2
0

strongarm.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649
  1. /*
  2. * StrongARM SA-1100/SA-1110 emulation
  3. *
  4. * Copyright (C) 2011 Dmitry Eremin-Solenikov
  5. *
  6. * Largely based on StrongARM emulation:
  7. * Copyright (c) 2006 Openedhand Ltd.
  8. * Written by Andrzej Zaborowski <balrog@zabor.org>
  9. *
  10. * UART code based on QEMU 16550A UART emulation
  11. * Copyright (c) 2003-2004 Fabrice Bellard
  12. * Copyright (c) 2008 Citrix Systems, Inc.
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License version 2 as
  16. * published by the Free Software Foundation.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, see <http://www.gnu.org/licenses/>.
  25. *
  26. * Contributions after 2012-01-13 are licensed under the terms of the
  27. * GNU GPL, version 2 or (at your option) any later version.
  28. */
  29. #include "qemu/osdep.h"
  30. #include "qemu-common.h"
  31. #include "cpu.h"
  32. #include "hw/boards.h"
  33. #include "hw/irq.h"
  34. #include "hw/qdev-properties.h"
  35. #include "hw/sysbus.h"
  36. #include "migration/vmstate.h"
  37. #include "strongarm.h"
  38. #include "qemu/error-report.h"
  39. #include "hw/arm/boot.h"
  40. #include "chardev/char-fe.h"
  41. #include "chardev/char-serial.h"
  42. #include "sysemu/sysemu.h"
  43. #include "hw/ssi/ssi.h"
  44. #include "qemu/cutils.h"
  45. #include "qemu/log.h"
  46. //#define DEBUG
  47. /*
  48. TODO
  49. - Implement cp15, c14 ?
  50. - Implement cp15, c15 !!! (idle used in L)
  51. - Implement idle mode handling/DIM
  52. - Implement sleep mode/Wake sources
  53. - Implement reset control
  54. - Implement memory control regs
  55. - PCMCIA handling
  56. - Maybe support MBGNT/MBREQ
  57. - DMA channels
  58. - GPCLK
  59. - IrDA
  60. - MCP
  61. - Enhance UART with modem signals
  62. */
  63. #ifdef DEBUG
  64. # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
  65. #else
  66. # define DPRINTF(format, ...) do { } while (0)
  67. #endif
  68. static struct {
  69. hwaddr io_base;
  70. int irq;
  71. } sa_serial[] = {
  72. { 0x80010000, SA_PIC_UART1 },
  73. { 0x80030000, SA_PIC_UART2 },
  74. { 0x80050000, SA_PIC_UART3 },
  75. { 0, 0 }
  76. };
  77. /* Interrupt Controller */
  78. #define TYPE_STRONGARM_PIC "strongarm_pic"
  79. #define STRONGARM_PIC(obj) \
  80. OBJECT_CHECK(StrongARMPICState, (obj), TYPE_STRONGARM_PIC)
  81. typedef struct StrongARMPICState {
  82. SysBusDevice parent_obj;
  83. MemoryRegion iomem;
  84. qemu_irq irq;
  85. qemu_irq fiq;
  86. uint32_t pending;
  87. uint32_t enabled;
  88. uint32_t is_fiq;
  89. uint32_t int_idle;
  90. } StrongARMPICState;
  91. #define ICIP 0x00
  92. #define ICMR 0x04
  93. #define ICLR 0x08
  94. #define ICFP 0x10
  95. #define ICPR 0x20
  96. #define ICCR 0x0c
  97. #define SA_PIC_SRCS 32
  98. static void strongarm_pic_update(void *opaque)
  99. {
  100. StrongARMPICState *s = opaque;
  101. /* FIXME: reflect DIM */
  102. qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq);
  103. qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
  104. }
  105. static void strongarm_pic_set_irq(void *opaque, int irq, int level)
  106. {
  107. StrongARMPICState *s = opaque;
  108. if (level) {
  109. s->pending |= 1 << irq;
  110. } else {
  111. s->pending &= ~(1 << irq);
  112. }
  113. strongarm_pic_update(s);
  114. }
  115. static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
  116. unsigned size)
  117. {
  118. StrongARMPICState *s = opaque;
  119. switch (offset) {
  120. case ICIP:
  121. return s->pending & ~s->is_fiq & s->enabled;
  122. case ICMR:
  123. return s->enabled;
  124. case ICLR:
  125. return s->is_fiq;
  126. case ICCR:
  127. return s->int_idle == 0;
  128. case ICFP:
  129. return s->pending & s->is_fiq & s->enabled;
  130. case ICPR:
  131. return s->pending;
  132. default:
  133. printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
  134. __func__, offset);
  135. return 0;
  136. }
  137. }
  138. static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
  139. uint64_t value, unsigned size)
  140. {
  141. StrongARMPICState *s = opaque;
  142. switch (offset) {
  143. case ICMR:
  144. s->enabled = value;
  145. break;
  146. case ICLR:
  147. s->is_fiq = value;
  148. break;
  149. case ICCR:
  150. s->int_idle = (value & 1) ? 0 : ~0;
  151. break;
  152. default:
  153. printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
  154. __func__, offset);
  155. break;
  156. }
  157. strongarm_pic_update(s);
  158. }
  159. static const MemoryRegionOps strongarm_pic_ops = {
  160. .read = strongarm_pic_mem_read,
  161. .write = strongarm_pic_mem_write,
  162. .endianness = DEVICE_NATIVE_ENDIAN,
  163. };
  164. static void strongarm_pic_initfn(Object *obj)
  165. {
  166. DeviceState *dev = DEVICE(obj);
  167. StrongARMPICState *s = STRONGARM_PIC(obj);
  168. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  169. qdev_init_gpio_in(dev, strongarm_pic_set_irq, SA_PIC_SRCS);
  170. memory_region_init_io(&s->iomem, obj, &strongarm_pic_ops, s,
  171. "pic", 0x1000);
  172. sysbus_init_mmio(sbd, &s->iomem);
  173. sysbus_init_irq(sbd, &s->irq);
  174. sysbus_init_irq(sbd, &s->fiq);
  175. }
  176. static int strongarm_pic_post_load(void *opaque, int version_id)
  177. {
  178. strongarm_pic_update(opaque);
  179. return 0;
  180. }
  181. static VMStateDescription vmstate_strongarm_pic_regs = {
  182. .name = "strongarm_pic",
  183. .version_id = 0,
  184. .minimum_version_id = 0,
  185. .post_load = strongarm_pic_post_load,
  186. .fields = (VMStateField[]) {
  187. VMSTATE_UINT32(pending, StrongARMPICState),
  188. VMSTATE_UINT32(enabled, StrongARMPICState),
  189. VMSTATE_UINT32(is_fiq, StrongARMPICState),
  190. VMSTATE_UINT32(int_idle, StrongARMPICState),
  191. VMSTATE_END_OF_LIST(),
  192. },
  193. };
  194. static void strongarm_pic_class_init(ObjectClass *klass, void *data)
  195. {
  196. DeviceClass *dc = DEVICE_CLASS(klass);
  197. dc->desc = "StrongARM PIC";
  198. dc->vmsd = &vmstate_strongarm_pic_regs;
  199. }
  200. static const TypeInfo strongarm_pic_info = {
  201. .name = TYPE_STRONGARM_PIC,
  202. .parent = TYPE_SYS_BUS_DEVICE,
  203. .instance_size = sizeof(StrongARMPICState),
  204. .instance_init = strongarm_pic_initfn,
  205. .class_init = strongarm_pic_class_init,
  206. };
  207. /* Real-Time Clock */
  208. #define RTAR 0x00 /* RTC Alarm register */
  209. #define RCNR 0x04 /* RTC Counter register */
  210. #define RTTR 0x08 /* RTC Timer Trim register */
  211. #define RTSR 0x10 /* RTC Status register */
  212. #define RTSR_AL (1 << 0) /* RTC Alarm detected */
  213. #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
  214. #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
  215. #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
  216. /* 16 LSB of RTTR are clockdiv for internal trim logic,
  217. * trim delete isn't emulated, so
  218. * f = 32 768 / (RTTR_trim + 1) */
  219. #define TYPE_STRONGARM_RTC "strongarm-rtc"
  220. #define STRONGARM_RTC(obj) \
  221. OBJECT_CHECK(StrongARMRTCState, (obj), TYPE_STRONGARM_RTC)
  222. typedef struct StrongARMRTCState {
  223. SysBusDevice parent_obj;
  224. MemoryRegion iomem;
  225. uint32_t rttr;
  226. uint32_t rtsr;
  227. uint32_t rtar;
  228. uint32_t last_rcnr;
  229. int64_t last_hz;
  230. QEMUTimer *rtc_alarm;
  231. QEMUTimer *rtc_hz;
  232. qemu_irq rtc_irq;
  233. qemu_irq rtc_hz_irq;
  234. } StrongARMRTCState;
  235. static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
  236. {
  237. qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
  238. qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
  239. }
  240. static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
  241. {
  242. int64_t rt = qemu_clock_get_ms(rtc_clock);
  243. s->last_rcnr += ((rt - s->last_hz) << 15) /
  244. (1000 * ((s->rttr & 0xffff) + 1));
  245. s->last_hz = rt;
  246. }
  247. static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
  248. {
  249. if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
  250. timer_mod(s->rtc_hz, s->last_hz + 1000);
  251. } else {
  252. timer_del(s->rtc_hz);
  253. }
  254. if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
  255. timer_mod(s->rtc_alarm, s->last_hz +
  256. (((s->rtar - s->last_rcnr) * 1000 *
  257. ((s->rttr & 0xffff) + 1)) >> 15));
  258. } else {
  259. timer_del(s->rtc_alarm);
  260. }
  261. }
  262. static inline void strongarm_rtc_alarm_tick(void *opaque)
  263. {
  264. StrongARMRTCState *s = opaque;
  265. s->rtsr |= RTSR_AL;
  266. strongarm_rtc_timer_update(s);
  267. strongarm_rtc_int_update(s);
  268. }
  269. static inline void strongarm_rtc_hz_tick(void *opaque)
  270. {
  271. StrongARMRTCState *s = opaque;
  272. s->rtsr |= RTSR_HZ;
  273. strongarm_rtc_timer_update(s);
  274. strongarm_rtc_int_update(s);
  275. }
  276. static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
  277. unsigned size)
  278. {
  279. StrongARMRTCState *s = opaque;
  280. switch (addr) {
  281. case RTTR:
  282. return s->rttr;
  283. case RTSR:
  284. return s->rtsr;
  285. case RTAR:
  286. return s->rtar;
  287. case RCNR:
  288. return s->last_rcnr +
  289. ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
  290. (1000 * ((s->rttr & 0xffff) + 1));
  291. default:
  292. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  293. return 0;
  294. }
  295. }
  296. static void strongarm_rtc_write(void *opaque, hwaddr addr,
  297. uint64_t value, unsigned size)
  298. {
  299. StrongARMRTCState *s = opaque;
  300. uint32_t old_rtsr;
  301. switch (addr) {
  302. case RTTR:
  303. strongarm_rtc_hzupdate(s);
  304. s->rttr = value;
  305. strongarm_rtc_timer_update(s);
  306. break;
  307. case RTSR:
  308. old_rtsr = s->rtsr;
  309. s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
  310. (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
  311. if (s->rtsr != old_rtsr) {
  312. strongarm_rtc_timer_update(s);
  313. }
  314. strongarm_rtc_int_update(s);
  315. break;
  316. case RTAR:
  317. s->rtar = value;
  318. strongarm_rtc_timer_update(s);
  319. break;
  320. case RCNR:
  321. strongarm_rtc_hzupdate(s);
  322. s->last_rcnr = value;
  323. strongarm_rtc_timer_update(s);
  324. break;
  325. default:
  326. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  327. }
  328. }
  329. static const MemoryRegionOps strongarm_rtc_ops = {
  330. .read = strongarm_rtc_read,
  331. .write = strongarm_rtc_write,
  332. .endianness = DEVICE_NATIVE_ENDIAN,
  333. };
  334. static void strongarm_rtc_init(Object *obj)
  335. {
  336. StrongARMRTCState *s = STRONGARM_RTC(obj);
  337. SysBusDevice *dev = SYS_BUS_DEVICE(obj);
  338. struct tm tm;
  339. s->rttr = 0x0;
  340. s->rtsr = 0;
  341. qemu_get_timedate(&tm, 0);
  342. s->last_rcnr = (uint32_t) mktimegm(&tm);
  343. s->last_hz = qemu_clock_get_ms(rtc_clock);
  344. s->rtc_alarm = timer_new_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
  345. s->rtc_hz = timer_new_ms(rtc_clock, strongarm_rtc_hz_tick, s);
  346. sysbus_init_irq(dev, &s->rtc_irq);
  347. sysbus_init_irq(dev, &s->rtc_hz_irq);
  348. memory_region_init_io(&s->iomem, obj, &strongarm_rtc_ops, s,
  349. "rtc", 0x10000);
  350. sysbus_init_mmio(dev, &s->iomem);
  351. }
  352. static int strongarm_rtc_pre_save(void *opaque)
  353. {
  354. StrongARMRTCState *s = opaque;
  355. strongarm_rtc_hzupdate(s);
  356. return 0;
  357. }
  358. static int strongarm_rtc_post_load(void *opaque, int version_id)
  359. {
  360. StrongARMRTCState *s = opaque;
  361. strongarm_rtc_timer_update(s);
  362. strongarm_rtc_int_update(s);
  363. return 0;
  364. }
  365. static const VMStateDescription vmstate_strongarm_rtc_regs = {
  366. .name = "strongarm-rtc",
  367. .version_id = 0,
  368. .minimum_version_id = 0,
  369. .pre_save = strongarm_rtc_pre_save,
  370. .post_load = strongarm_rtc_post_load,
  371. .fields = (VMStateField[]) {
  372. VMSTATE_UINT32(rttr, StrongARMRTCState),
  373. VMSTATE_UINT32(rtsr, StrongARMRTCState),
  374. VMSTATE_UINT32(rtar, StrongARMRTCState),
  375. VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
  376. VMSTATE_INT64(last_hz, StrongARMRTCState),
  377. VMSTATE_END_OF_LIST(),
  378. },
  379. };
  380. static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
  381. {
  382. DeviceClass *dc = DEVICE_CLASS(klass);
  383. dc->desc = "StrongARM RTC Controller";
  384. dc->vmsd = &vmstate_strongarm_rtc_regs;
  385. }
  386. static const TypeInfo strongarm_rtc_sysbus_info = {
  387. .name = TYPE_STRONGARM_RTC,
  388. .parent = TYPE_SYS_BUS_DEVICE,
  389. .instance_size = sizeof(StrongARMRTCState),
  390. .instance_init = strongarm_rtc_init,
  391. .class_init = strongarm_rtc_sysbus_class_init,
  392. };
  393. /* GPIO */
  394. #define GPLR 0x00
  395. #define GPDR 0x04
  396. #define GPSR 0x08
  397. #define GPCR 0x0c
  398. #define GRER 0x10
  399. #define GFER 0x14
  400. #define GEDR 0x18
  401. #define GAFR 0x1c
  402. #define TYPE_STRONGARM_GPIO "strongarm-gpio"
  403. #define STRONGARM_GPIO(obj) \
  404. OBJECT_CHECK(StrongARMGPIOInfo, (obj), TYPE_STRONGARM_GPIO)
  405. typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
  406. struct StrongARMGPIOInfo {
  407. SysBusDevice busdev;
  408. MemoryRegion iomem;
  409. qemu_irq handler[28];
  410. qemu_irq irqs[11];
  411. qemu_irq irqX;
  412. uint32_t ilevel;
  413. uint32_t olevel;
  414. uint32_t dir;
  415. uint32_t rising;
  416. uint32_t falling;
  417. uint32_t status;
  418. uint32_t gafr;
  419. uint32_t prev_level;
  420. };
  421. static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
  422. {
  423. int i;
  424. for (i = 0; i < 11; i++) {
  425. qemu_set_irq(s->irqs[i], s->status & (1 << i));
  426. }
  427. qemu_set_irq(s->irqX, (s->status & ~0x7ff));
  428. }
  429. static void strongarm_gpio_set(void *opaque, int line, int level)
  430. {
  431. StrongARMGPIOInfo *s = opaque;
  432. uint32_t mask;
  433. mask = 1 << line;
  434. if (level) {
  435. s->status |= s->rising & mask &
  436. ~s->ilevel & ~s->dir;
  437. s->ilevel |= mask;
  438. } else {
  439. s->status |= s->falling & mask &
  440. s->ilevel & ~s->dir;
  441. s->ilevel &= ~mask;
  442. }
  443. if (s->status & mask) {
  444. strongarm_gpio_irq_update(s);
  445. }
  446. }
  447. static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
  448. {
  449. uint32_t level, diff;
  450. int bit;
  451. level = s->olevel & s->dir;
  452. for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
  453. bit = ctz32(diff);
  454. qemu_set_irq(s->handler[bit], (level >> bit) & 1);
  455. }
  456. s->prev_level = level;
  457. }
  458. static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
  459. unsigned size)
  460. {
  461. StrongARMGPIOInfo *s = opaque;
  462. switch (offset) {
  463. case GPDR: /* GPIO Pin-Direction registers */
  464. return s->dir;
  465. case GPSR: /* GPIO Pin-Output Set registers */
  466. qemu_log_mask(LOG_GUEST_ERROR,
  467. "strongarm GPIO: read from write only register GPSR\n");
  468. return 0;
  469. case GPCR: /* GPIO Pin-Output Clear registers */
  470. qemu_log_mask(LOG_GUEST_ERROR,
  471. "strongarm GPIO: read from write only register GPCR\n");
  472. return 0;
  473. case GRER: /* GPIO Rising-Edge Detect Enable registers */
  474. return s->rising;
  475. case GFER: /* GPIO Falling-Edge Detect Enable registers */
  476. return s->falling;
  477. case GAFR: /* GPIO Alternate Function registers */
  478. return s->gafr;
  479. case GPLR: /* GPIO Pin-Level registers */
  480. return (s->olevel & s->dir) |
  481. (s->ilevel & ~s->dir);
  482. case GEDR: /* GPIO Edge Detect Status registers */
  483. return s->status;
  484. default:
  485. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  486. }
  487. return 0;
  488. }
  489. static void strongarm_gpio_write(void *opaque, hwaddr offset,
  490. uint64_t value, unsigned size)
  491. {
  492. StrongARMGPIOInfo *s = opaque;
  493. switch (offset) {
  494. case GPDR: /* GPIO Pin-Direction registers */
  495. s->dir = value & 0x0fffffff;
  496. strongarm_gpio_handler_update(s);
  497. break;
  498. case GPSR: /* GPIO Pin-Output Set registers */
  499. s->olevel |= value & 0x0fffffff;
  500. strongarm_gpio_handler_update(s);
  501. break;
  502. case GPCR: /* GPIO Pin-Output Clear registers */
  503. s->olevel &= ~value;
  504. strongarm_gpio_handler_update(s);
  505. break;
  506. case GRER: /* GPIO Rising-Edge Detect Enable registers */
  507. s->rising = value;
  508. break;
  509. case GFER: /* GPIO Falling-Edge Detect Enable registers */
  510. s->falling = value;
  511. break;
  512. case GAFR: /* GPIO Alternate Function registers */
  513. s->gafr = value;
  514. break;
  515. case GEDR: /* GPIO Edge Detect Status registers */
  516. s->status &= ~value;
  517. strongarm_gpio_irq_update(s);
  518. break;
  519. default:
  520. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  521. }
  522. }
  523. static const MemoryRegionOps strongarm_gpio_ops = {
  524. .read = strongarm_gpio_read,
  525. .write = strongarm_gpio_write,
  526. .endianness = DEVICE_NATIVE_ENDIAN,
  527. };
  528. static DeviceState *strongarm_gpio_init(hwaddr base,
  529. DeviceState *pic)
  530. {
  531. DeviceState *dev;
  532. int i;
  533. dev = qdev_create(NULL, TYPE_STRONGARM_GPIO);
  534. qdev_init_nofail(dev);
  535. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
  536. for (i = 0; i < 12; i++)
  537. sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
  538. qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
  539. return dev;
  540. }
  541. static void strongarm_gpio_initfn(Object *obj)
  542. {
  543. DeviceState *dev = DEVICE(obj);
  544. StrongARMGPIOInfo *s = STRONGARM_GPIO(obj);
  545. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  546. int i;
  547. qdev_init_gpio_in(dev, strongarm_gpio_set, 28);
  548. qdev_init_gpio_out(dev, s->handler, 28);
  549. memory_region_init_io(&s->iomem, obj, &strongarm_gpio_ops, s,
  550. "gpio", 0x1000);
  551. sysbus_init_mmio(sbd, &s->iomem);
  552. for (i = 0; i < 11; i++) {
  553. sysbus_init_irq(sbd, &s->irqs[i]);
  554. }
  555. sysbus_init_irq(sbd, &s->irqX);
  556. }
  557. static const VMStateDescription vmstate_strongarm_gpio_regs = {
  558. .name = "strongarm-gpio",
  559. .version_id = 0,
  560. .minimum_version_id = 0,
  561. .fields = (VMStateField[]) {
  562. VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
  563. VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
  564. VMSTATE_UINT32(dir, StrongARMGPIOInfo),
  565. VMSTATE_UINT32(rising, StrongARMGPIOInfo),
  566. VMSTATE_UINT32(falling, StrongARMGPIOInfo),
  567. VMSTATE_UINT32(status, StrongARMGPIOInfo),
  568. VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
  569. VMSTATE_UINT32(prev_level, StrongARMGPIOInfo),
  570. VMSTATE_END_OF_LIST(),
  571. },
  572. };
  573. static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
  574. {
  575. DeviceClass *dc = DEVICE_CLASS(klass);
  576. dc->desc = "StrongARM GPIO controller";
  577. dc->vmsd = &vmstate_strongarm_gpio_regs;
  578. }
  579. static const TypeInfo strongarm_gpio_info = {
  580. .name = TYPE_STRONGARM_GPIO,
  581. .parent = TYPE_SYS_BUS_DEVICE,
  582. .instance_size = sizeof(StrongARMGPIOInfo),
  583. .instance_init = strongarm_gpio_initfn,
  584. .class_init = strongarm_gpio_class_init,
  585. };
  586. /* Peripheral Pin Controller */
  587. #define PPDR 0x00
  588. #define PPSR 0x04
  589. #define PPAR 0x08
  590. #define PSDR 0x0c
  591. #define PPFR 0x10
  592. #define TYPE_STRONGARM_PPC "strongarm-ppc"
  593. #define STRONGARM_PPC(obj) \
  594. OBJECT_CHECK(StrongARMPPCInfo, (obj), TYPE_STRONGARM_PPC)
  595. typedef struct StrongARMPPCInfo StrongARMPPCInfo;
  596. struct StrongARMPPCInfo {
  597. SysBusDevice parent_obj;
  598. MemoryRegion iomem;
  599. qemu_irq handler[28];
  600. uint32_t ilevel;
  601. uint32_t olevel;
  602. uint32_t dir;
  603. uint32_t ppar;
  604. uint32_t psdr;
  605. uint32_t ppfr;
  606. uint32_t prev_level;
  607. };
  608. static void strongarm_ppc_set(void *opaque, int line, int level)
  609. {
  610. StrongARMPPCInfo *s = opaque;
  611. if (level) {
  612. s->ilevel |= 1 << line;
  613. } else {
  614. s->ilevel &= ~(1 << line);
  615. }
  616. }
  617. static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
  618. {
  619. uint32_t level, diff;
  620. int bit;
  621. level = s->olevel & s->dir;
  622. for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
  623. bit = ctz32(diff);
  624. qemu_set_irq(s->handler[bit], (level >> bit) & 1);
  625. }
  626. s->prev_level = level;
  627. }
  628. static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
  629. unsigned size)
  630. {
  631. StrongARMPPCInfo *s = opaque;
  632. switch (offset) {
  633. case PPDR: /* PPC Pin Direction registers */
  634. return s->dir | ~0x3fffff;
  635. case PPSR: /* PPC Pin State registers */
  636. return (s->olevel & s->dir) |
  637. (s->ilevel & ~s->dir) |
  638. ~0x3fffff;
  639. case PPAR:
  640. return s->ppar | ~0x41000;
  641. case PSDR:
  642. return s->psdr;
  643. case PPFR:
  644. return s->ppfr | ~0x7f001;
  645. default:
  646. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  647. }
  648. return 0;
  649. }
  650. static void strongarm_ppc_write(void *opaque, hwaddr offset,
  651. uint64_t value, unsigned size)
  652. {
  653. StrongARMPPCInfo *s = opaque;
  654. switch (offset) {
  655. case PPDR: /* PPC Pin Direction registers */
  656. s->dir = value & 0x3fffff;
  657. strongarm_ppc_handler_update(s);
  658. break;
  659. case PPSR: /* PPC Pin State registers */
  660. s->olevel = value & s->dir & 0x3fffff;
  661. strongarm_ppc_handler_update(s);
  662. break;
  663. case PPAR:
  664. s->ppar = value & 0x41000;
  665. break;
  666. case PSDR:
  667. s->psdr = value & 0x3fffff;
  668. break;
  669. case PPFR:
  670. s->ppfr = value & 0x7f001;
  671. break;
  672. default:
  673. printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
  674. }
  675. }
  676. static const MemoryRegionOps strongarm_ppc_ops = {
  677. .read = strongarm_ppc_read,
  678. .write = strongarm_ppc_write,
  679. .endianness = DEVICE_NATIVE_ENDIAN,
  680. };
  681. static void strongarm_ppc_init(Object *obj)
  682. {
  683. DeviceState *dev = DEVICE(obj);
  684. StrongARMPPCInfo *s = STRONGARM_PPC(obj);
  685. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  686. qdev_init_gpio_in(dev, strongarm_ppc_set, 22);
  687. qdev_init_gpio_out(dev, s->handler, 22);
  688. memory_region_init_io(&s->iomem, obj, &strongarm_ppc_ops, s,
  689. "ppc", 0x1000);
  690. sysbus_init_mmio(sbd, &s->iomem);
  691. }
  692. static const VMStateDescription vmstate_strongarm_ppc_regs = {
  693. .name = "strongarm-ppc",
  694. .version_id = 0,
  695. .minimum_version_id = 0,
  696. .fields = (VMStateField[]) {
  697. VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
  698. VMSTATE_UINT32(olevel, StrongARMPPCInfo),
  699. VMSTATE_UINT32(dir, StrongARMPPCInfo),
  700. VMSTATE_UINT32(ppar, StrongARMPPCInfo),
  701. VMSTATE_UINT32(psdr, StrongARMPPCInfo),
  702. VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
  703. VMSTATE_UINT32(prev_level, StrongARMPPCInfo),
  704. VMSTATE_END_OF_LIST(),
  705. },
  706. };
  707. static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
  708. {
  709. DeviceClass *dc = DEVICE_CLASS(klass);
  710. dc->desc = "StrongARM PPC controller";
  711. dc->vmsd = &vmstate_strongarm_ppc_regs;
  712. }
  713. static const TypeInfo strongarm_ppc_info = {
  714. .name = TYPE_STRONGARM_PPC,
  715. .parent = TYPE_SYS_BUS_DEVICE,
  716. .instance_size = sizeof(StrongARMPPCInfo),
  717. .instance_init = strongarm_ppc_init,
  718. .class_init = strongarm_ppc_class_init,
  719. };
  720. /* UART Ports */
  721. #define UTCR0 0x00
  722. #define UTCR1 0x04
  723. #define UTCR2 0x08
  724. #define UTCR3 0x0c
  725. #define UTDR 0x14
  726. #define UTSR0 0x1c
  727. #define UTSR1 0x20
  728. #define UTCR0_PE (1 << 0) /* Parity enable */
  729. #define UTCR0_OES (1 << 1) /* Even parity */
  730. #define UTCR0_SBS (1 << 2) /* 2 stop bits */
  731. #define UTCR0_DSS (1 << 3) /* 8-bit data */
  732. #define UTCR3_RXE (1 << 0) /* Rx enable */
  733. #define UTCR3_TXE (1 << 1) /* Tx enable */
  734. #define UTCR3_BRK (1 << 2) /* Force Break */
  735. #define UTCR3_RIE (1 << 3) /* Rx int enable */
  736. #define UTCR3_TIE (1 << 4) /* Tx int enable */
  737. #define UTCR3_LBM (1 << 5) /* Loopback */
  738. #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
  739. #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
  740. #define UTSR0_RID (1 << 2) /* Receiver Idle */
  741. #define UTSR0_RBB (1 << 3) /* Receiver begin break */
  742. #define UTSR0_REB (1 << 4) /* Receiver end break */
  743. #define UTSR0_EIF (1 << 5) /* Error in FIFO */
  744. #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
  745. #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
  746. #define UTSR1_PRE (1 << 3) /* Parity error */
  747. #define UTSR1_FRE (1 << 4) /* Frame error */
  748. #define UTSR1_ROR (1 << 5) /* Receive Over Run */
  749. #define RX_FIFO_PRE (1 << 8)
  750. #define RX_FIFO_FRE (1 << 9)
  751. #define RX_FIFO_ROR (1 << 10)
  752. #define TYPE_STRONGARM_UART "strongarm-uart"
  753. #define STRONGARM_UART(obj) \
  754. OBJECT_CHECK(StrongARMUARTState, (obj), TYPE_STRONGARM_UART)
  755. typedef struct StrongARMUARTState {
  756. SysBusDevice parent_obj;
  757. MemoryRegion iomem;
  758. CharBackend chr;
  759. qemu_irq irq;
  760. uint8_t utcr0;
  761. uint16_t brd;
  762. uint8_t utcr3;
  763. uint8_t utsr0;
  764. uint8_t utsr1;
  765. uint8_t tx_fifo[8];
  766. uint8_t tx_start;
  767. uint8_t tx_len;
  768. uint16_t rx_fifo[12]; /* value + error flags in high bits */
  769. uint8_t rx_start;
  770. uint8_t rx_len;
  771. uint64_t char_transmit_time; /* time to transmit a char in ticks*/
  772. bool wait_break_end;
  773. QEMUTimer *rx_timeout_timer;
  774. QEMUTimer *tx_timer;
  775. } StrongARMUARTState;
  776. static void strongarm_uart_update_status(StrongARMUARTState *s)
  777. {
  778. uint16_t utsr1 = 0;
  779. if (s->tx_len != 8) {
  780. utsr1 |= UTSR1_TNF;
  781. }
  782. if (s->rx_len != 0) {
  783. uint16_t ent = s->rx_fifo[s->rx_start];
  784. utsr1 |= UTSR1_RNE;
  785. if (ent & RX_FIFO_PRE) {
  786. s->utsr1 |= UTSR1_PRE;
  787. }
  788. if (ent & RX_FIFO_FRE) {
  789. s->utsr1 |= UTSR1_FRE;
  790. }
  791. if (ent & RX_FIFO_ROR) {
  792. s->utsr1 |= UTSR1_ROR;
  793. }
  794. }
  795. s->utsr1 = utsr1;
  796. }
  797. static void strongarm_uart_update_int_status(StrongARMUARTState *s)
  798. {
  799. uint16_t utsr0 = s->utsr0 &
  800. (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
  801. int i;
  802. if ((s->utcr3 & UTCR3_TXE) &&
  803. (s->utcr3 & UTCR3_TIE) &&
  804. s->tx_len <= 4) {
  805. utsr0 |= UTSR0_TFS;
  806. }
  807. if ((s->utcr3 & UTCR3_RXE) &&
  808. (s->utcr3 & UTCR3_RIE) &&
  809. s->rx_len > 4) {
  810. utsr0 |= UTSR0_RFS;
  811. }
  812. for (i = 0; i < s->rx_len && i < 4; i++)
  813. if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
  814. utsr0 |= UTSR0_EIF;
  815. break;
  816. }
  817. s->utsr0 = utsr0;
  818. qemu_set_irq(s->irq, utsr0);
  819. }
  820. static void strongarm_uart_update_parameters(StrongARMUARTState *s)
  821. {
  822. int speed, parity, data_bits, stop_bits, frame_size;
  823. QEMUSerialSetParams ssp;
  824. /* Start bit. */
  825. frame_size = 1;
  826. if (s->utcr0 & UTCR0_PE) {
  827. /* Parity bit. */
  828. frame_size++;
  829. if (s->utcr0 & UTCR0_OES) {
  830. parity = 'E';
  831. } else {
  832. parity = 'O';
  833. }
  834. } else {
  835. parity = 'N';
  836. }
  837. if (s->utcr0 & UTCR0_SBS) {
  838. stop_bits = 2;
  839. } else {
  840. stop_bits = 1;
  841. }
  842. data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
  843. frame_size += data_bits + stop_bits;
  844. speed = 3686400 / 16 / (s->brd + 1);
  845. ssp.speed = speed;
  846. ssp.parity = parity;
  847. ssp.data_bits = data_bits;
  848. ssp.stop_bits = stop_bits;
  849. s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
  850. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  851. DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
  852. speed, parity, data_bits, stop_bits);
  853. }
  854. static void strongarm_uart_rx_to(void *opaque)
  855. {
  856. StrongARMUARTState *s = opaque;
  857. if (s->rx_len) {
  858. s->utsr0 |= UTSR0_RID;
  859. strongarm_uart_update_int_status(s);
  860. }
  861. }
  862. static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
  863. {
  864. if ((s->utcr3 & UTCR3_RXE) == 0) {
  865. /* rx disabled */
  866. return;
  867. }
  868. if (s->wait_break_end) {
  869. s->utsr0 |= UTSR0_REB;
  870. s->wait_break_end = false;
  871. }
  872. if (s->rx_len < 12) {
  873. s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
  874. s->rx_len++;
  875. } else
  876. s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
  877. }
  878. static int strongarm_uart_can_receive(void *opaque)
  879. {
  880. StrongARMUARTState *s = opaque;
  881. if (s->rx_len == 12) {
  882. return 0;
  883. }
  884. /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
  885. if (s->rx_len < 8) {
  886. return 8 - s->rx_len;
  887. }
  888. return 1;
  889. }
  890. static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
  891. {
  892. StrongARMUARTState *s = opaque;
  893. int i;
  894. for (i = 0; i < size; i++) {
  895. strongarm_uart_rx_push(s, buf[i]);
  896. }
  897. /* call the timeout receive callback in 3 char transmit time */
  898. timer_mod(s->rx_timeout_timer,
  899. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
  900. strongarm_uart_update_status(s);
  901. strongarm_uart_update_int_status(s);
  902. }
  903. static void strongarm_uart_event(void *opaque, int event)
  904. {
  905. StrongARMUARTState *s = opaque;
  906. if (event == CHR_EVENT_BREAK) {
  907. s->utsr0 |= UTSR0_RBB;
  908. strongarm_uart_rx_push(s, RX_FIFO_FRE);
  909. s->wait_break_end = true;
  910. strongarm_uart_update_status(s);
  911. strongarm_uart_update_int_status(s);
  912. }
  913. }
  914. static void strongarm_uart_tx(void *opaque)
  915. {
  916. StrongARMUARTState *s = opaque;
  917. uint64_t new_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  918. if (s->utcr3 & UTCR3_LBM) /* loopback */ {
  919. strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
  920. } else if (qemu_chr_fe_backend_connected(&s->chr)) {
  921. /* XXX this blocks entire thread. Rewrite to use
  922. * qemu_chr_fe_write and background I/O callbacks */
  923. qemu_chr_fe_write_all(&s->chr, &s->tx_fifo[s->tx_start], 1);
  924. }
  925. s->tx_start = (s->tx_start + 1) % 8;
  926. s->tx_len--;
  927. if (s->tx_len) {
  928. timer_mod(s->tx_timer, new_xmit_ts + s->char_transmit_time);
  929. }
  930. strongarm_uart_update_status(s);
  931. strongarm_uart_update_int_status(s);
  932. }
  933. static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
  934. unsigned size)
  935. {
  936. StrongARMUARTState *s = opaque;
  937. uint16_t ret;
  938. switch (addr) {
  939. case UTCR0:
  940. return s->utcr0;
  941. case UTCR1:
  942. return s->brd >> 8;
  943. case UTCR2:
  944. return s->brd & 0xff;
  945. case UTCR3:
  946. return s->utcr3;
  947. case UTDR:
  948. if (s->rx_len != 0) {
  949. ret = s->rx_fifo[s->rx_start];
  950. s->rx_start = (s->rx_start + 1) % 12;
  951. s->rx_len--;
  952. strongarm_uart_update_status(s);
  953. strongarm_uart_update_int_status(s);
  954. return ret;
  955. }
  956. return 0;
  957. case UTSR0:
  958. return s->utsr0;
  959. case UTSR1:
  960. return s->utsr1;
  961. default:
  962. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  963. return 0;
  964. }
  965. }
  966. static void strongarm_uart_write(void *opaque, hwaddr addr,
  967. uint64_t value, unsigned size)
  968. {
  969. StrongARMUARTState *s = opaque;
  970. switch (addr) {
  971. case UTCR0:
  972. s->utcr0 = value & 0x7f;
  973. strongarm_uart_update_parameters(s);
  974. break;
  975. case UTCR1:
  976. s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
  977. strongarm_uart_update_parameters(s);
  978. break;
  979. case UTCR2:
  980. s->brd = (s->brd & 0xf00) | (value & 0xff);
  981. strongarm_uart_update_parameters(s);
  982. break;
  983. case UTCR3:
  984. s->utcr3 = value & 0x3f;
  985. if ((s->utcr3 & UTCR3_RXE) == 0) {
  986. s->rx_len = 0;
  987. }
  988. if ((s->utcr3 & UTCR3_TXE) == 0) {
  989. s->tx_len = 0;
  990. }
  991. strongarm_uart_update_status(s);
  992. strongarm_uart_update_int_status(s);
  993. break;
  994. case UTDR:
  995. if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
  996. s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
  997. s->tx_len++;
  998. strongarm_uart_update_status(s);
  999. strongarm_uart_update_int_status(s);
  1000. if (s->tx_len == 1) {
  1001. strongarm_uart_tx(s);
  1002. }
  1003. }
  1004. break;
  1005. case UTSR0:
  1006. s->utsr0 = s->utsr0 & ~(value &
  1007. (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
  1008. strongarm_uart_update_int_status(s);
  1009. break;
  1010. default:
  1011. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  1012. }
  1013. }
  1014. static const MemoryRegionOps strongarm_uart_ops = {
  1015. .read = strongarm_uart_read,
  1016. .write = strongarm_uart_write,
  1017. .endianness = DEVICE_NATIVE_ENDIAN,
  1018. };
  1019. static void strongarm_uart_init(Object *obj)
  1020. {
  1021. StrongARMUARTState *s = STRONGARM_UART(obj);
  1022. SysBusDevice *dev = SYS_BUS_DEVICE(obj);
  1023. memory_region_init_io(&s->iomem, obj, &strongarm_uart_ops, s,
  1024. "uart", 0x10000);
  1025. sysbus_init_mmio(dev, &s->iomem);
  1026. sysbus_init_irq(dev, &s->irq);
  1027. s->rx_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_rx_to, s);
  1028. s->tx_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_tx, s);
  1029. }
  1030. static void strongarm_uart_realize(DeviceState *dev, Error **errp)
  1031. {
  1032. StrongARMUARTState *s = STRONGARM_UART(dev);
  1033. qemu_chr_fe_set_handlers(&s->chr,
  1034. strongarm_uart_can_receive,
  1035. strongarm_uart_receive,
  1036. strongarm_uart_event,
  1037. NULL, s, NULL, true);
  1038. }
  1039. static void strongarm_uart_reset(DeviceState *dev)
  1040. {
  1041. StrongARMUARTState *s = STRONGARM_UART(dev);
  1042. s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
  1043. s->brd = 23; /* 9600 */
  1044. /* enable send & recv - this actually violates spec */
  1045. s->utcr3 = UTCR3_TXE | UTCR3_RXE;
  1046. s->rx_len = s->tx_len = 0;
  1047. strongarm_uart_update_parameters(s);
  1048. strongarm_uart_update_status(s);
  1049. strongarm_uart_update_int_status(s);
  1050. }
  1051. static int strongarm_uart_post_load(void *opaque, int version_id)
  1052. {
  1053. StrongARMUARTState *s = opaque;
  1054. strongarm_uart_update_parameters(s);
  1055. strongarm_uart_update_status(s);
  1056. strongarm_uart_update_int_status(s);
  1057. /* tx and restart timer */
  1058. if (s->tx_len) {
  1059. strongarm_uart_tx(s);
  1060. }
  1061. /* restart rx timeout timer */
  1062. if (s->rx_len) {
  1063. timer_mod(s->rx_timeout_timer,
  1064. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
  1065. }
  1066. return 0;
  1067. }
  1068. static const VMStateDescription vmstate_strongarm_uart_regs = {
  1069. .name = "strongarm-uart",
  1070. .version_id = 0,
  1071. .minimum_version_id = 0,
  1072. .post_load = strongarm_uart_post_load,
  1073. .fields = (VMStateField[]) {
  1074. VMSTATE_UINT8(utcr0, StrongARMUARTState),
  1075. VMSTATE_UINT16(brd, StrongARMUARTState),
  1076. VMSTATE_UINT8(utcr3, StrongARMUARTState),
  1077. VMSTATE_UINT8(utsr0, StrongARMUARTState),
  1078. VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
  1079. VMSTATE_UINT8(tx_start, StrongARMUARTState),
  1080. VMSTATE_UINT8(tx_len, StrongARMUARTState),
  1081. VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
  1082. VMSTATE_UINT8(rx_start, StrongARMUARTState),
  1083. VMSTATE_UINT8(rx_len, StrongARMUARTState),
  1084. VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
  1085. VMSTATE_END_OF_LIST(),
  1086. },
  1087. };
  1088. static Property strongarm_uart_properties[] = {
  1089. DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
  1090. DEFINE_PROP_END_OF_LIST(),
  1091. };
  1092. static void strongarm_uart_class_init(ObjectClass *klass, void *data)
  1093. {
  1094. DeviceClass *dc = DEVICE_CLASS(klass);
  1095. dc->desc = "StrongARM UART controller";
  1096. dc->reset = strongarm_uart_reset;
  1097. dc->vmsd = &vmstate_strongarm_uart_regs;
  1098. dc->props = strongarm_uart_properties;
  1099. dc->realize = strongarm_uart_realize;
  1100. }
  1101. static const TypeInfo strongarm_uart_info = {
  1102. .name = TYPE_STRONGARM_UART,
  1103. .parent = TYPE_SYS_BUS_DEVICE,
  1104. .instance_size = sizeof(StrongARMUARTState),
  1105. .instance_init = strongarm_uart_init,
  1106. .class_init = strongarm_uart_class_init,
  1107. };
  1108. /* Synchronous Serial Ports */
  1109. #define TYPE_STRONGARM_SSP "strongarm-ssp"
  1110. #define STRONGARM_SSP(obj) \
  1111. OBJECT_CHECK(StrongARMSSPState, (obj), TYPE_STRONGARM_SSP)
  1112. typedef struct StrongARMSSPState {
  1113. SysBusDevice parent_obj;
  1114. MemoryRegion iomem;
  1115. qemu_irq irq;
  1116. SSIBus *bus;
  1117. uint16_t sscr[2];
  1118. uint16_t sssr;
  1119. uint16_t rx_fifo[8];
  1120. uint8_t rx_level;
  1121. uint8_t rx_start;
  1122. } StrongARMSSPState;
  1123. #define SSCR0 0x60 /* SSP Control register 0 */
  1124. #define SSCR1 0x64 /* SSP Control register 1 */
  1125. #define SSDR 0x6c /* SSP Data register */
  1126. #define SSSR 0x74 /* SSP Status register */
  1127. /* Bitfields for above registers */
  1128. #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
  1129. #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
  1130. #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
  1131. #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
  1132. #define SSCR0_SSE (1 << 7)
  1133. #define SSCR0_DSS(x) (((x) & 0xf) + 1)
  1134. #define SSCR1_RIE (1 << 0)
  1135. #define SSCR1_TIE (1 << 1)
  1136. #define SSCR1_LBM (1 << 2)
  1137. #define SSSR_TNF (1 << 2)
  1138. #define SSSR_RNE (1 << 3)
  1139. #define SSSR_TFS (1 << 5)
  1140. #define SSSR_RFS (1 << 6)
  1141. #define SSSR_ROR (1 << 7)
  1142. #define SSSR_RW 0x0080
  1143. static void strongarm_ssp_int_update(StrongARMSSPState *s)
  1144. {
  1145. int level = 0;
  1146. level |= (s->sssr & SSSR_ROR);
  1147. level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
  1148. level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
  1149. qemu_set_irq(s->irq, level);
  1150. }
  1151. static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
  1152. {
  1153. s->sssr &= ~SSSR_TFS;
  1154. s->sssr &= ~SSSR_TNF;
  1155. if (s->sscr[0] & SSCR0_SSE) {
  1156. if (s->rx_level >= 4) {
  1157. s->sssr |= SSSR_RFS;
  1158. } else {
  1159. s->sssr &= ~SSSR_RFS;
  1160. }
  1161. if (s->rx_level) {
  1162. s->sssr |= SSSR_RNE;
  1163. } else {
  1164. s->sssr &= ~SSSR_RNE;
  1165. }
  1166. /* TX FIFO is never filled, so it is always in underrun
  1167. condition if SSP is enabled */
  1168. s->sssr |= SSSR_TFS;
  1169. s->sssr |= SSSR_TNF;
  1170. }
  1171. strongarm_ssp_int_update(s);
  1172. }
  1173. static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
  1174. unsigned size)
  1175. {
  1176. StrongARMSSPState *s = opaque;
  1177. uint32_t retval;
  1178. switch (addr) {
  1179. case SSCR0:
  1180. return s->sscr[0];
  1181. case SSCR1:
  1182. return s->sscr[1];
  1183. case SSSR:
  1184. return s->sssr;
  1185. case SSDR:
  1186. if (~s->sscr[0] & SSCR0_SSE) {
  1187. return 0xffffffff;
  1188. }
  1189. if (s->rx_level < 1) {
  1190. printf("%s: SSP Rx Underrun\n", __func__);
  1191. return 0xffffffff;
  1192. }
  1193. s->rx_level--;
  1194. retval = s->rx_fifo[s->rx_start++];
  1195. s->rx_start &= 0x7;
  1196. strongarm_ssp_fifo_update(s);
  1197. return retval;
  1198. default:
  1199. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  1200. break;
  1201. }
  1202. return 0;
  1203. }
  1204. static void strongarm_ssp_write(void *opaque, hwaddr addr,
  1205. uint64_t value, unsigned size)
  1206. {
  1207. StrongARMSSPState *s = opaque;
  1208. switch (addr) {
  1209. case SSCR0:
  1210. s->sscr[0] = value & 0xffbf;
  1211. if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
  1212. printf("%s: Wrong data size: %i bits\n", __func__,
  1213. (int)SSCR0_DSS(value));
  1214. }
  1215. if (!(value & SSCR0_SSE)) {
  1216. s->sssr = 0;
  1217. s->rx_level = 0;
  1218. }
  1219. strongarm_ssp_fifo_update(s);
  1220. break;
  1221. case SSCR1:
  1222. s->sscr[1] = value & 0x2f;
  1223. if (value & SSCR1_LBM) {
  1224. printf("%s: Attempt to use SSP LBM mode\n", __func__);
  1225. }
  1226. strongarm_ssp_fifo_update(s);
  1227. break;
  1228. case SSSR:
  1229. s->sssr &= ~(value & SSSR_RW);
  1230. strongarm_ssp_int_update(s);
  1231. break;
  1232. case SSDR:
  1233. if (SSCR0_UWIRE(s->sscr[0])) {
  1234. value &= 0xff;
  1235. } else
  1236. /* Note how 32bits overflow does no harm here */
  1237. value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
  1238. /* Data goes from here to the Tx FIFO and is shifted out from
  1239. * there directly to the slave, no need to buffer it.
  1240. */
  1241. if (s->sscr[0] & SSCR0_SSE) {
  1242. uint32_t readval;
  1243. if (s->sscr[1] & SSCR1_LBM) {
  1244. readval = value;
  1245. } else {
  1246. readval = ssi_transfer(s->bus, value);
  1247. }
  1248. if (s->rx_level < 0x08) {
  1249. s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
  1250. } else {
  1251. s->sssr |= SSSR_ROR;
  1252. }
  1253. }
  1254. strongarm_ssp_fifo_update(s);
  1255. break;
  1256. default:
  1257. printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
  1258. break;
  1259. }
  1260. }
  1261. static const MemoryRegionOps strongarm_ssp_ops = {
  1262. .read = strongarm_ssp_read,
  1263. .write = strongarm_ssp_write,
  1264. .endianness = DEVICE_NATIVE_ENDIAN,
  1265. };
  1266. static int strongarm_ssp_post_load(void *opaque, int version_id)
  1267. {
  1268. StrongARMSSPState *s = opaque;
  1269. strongarm_ssp_fifo_update(s);
  1270. return 0;
  1271. }
  1272. static void strongarm_ssp_init(Object *obj)
  1273. {
  1274. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  1275. DeviceState *dev = DEVICE(sbd);
  1276. StrongARMSSPState *s = STRONGARM_SSP(dev);
  1277. sysbus_init_irq(sbd, &s->irq);
  1278. memory_region_init_io(&s->iomem, obj, &strongarm_ssp_ops, s,
  1279. "ssp", 0x1000);
  1280. sysbus_init_mmio(sbd, &s->iomem);
  1281. s->bus = ssi_create_bus(dev, "ssi");
  1282. }
  1283. static void strongarm_ssp_reset(DeviceState *dev)
  1284. {
  1285. StrongARMSSPState *s = STRONGARM_SSP(dev);
  1286. s->sssr = 0x03; /* 3 bit data, SPI, disabled */
  1287. s->rx_start = 0;
  1288. s->rx_level = 0;
  1289. }
  1290. static const VMStateDescription vmstate_strongarm_ssp_regs = {
  1291. .name = "strongarm-ssp",
  1292. .version_id = 0,
  1293. .minimum_version_id = 0,
  1294. .post_load = strongarm_ssp_post_load,
  1295. .fields = (VMStateField[]) {
  1296. VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
  1297. VMSTATE_UINT16(sssr, StrongARMSSPState),
  1298. VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
  1299. VMSTATE_UINT8(rx_start, StrongARMSSPState),
  1300. VMSTATE_UINT8(rx_level, StrongARMSSPState),
  1301. VMSTATE_END_OF_LIST(),
  1302. },
  1303. };
  1304. static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
  1305. {
  1306. DeviceClass *dc = DEVICE_CLASS(klass);
  1307. dc->desc = "StrongARM SSP controller";
  1308. dc->reset = strongarm_ssp_reset;
  1309. dc->vmsd = &vmstate_strongarm_ssp_regs;
  1310. }
  1311. static const TypeInfo strongarm_ssp_info = {
  1312. .name = TYPE_STRONGARM_SSP,
  1313. .parent = TYPE_SYS_BUS_DEVICE,
  1314. .instance_size = sizeof(StrongARMSSPState),
  1315. .instance_init = strongarm_ssp_init,
  1316. .class_init = strongarm_ssp_class_init,
  1317. };
  1318. /* Main CPU functions */
  1319. StrongARMState *sa1110_init(const char *cpu_type)
  1320. {
  1321. StrongARMState *s;
  1322. int i;
  1323. s = g_new0(StrongARMState, 1);
  1324. if (strncmp(cpu_type, "sa1110", 6)) {
  1325. error_report("Machine requires a SA1110 processor.");
  1326. exit(1);
  1327. }
  1328. s->cpu = ARM_CPU(cpu_create(cpu_type));
  1329. s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
  1330. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ),
  1331. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ),
  1332. NULL);
  1333. sysbus_create_varargs("pxa25x-timer", 0x90000000,
  1334. qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
  1335. qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
  1336. qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
  1337. qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
  1338. NULL);
  1339. sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000,
  1340. qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
  1341. s->gpio = strongarm_gpio_init(0x90040000, s->pic);
  1342. s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL);
  1343. for (i = 0; sa_serial[i].io_base; i++) {
  1344. DeviceState *dev = qdev_create(NULL, TYPE_STRONGARM_UART);
  1345. qdev_prop_set_chr(dev, "chardev", serial_hd(i));
  1346. qdev_init_nofail(dev);
  1347. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
  1348. sa_serial[i].io_base);
  1349. sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
  1350. qdev_get_gpio_in(s->pic, sa_serial[i].irq));
  1351. }
  1352. s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000,
  1353. qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
  1354. s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
  1355. return s;
  1356. }
  1357. static void strongarm_register_types(void)
  1358. {
  1359. type_register_static(&strongarm_pic_info);
  1360. type_register_static(&strongarm_rtc_sysbus_info);
  1361. type_register_static(&strongarm_gpio_info);
  1362. type_register_static(&strongarm_ppc_info);
  1363. type_register_static(&strongarm_uart_info);
  1364. type_register_static(&strongarm_ssp_info);
  1365. }
  1366. type_init(strongarm_register_types)