fdt_size;
  32. struct {
  33. uint32_t gic;
  34. uint32_t ethernet_phy[2];
  35. uint32_t clk_125Mhz;
  36. uint32_t clk_25Mhz;
  37. } phandle;
  38. struct arm_boot_info binfo;
  39. struct {
  40. bool secure;
  41. } cfg;
  42. } VersalVirt;
  43. static void fdt_create(VersalVirt *s)
  44. {
  45. MachineClass *mc = MACHINE_GET_CLASS(s);
  46. int i;
  47. s->fdt = create_device_tree(&s->fdt_size);
  48. if (!s->fdt) {
  49. error_report("create_device_tree() failed");
  50. exit(1);
  51. }
  52. /* Allocate all phandles. */
  53. s->phandle.gic = qemu_fdt_alloc_phandle(s->fdt);
  54. for (i = 0; i < ARRAY_SIZE(s->phandle.ethernet_phy); i++) {
  55. s->phandle.ethernet_phy[i] = qemu_fdt_alloc_phandle(s->fdt);
  56. }
  57. s->phandle.clk_25Mhz = qemu_fdt_alloc_phandle(s->fdt);
  58. s->phandle.clk_125Mhz = qemu_fdt_alloc_phandle(s->fdt);
  59. /* Create /chosen node for load_dtb. */
  60. qemu_fdt_add_subnode(s->fdt, "/chosen");
  61. /* Header */
  62. qemu_fdt_setprop_cell(s->fdt, "/", "interrupt-parent", s->phandle.gic);
  63. qemu_fdt_setprop_cell(s->fdt, "/", "#size-cells", 0x2);
  64. qemu_fdt_setprop_cell(s->fdt, "/", "#address-cells", 0x2);
  65. qemu_fdt_setprop_string(s->fdt, "/", "model", mc->desc);
  66. qemu_fdt_setprop_string(s->fdt, "/", "compatible", "xlnx-versal-virt");
  67. }
  68. static void fdt_add_clk_node(VersalVirt *s, const char *name,
  69. unsigned int freq_hz, uint32_t phandle)
  70. {
  71. qemu_fdt_add_subnode(s->fdt, name);
  72. qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
  73. qemu_fdt_setprop_cell(s->fdt, name, "clock-frequency", freq_hz);
  74. qemu_fdt_setprop_cell(s->fdt, name, "#clock-cells", 0x0);
  75. qemu_fdt_setprop_string(s->fdt, name, "compatible", "fixed-clock");
  76. qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
  77. }
  78. static void fdt_add_cpu_nodes(VersalVirt *s, uint32_t psci_conduit)
  79. {
  80. int i;
  81. qemu_fdt_add_subnode(s->fdt, "/cpus");
  82. qemu_fdt_setprop_cell(s->fdt, "/cpus", "#size-cells", 0x0);
  83. qemu_fdt_setprop_cell(s->fdt, "/cpus", "#address-cells", 1);
  84. for (i = XLNX_VERSAL_NR_ACPUS - 1; i >= 0; i--) {
  85. char *name = g_strdup_printf("/cpus/cpu@%d", i);
  86. ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
  87. qemu_fdt_add_subnode(s->fdt, name);
  88. qemu_fdt_setprop_cell(s->fdt, name, "reg", armcpu->mp_affinity);
  89. if (psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
  90. qemu_fdt_setprop_string(s->fdt, name, "enable-method", "psci");
  91. }
  92. qemu_fdt_setprop_string(s->fdt, name, "device_type", "cpu");
  93. qemu_fdt_setprop_string(s->fdt, name, "compatible",
  94. armcpu->dtb_compatible);
  95. g_free(name);
  96. }
  97. }
  98. static void fdt_add_gic_nodes(VersalVirt *s)
  99. {
  100. char *nodename;
  101. nodename = g_strdup_printf("/gic@%x", MM_GIC_APU_DIST_MAIN);
  102. qemu_fdt_add_subnode(s->fdt, nodename);
  103. qemu_fdt_setprop_cell(s->fdt, nodename, "phandle", s->phandle.gic);
  104. qemu_fdt_setprop_cells(s->fdt, nodename, "interrupts",
  105. GIC_FDT_IRQ_TYPE_PPI, VERSAL_GIC_MAINT_IRQ,
  106. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  107. qemu_fdt_setprop(s->fdt, nodename, "interrupt-controller", NULL, 0);
  108. qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg",
  109. 2, MM_GIC_APU_DIST_MAIN,
  110. 2, MM_GIC_APU_DIST_MAIN_SIZE,
  111. 2, MM_GIC_APU_REDIST_0,
  112. 2, MM_GIC_APU_REDIST_0_SIZE);
  113. qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3);
  114. qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3");
  115. g_free(nodename);
  116. }
  117. static void fdt_add_timer_nodes(VersalVirt *s)
  118. {
  119. const char compat[] = "arm,armv8-timer";
  120. uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
  121. qemu_fdt_add_subnode(s->fdt, "/timer");
  122. qemu_fdt_setprop_cells(s->fdt, "/timer", "interrupts",
  123. GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_S_EL1_IRQ, irqflags,
  124. GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL1_IRQ, irqflags,
  125. GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_VIRT_IRQ, irqflags,
  126. GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL2_IRQ, irqflags);
  127. qemu_fdt_setprop(s->fdt, "/timer", "compatible",
  128. compat, sizeof(compat));
  129. }
  130. static void fdt_add_uart_nodes(VersalVirt *s)
  131. {
  132. uint64_t addrs[] = { MM_UART1, MM_UART0 };
  133. unsigned int irqs[] = { VERSAL_UART1_IRQ_0, VERSAL_UART0_IRQ_0 };
  134. const char compat[] = "arm,pl011\0arm,sbsa-uart";
  135. const char clocknames[] = "uartclk\0apb_pclk";
  136. int i;
  137. for (i = 0; i < ARRAY_SIZE(addrs); i++) {
  138. char *name = g_strdup_printf("/uart@%" PRIx64, addrs[i]);
  139. qemu_fdt_add_subnode(s->fdt, name);
  140. qemu_fdt_setprop_cell(s->fdt, name, "current-speed", 115200);
  141. qemu_fdt_setprop_cells(s->fdt, name, "clocks",
  142. s->phandle.clk_125Mhz, s->phandle.clk_125Mhz);
  143. qemu_fdt_setprop(s->fdt, name, "clock-names",
  144. clocknames, sizeof(clocknames));
  145. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  146. GIC_FDT_IRQ_TYPE_SPI, irqs[i],
  147. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  148. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  149. 2, addrs[i], 2, 0x1000);
  150. qemu_fdt_setprop(s->fdt, name, "compatible",
  151. compat, sizeof(compat));
  152. qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
  153. if (addrs[i] == MM_UART0) {
  154. /* Select UART0. */
  155. qemu_fdt_setprop_string(s->fdt, "/chosen", "stdout-path", name);
  156. }
  157. g_free(name);
  158. }
  159. }
  160. static void fdt_add_fixed_link_nodes(VersalVirt *s, char *gemname,
  161. uint32_t phandle)
  162. {
  163. char *name = g_strdup_printf("%s/fixed-link", gemname);
  164. qemu_fdt_add_subnode(s->fdt, name);
  165. qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
  166. qemu_fdt_setprop(s->fdt, name, "full-duplex", NULL, 0);
  167. qemu_fdt_setprop_cell(s->fdt, name, "speed", 1000);
  168. g_free(name);
  169. }
  170. static void fdt_add_gem_nodes(VersalVirt *s)
  171. {
  172. uint64_t addrs[] = { MM_GEM1, MM_GEM0 };
  173. unsigned int irqs[] = { VERSAL_GEM1_IRQ_0, VERSAL_GEM0_IRQ_0 };
  174. const char clocknames[] = "pclk\0hclk\0tx_clk\0rx_clk";
  175. const char compat_gem[] = "cdns,zynqmp-gem\0cdns,gem";
  176. int i;
  177. for (i = 0; i < ARRAY_SIZE(addrs); i++) {
  178. char *name = g_strdup_printf("/ethernet@%" PRIx64, addrs[i]);
  179. qemu_fdt_add_subnode(s->fdt, name);
  180. fdt_add_fixed_link_nodes(s, name, s->phandle.ethernet_phy[i]);
  181. qemu_fdt_setprop_string(s->fdt, name, "phy-mode", "rgmii-id");
  182. qemu_fdt_setprop_cell(s->fdt, name, "phy-handle",
  183. s->phandle.ethernet_phy[i]);
  184. qemu_fdt_setprop_cells(s->fdt, name, "clocks",
  185. s->phandle.clk_25Mhz, s->phandle.clk_25Mhz,
  186. s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
  187. qemu_fdt_setprop(s->fdt, name, "clock-names",
  188. clocknames, sizeof(clocknames));
  189. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  190. GIC_FDT_IRQ_TYPE_SPI, irqs[i],
  191. GIC_FDT_IRQ_FLAGS_LEVEL_HI,
  192. GIC_FDT_IRQ_TYPE_SPI, irqs[i],
  193. GIC_FDT_IRQ_FLAGS_LEVEL_HI);
  194. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  195. 2, addrs[i], 2, 0x1000);
  196. qemu_fdt_setprop(s->fdt, name, "compatible",
  197. compat_gem, sizeof(compat_gem));
  198. qemu_fdt_setprop_cell(s->fdt, name, "#address-cells", 1);
  199. qemu_fdt_setprop_cell(s->fdt, name, "#size-cells", 0);
  200. g_free(name);
  201. }
  202. }
  203. static void fdt_nop_memory_nodes(void *fdt, Error **errp)
  204. {
  205. Error *err = NULL;
  206. char **node_path;
  207. int n = 0;
  208. node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
  209. if (err) {
  210. error_propagate(errp, err);
  211. return;
  212. }
  213. while (node_path[n]) {
  214. if (g_str_has_prefix(node_path[n], "/memory")) {
  215. qemu_fdt_nop_node(fdt, node_path[n]);
  216. }
  217. n++;
  218. }
  219. g_strfreev(node_path);
  220. }
  221. static void fdt_add_memory_nodes(VersalVirt *s, void *fdt, uint64_t ram_size)
  222. {
  223. /* Describes the various split DDR access regions. */
  224. static const struct {
  225. uint64_t base;
  226. uint64_t size;
  227. } addr_ranges[] = {
  228. { MM_TOP_DDR, MM_TOP_DDR_SIZE },
  229. { MM_TOP_DDR_2, MM_TOP_DDR_2_SIZE },
  230. { MM_TOP_DDR_3, MM_TOP_DDR_3_SIZE },
  231. { MM_TOP_DDR_4, MM_TOP_DDR_4_SIZE }
  232. };
  233. uint64_t mem_reg_prop[8] = {0};
  234. uint64_t size = ram_size;
  235. Error *err = NULL;
  236. char *name;
  237. int i;
  238. fdt_nop_memory_nodes(fdt, &err);
  239. if (err) {
  240. error_report_err(err);
  241. return;
  242. }
  243. name = g_strdup_printf("/memory@%x", MM_TOP_DDR);
  244. for (i = 0; i < ARRAY_SIZE(addr_ranges) && size; i++) {
  245. uint64_t mapsize;
  246. mapsize = size < addr_ranges[i].size ? size : addr_ranges[i].size;
  247. mem_reg_prop[i * 2] = addr_ranges[i].base;
  248. mem_reg_prop[i * 2 + 1] = mapsize;
  249. size -= mapsize;
  250. }
  251. qemu_fdt_add_subnode(fdt, name);
  252. qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
  253. switch (i) {
  254. case 1:
  255. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  256. 2, mem_reg_prop[0],
  257. 2, mem_reg_prop[1]);
  258. break;
  259. case 2:
  260. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  261. 2, mem_reg_prop[0],
  262. 2, mem_reg_prop[1],
  263. 2, mem_reg_prop[2],
  264. 2, mem_reg_prop[3]);
  265. break;
  266. case 3:
  267. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  268. 2, mem_reg_prop[0],
  269. 2, mem_reg_prop[1],
  270. 2, mem_reg_prop[2],
  271. 2, mem_reg_prop[3],
  272. 2, mem_reg_prop[4],
  273. 2, mem_reg_prop[5]);
  274. break;
  275. case 4:
  276. qemu_fdt_setprop_sized_cells(fdt, name, "reg",
  277. 2, mem_reg_prop[0],
  278. 2, mem_reg_prop[1],
  279. 2, mem_reg_prop[2],
  280. 2, mem_reg_prop[3],
  281. 2, mem_reg_prop[4],
  282. 2, mem_reg_prop[5],
  283. 2, mem_reg_prop[6],
  284. 2, mem_reg_prop[7]);
  285. break;
  286. default:
  287. g_assert_not_reached();
  288. }
  289. g_free(name);
  290. }
  291. static void versal_virt_modify_dtb(const struct arm_boot_info *binfo,
  292. void *fdt)
  293. {
  294. VersalVirt *s = container_of(binfo, VersalVirt, binfo);
  295. fdt_add_memory_nodes(s, fdt, binfo->ram_size);
  296. }
  297. static void *versal_virt_get_dtb(const struct arm_boot_info *binfo,
  298. int *fdt_size)
  299. {
  300. const VersalVirt *board = container_of(binfo, VersalVirt, binfo);
  301. *fdt_size = board->fdt_size;
  302. return board->fdt;
  303. }
  304. #define NUM_VIRTIO_TRANSPORT 8
  305. static void create_virtio_regions(VersalVirt *s)
  306. {
  307. int virtio_mmio_size = 0x200;
  308. int i;
  309. for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
  310. char *name = g_strdup_printf("virtio%d", i);;
  311. hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
  312. int irq = VERSAL_RSVD_IRQ_FIRST + i;
  313. MemoryRegion *mr;
  314. DeviceState *dev;
  315. qemu_irq pic_irq;
  316. pic_irq = qdev_get_gpio_in(DEVICE(&s->soc.fpd.apu.gic), irq);
  317. dev = qdev_create(NULL, "virtio-mmio");
  318. object_property_add_child(OBJECT(&s->soc), name, OBJECT(dev),
  319. &error_fatal);
  320. qdev_init_nofail(dev);
  321. sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq);
  322. mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
  323. memory_region_add_subregion(&s->soc.mr_ps, base, mr);
  324. g_free(name);
  325. }
  326. for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
  327. hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
  328. int irq = VERSAL_RSVD_IRQ_FIRST + i;
  329. char *name = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
  330. qemu_fdt_add_subnode(s->fdt, name);
  331. qemu_fdt_setprop(s->fdt, name, "dma-coherent", NULL, 0);
  332. qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
  333. GIC_FDT_IRQ_TYPE_SPI, irq,
  334. GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
  335. qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
  336. 2, base, 2, virtio_mmio_size);
  337. qemu_fdt_setprop_string(s->fdt, name, "compatible", "virtio,mmio");
  338. g_free(name);
  339. }
  340. }
  341. static void versal_virt_init(MachineState *machine)
  342. {
  343. VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine);
  344. int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
  345. /*
  346. * If the user provides an Operating System to be loaded, we expect them
  347. * to use the -kernel command line option.
  348. *
  349. * Users can load firmware or boot-loaders with the -device loader options.
  350. *
  351. * When loading an OS, we generate a dtb and let arm_load_kernel() select
  352. * where it gets loaded. This dtb will be passed to the kernel in x0.
  353. *
  354. * If there's no -kernel option, we generate a DTB and place it at 0x1000
  355. * for the bootloaders or firmware to pick up.
  356. *
  357. * If users want to provide their own DTB, they can use the -dtb option.
  358. * These dtb's will have their memory nodes modified to match QEMU's
  359. * selected ram_size option before they get passed to the kernel or fw.
  360. *
  361. * When loading an OS, we turn on QEMU's PSCI implementation with SMC
  362. * as the PSCI conduit. When there's no -kernel, we assume the user
  363. * provides EL3 firmware to handle PSCI.
  364. */
  365. if (machine->kernel_filename) {
  366. psci_conduit = QEMU_PSCI_CONDUIT_SMC;
  367. }
  368. memory_region_allocate_system_memory(&s->mr_ddr, NULL, "ddr",
  369. machine->ram_size);
  370. sysbus_init_child_obj(OBJECT(machine), "xlnx-ve", &s->soc,
  371. sizeof(s->soc), TYPE_XLNX_VERSAL);
  372. object_property_set_link(OBJECT(&s->soc), OBJECT(&s->mr_ddr),
  373. "ddr", &error_abort);
  374. object_property_set_int(OBJECT(&s->soc), psci_conduit,
  375. "psci-conduit", &error_abort);
  376. object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal);
  377. fdt_create(s);
  378. create_virtio_regions(s);
  379. fdt_add_gem_nodes(s);
  380. fdt_add_uart_nodes(s);
  381. fdt_add_gic_nodes(s);
  382. fdt_add_timer_nodes(s);
  383. fdt_add_cpu_nodes(s, psci_conduit);
  384. fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz);
  385. fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz);
  386. /* Make the APU cpu address space visible to virtio and other
  387. * modules unaware of muliple address-spaces. */
  388. memory_region_add_subregion_overlap(get_system_memory(),
  389. 0, &s->soc.fpd.apu.mr, 0);
  390. s->binfo.ram_size = machine->ram_size;
  391. s->binfo.loader_start = 0x0;
  392. s->binfo.get_dtb = versal_virt_get_dtb;
  393. s->binfo.modify_dtb = versal_virt_modify_dtb;
  394. if (machine->kernel_filename) {
  395. arm_load_kernel(s->soc.fpd.apu.cpu[0], machine, &s->binfo);
  396. } else {
  397. AddressSpace *as = arm_boot_address_space(s->soc.fpd.apu.cpu[0],
  398. &s->binfo);
  399. /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL).
  400. * Offset things by 4K. */
  401. s->binfo.loader_start = 0x1000;
  402. s->binfo.dtb_limit = 0x1000000;
  403. if (arm_load_dtb(s->binfo.loader_start,
  404. &s->binfo, s->binfo.dtb_limit, as, machine) < 0) {
  405. exit(EXIT_FAILURE);
  406. }
  407. }
  408. }
  409. static void versal_virt_machine_instance_init(Object *obj)
  410. {
  411. }
  412. static void versal_virt_machine_class_init(ObjectClass *oc, void *data)
  413. {
  414. MachineClass *mc = MACHINE_CLASS(oc);
  415. mc->desc = "Xilinx Versal Virtual development board";
  416. mc->init = versal_virt_init;
  417. mc->max_cpus = XLNX_VERSAL_NR_ACPUS;
  418. mc->default_cpus = XLNX_VERSAL_NR_ACPUS;
  419. mc->no_cdrom = true;
  420. }
  421. static const TypeInfo versal_virt_machine_init_typeinfo = {
  422. .name = TYPE_XLNX_VERSAL_VIRT_MACHINE,
  423. .parent = TYPE_MACHINE,
  424. .class_init = versal_virt_machine_class_init,
  425. .instance_init = versal_virt_machine_instance_init,
  426. .instance_size = sizeof(VersalVirt),
  427. };
  428. static void versal_virt_machine_init_register_types(void)
  429. {
  430. type_register_static(&versal_virt_machine_init_typeinfo);
  431. }
  432. type_init(versal_virt_machine_init_register_types)