12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322 |
- /*
- * ARM kernel loader.
- *
- * Copyright (c) 2006-2007 CodeSourcery.
- * Written by Paul Brook
- *
- * This code is licensed under the GPL.
- */
- #include "qemu/osdep.h"
- #include "qemu-common.h"
- #include "qemu/error-report.h"
- #include "qapi/error.h"
- #include <libfdt.h>
- #include "hw/arm/boot.h"
- #include "hw/arm/linux-boot-if.h"
- #include "sysemu/kvm.h"
- #include "sysemu/sysemu.h"
- #include "sysemu/numa.h"
- #include "hw/boards.h"
- #include "sysemu/reset.h"
- #include "hw/loader.h"
- #include "elf.h"
- #include "sysemu/device_tree.h"
- #include "qemu/config-file.h"
- #include "qemu/option.h"
- #include "exec/address-spaces.h"
- #include "qemu/units.h"
- /* Kernel boot protocol is specified in the kernel docs
- * Documentation/arm/Booting and Documentation/arm64/booting.txt
- * They have different preferred image load offsets from system RAM base.
- */
- #define KERNEL_ARGS_ADDR 0x100
- #define KERNEL_NOLOAD_ADDR 0x02000000
- #define KERNEL_LOAD_ADDR 0x00010000
- #define KERNEL64_LOAD_ADDR 0x00080000
- #define ARM64_TEXT_OFFSET_OFFSET 8
- #define ARM64_MAGIC_OFFSET 56
- #define BOOTLOADER_MAX_SIZE (4 * KiB)
- AddressSpace *arm_boot_address_space(ARMCPU *cpu,
- const struct arm_boot_info *info)
- {
- /* Return the address space to use for bootloader reads and writes.
- * We prefer the secure address space if the CPU has it and we're
- * going to boot the guest into it.
- */
- int asidx;
- CPUState *cs = CPU(cpu);
- if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
- asidx = ARMASIdx_S;
- } else {
- asidx = ARMASIdx_NS;
- }
- return cpu_get_address_space(cs, asidx);
- }
- typedef enum {
- FIXUP_NONE = 0, /* do nothing */
- FIXUP_TERMINATOR, /* end of insns */
- FIXUP_BOARDID, /* overwrite with board ID number */
- FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
- FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
- FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
- FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
- FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
- FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
- FIXUP_BOOTREG, /* overwrite with boot register address */
- FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
- FIXUP_MAX,
- } FixupType;
- typedef struct ARMInsnFixup {
- uint32_t insn;
- FixupType fixup;
- } ARMInsnFixup;
- static const ARMInsnFixup bootloader_aarch64[] = {
- { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
- { 0xaa1f03e1 }, /* mov x1, xzr */
- { 0xaa1f03e2 }, /* mov x2, xzr */
- { 0xaa1f03e3 }, /* mov x3, xzr */
- { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
- { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
- { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
- { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
- { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
- { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
- { 0, FIXUP_TERMINATOR }
- };
- /* A very small bootloader: call the board-setup code (if needed),
- * set r0-r2, then jump to the kernel.
- * If we're not calling boot setup code then we don't copy across
- * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
- */
- static const ARMInsnFixup bootloader[] = {
- { 0xe28fe004 }, /* add lr, pc, #4 */
- { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
- { 0, FIXUP_BOARD_SETUP },
- #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
- { 0xe3a00000 }, /* mov r0, #0 */
- { 0xe59f1004 }, /* ldr r1, [pc, #4] */
- { 0xe59f2004 }, /* ldr r2, [pc, #4] */
- { 0xe59ff004 }, /* ldr pc, [pc, #4] */
- { 0, FIXUP_BOARDID },
- { 0, FIXUP_ARGPTR_LO },
- { 0, FIXUP_ENTRYPOINT_LO },
- { 0, FIXUP_TERMINATOR }
- };
- /* Handling for secondary CPU boot in a multicore system.
- * Unlike the uniprocessor/primary CPU boot, this is platform
- * dependent. The default code here is based on the secondary
- * CPU boot protocol used on realview/vexpress boards, with
- * some parameterisation to increase its flexibility.
- * QEMU platform models for which this code is not appropriate
- * should override write_secondary_boot and secondary_cpu_reset_hook
- * instead.
- *
- * This code enables the interrupt controllers for the secondary
- * CPUs and then puts all the secondary CPUs into a loop waiting
- * for an interprocessor interrupt and polling a configurable
- * location for the kernel secondary CPU entry point.
- */
- #define DSB_INSN 0xf57ff04f
- #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
- static const ARMInsnFixup smpboot[] = {
- { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
- { 0xe59f0028 }, /* ldr r0, bootreg_addr */
- { 0xe3a01001 }, /* mov r1, #1 */
- { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
- { 0xe3a010ff }, /* mov r1, #0xff */
- { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
- { 0, FIXUP_DSB }, /* dsb */
- { 0xe320f003 }, /* wfi */
- { 0xe5901000 }, /* ldr r1, [r0] */
- { 0xe1110001 }, /* tst r1, r1 */
- { 0x0afffffb }, /* beq <wfi> */
- { 0xe12fff11 }, /* bx r1 */
- { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
- { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
- { 0, FIXUP_TERMINATOR }
- };
- static void write_bootloader(const char *name, hwaddr addr,
- const ARMInsnFixup *insns, uint32_t *fixupcontext,
- AddressSpace *as)
- {
- /* Fix up the specified bootloader fragment and write it into
- * guest memory using rom_add_blob_fixed(). fixupcontext is
- * an array giving the values to write in for the fixup types
- * which write a value into the code array.
- */
- int i, len;
- uint32_t *code;
- len = 0;
- while (insns[len].fixup != FIXUP_TERMINATOR) {
- len++;
- }
- code = g_new0(uint32_t, len);
- for (i = 0; i < len; i++) {
- uint32_t insn = insns[i].insn;
- FixupType fixup = insns[i].fixup;
- switch (fixup) {
- case FIXUP_NONE:
- break;
- case FIXUP_BOARDID:
- case FIXUP_BOARD_SETUP:
- case FIXUP_ARGPTR_LO:
- case FIXUP_ARGPTR_HI:
- case FIXUP_ENTRYPOINT_LO:
- case FIXUP_ENTRYPOINT_HI:
- case FIXUP_GIC_CPU_IF:
- case FIXUP_BOOTREG:
- case FIXUP_DSB:
- insn = fixupcontext[fixup];
- break;
- default:
- abort();
- }
- code[i] = tswap32(insn);
- }
- assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
- rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
- g_free(code);
- }
- static void default_write_secondary(ARMCPU *cpu,
- const struct arm_boot_info *info)
- {
- uint32_t fixupcontext[FIXUP_MAX];
- AddressSpace *as = arm_boot_address_space(cpu, info);
- fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
- fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
- if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
- fixupcontext[FIXUP_DSB] = DSB_INSN;
- } else {
- fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
- }
- write_bootloader("smpboot", info->smp_loader_start,
- smpboot, fixupcontext, as);
- }
- void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
- const struct arm_boot_info *info,
- hwaddr mvbar_addr)
- {
- AddressSpace *as = arm_boot_address_space(cpu, info);
- int n;
- uint32_t mvbar_blob[] = {
- /* mvbar_addr: secure monitor vectors
- * Default unimplemented and unused vectors to spin. Makes it
- * easier to debug (as opposed to the CPU running away).
- */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- 0xeafffffe, /* (spin) */
- };
- uint32_t board_setup_blob[] = {
- /* board setup addr */
- 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
- 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
- 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
- 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
- 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
- 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
- 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
- 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
- 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
- 0xe1600070, /* smc #0 ;call monitor to flush SCR */
- 0xe1a0f001, /* mov pc, r1 ;return */
- };
- /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
- assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
- /* check that these blobs don't overlap */
- assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
- || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
- for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
- mvbar_blob[n] = tswap32(mvbar_blob[n]);
- }
- rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
- mvbar_addr, as);
- for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
- board_setup_blob[n] = tswap32(board_setup_blob[n]);
- }
- rom_add_blob_fixed_as("board-setup", board_setup_blob,
- sizeof(board_setup_blob), info->board_setup_addr, as);
- }
- static void default_reset_secondary(ARMCPU *cpu,
- const struct arm_boot_info *info)
- {
- AddressSpace *as = arm_boot_address_space(cpu, info);
- CPUState *cs = CPU(cpu);
- address_space_stl_notdirty(as, info->smp_bootreg_addr,
- 0, MEMTXATTRS_UNSPECIFIED, NULL);
- cpu_set_pc(cs, info->smp_loader_start);
- }
- static inline bool have_dtb(const struct arm_boot_info *info)
- {
- return info->dtb_filename || info->get_dtb;
- }
- #define WRITE_WORD(p, value) do { \
- address_space_stl_notdirty(as, p, value, \
- MEMTXATTRS_UNSPECIFIED, NULL); \
- p += 4; \
- } while (0)
- static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
- {
- int initrd_size = info->initrd_size;
- hwaddr base = info->loader_start;
- hwaddr p;
- p = base + KERNEL_ARGS_ADDR;
- /* ATAG_CORE */
- WRITE_WORD(p, 5);
- WRITE_WORD(p, 0x54410001);
- WRITE_WORD(p, 1);
- WRITE_WORD(p, 0x1000);
- WRITE_WORD(p, 0);
- /* ATAG_MEM */
- /* TODO: handle multiple chips on one ATAG list */
- WRITE_WORD(p, 4);
- WRITE_WORD(p, 0x54410002);
- WRITE_WORD(p, info->ram_size);
- WRITE_WORD(p, info->loader_start);
- if (initrd_size) {
- /* ATAG_INITRD2 */
- WRITE_WORD(p, 4);
- WRITE_WORD(p, 0x54420005);
- WRITE_WORD(p, info->initrd_start);
- WRITE_WORD(p, initrd_size);
- }
- if (info->kernel_cmdline && *info->kernel_cmdline) {
- /* ATAG_CMDLINE */
- int cmdline_size;
- cmdline_size = strlen(info->kernel_cmdline);
- address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
- (const uint8_t *)info->kernel_cmdline,
- cmdline_size + 1);
- cmdline_size = (cmdline_size >> 2) + 1;
- WRITE_WORD(p, cmdline_size + 2);
- WRITE_WORD(p, 0x54410009);
- p += cmdline_size * 4;
- }
- if (info->atag_board) {
- /* ATAG_BOARD */
- int atag_board_len;
- uint8_t atag_board_buf[0x1000];
- atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
- WRITE_WORD(p, (atag_board_len + 8) >> 2);
- WRITE_WORD(p, 0x414f4d50);
- address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
- atag_board_buf, atag_board_len);
- p += atag_board_len;
- }
- /* ATAG_END */
- WRITE_WORD(p, 0);
- WRITE_WORD(p, 0);
- }
- static void set_kernel_args_old(const struct arm_boot_info *info,
- AddressSpace *as)
- {
- hwaddr p;
- const char *s;
- int initrd_size = info->initrd_size;
- hwaddr base = info->loader_start;
- /* see linux/include/asm-arm/setup.h */
- p = base + KERNEL_ARGS_ADDR;
- /* page_size */
- WRITE_WORD(p, 4096);
- /* nr_pages */
- WRITE_WORD(p, info->ram_size / 4096);
- /* ramdisk_size */
- WRITE_WORD(p, 0);
- #define FLAG_READONLY 1
- #define FLAG_RDLOAD 4
- #define FLAG_RDPROMPT 8
- /* flags */
- WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
- /* rootdev */
- WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
- /* video_num_cols */
- WRITE_WORD(p, 0);
- /* video_num_rows */
- WRITE_WORD(p, 0);
- /* video_x */
- WRITE_WORD(p, 0);
- /* video_y */
- WRITE_WORD(p, 0);
- /* memc_control_reg */
- WRITE_WORD(p, 0);
- /* unsigned char sounddefault */
- /* unsigned char adfsdrives */
- /* unsigned char bytes_per_char_h */
- /* unsigned char bytes_per_char_v */
- WRITE_WORD(p, 0);
- /* pages_in_bank[4] */
- WRITE_WORD(p, 0);
- WRITE_WORD(p, 0);
- WRITE_WORD(p, 0);
- WRITE_WORD(p, 0);
- /* pages_in_vram */
- WRITE_WORD(p, 0);
- /* initrd_start */
- if (initrd_size) {
- WRITE_WORD(p, info->initrd_start);
- } else {
- WRITE_WORD(p, 0);
- }
- /* initrd_size */
- WRITE_WORD(p, initrd_size);
- /* rd_start */
- WRITE_WORD(p, 0);
- /* system_rev */
- WRITE_WORD(p, 0);
- /* system_serial_low */
- WRITE_WORD(p, 0);
- /* system_serial_high */
- WRITE_WORD(p, 0);
- /* mem_fclk_21285 */
- WRITE_WORD(p, 0);
- /* zero unused fields */
- while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
- WRITE_WORD(p, 0);
- }
- s = info->kernel_cmdline;
- if (s) {
- address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
- (const uint8_t *)s, strlen(s) + 1);
- } else {
- WRITE_WORD(p, 0);
- }
- }
- static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
- uint32_t scells, hwaddr mem_len,
- int numa_node_id)
- {
- char *nodename;
- int ret;
- nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
- qemu_fdt_add_subnode(fdt, nodename);
- qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
- ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
- scells, mem_len);
- if (ret < 0) {
- goto out;
- }
- /* only set the NUMA ID if it is specified */
- if (numa_node_id >= 0) {
- ret = qemu_fdt_setprop_cell(fdt, nodename,
- "numa-node-id", numa_node_id);
- }
- out:
- g_free(nodename);
- return ret;
- }
- static void fdt_add_psci_node(void *fdt)
- {
- uint32_t cpu_suspend_fn;
- uint32_t cpu_off_fn;
- uint32_t cpu_on_fn;
- uint32_t migrate_fn;
- ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
- const char *psci_method;
- int64_t psci_conduit;
- int rc;
- psci_conduit = object_property_get_int(OBJECT(armcpu),
- "psci-conduit",
- &error_abort);
- switch (psci_conduit) {
- case QEMU_PSCI_CONDUIT_DISABLED:
- return;
- case QEMU_PSCI_CONDUIT_HVC:
- psci_method = "hvc";
- break;
- case QEMU_PSCI_CONDUIT_SMC:
- psci_method = "smc";
- break;
- default:
- g_assert_not_reached();
- }
- /*
- * If /psci node is present in provided DTB, assume that no fixup
- * is necessary and all PSCI configuration should be taken as-is
- */
- rc = fdt_path_offset(fdt, "/psci");
- if (rc >= 0) {
- return;
- }
- qemu_fdt_add_subnode(fdt, "/psci");
- if (armcpu->psci_version == 2) {
- const char comp[] = "arm,psci-0.2\0arm,psci";
- qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
- cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
- if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
- cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
- cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
- migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
- } else {
- cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
- cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
- migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
- }
- } else {
- qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
- cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
- cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
- cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
- migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
- }
- /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
- * to the instruction that should be used to invoke PSCI functions.
- * However, the device tree binding uses 'method' instead, so that is
- * what we should use here.
- */
- qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
- qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
- qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
- qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
- qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
- }
- int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
- hwaddr addr_limit, AddressSpace *as, MachineState *ms)
- {
- void *fdt = NULL;
- int size, rc, n = 0;
- uint32_t acells, scells;
- unsigned int i;
- hwaddr mem_base, mem_len;
- char **node_path;
- Error *err = NULL;
- if (binfo->dtb_filename) {
- char *filename;
- filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
- if (!filename) {
- fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
- goto fail;
- }
- fdt = load_device_tree(filename, &size);
- if (!fdt) {
- fprintf(stderr, "Couldn't open dtb file %s\n", filename);
- g_free(filename);
- goto fail;
- }
- g_free(filename);
- } else {
- fdt = binfo->get_dtb(binfo, &size);
- if (!fdt) {
- fprintf(stderr, "Board was unable to create a dtb blob\n");
- goto fail;
- }
- }
- if (addr_limit > addr && size > (addr_limit - addr)) {
- /* Installing the device tree blob at addr would exceed addr_limit.
- * Whether this constitutes failure is up to the caller to decide,
- * so just return 0 as size, i.e., no error.
- */
- g_free(fdt);
- return 0;
- }
- acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
- NULL, &error_fatal);
- scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
- NULL, &error_fatal);
- if (acells == 0 || scells == 0) {
- fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
- goto fail;
- }
- if (scells < 2 && binfo->ram_size >= 4 * GiB) {
- /* This is user error so deserves a friendlier error message
- * than the failure of setprop_sized_cells would provide
- */
- fprintf(stderr, "qemu: dtb file not compatible with "
- "RAM size > 4GB\n");
- goto fail;
- }
- /* nop all root nodes matching /memory or /memory@unit-address */
- node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
- if (err) {
- error_report_err(err);
- goto fail;
- }
- while (node_path[n]) {
- if (g_str_has_prefix(node_path[n], "/memory")) {
- qemu_fdt_nop_node(fdt, node_path[n]);
- }
- n++;
- }
- g_strfreev(node_path);
- if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
- mem_base = binfo->loader_start;
- for (i = 0; i < ms->numa_state->num_nodes; i++) {
- mem_len = ms->numa_state->nodes[i].node_mem;
- rc = fdt_add_memory_node(fdt, acells, mem_base,
- scells, mem_len, i);
- if (rc < 0) {
- fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
- mem_base);
- goto fail;
- }
- mem_base += mem_len;
- }
- } else {
- rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
- scells, binfo->ram_size, -1);
- if (rc < 0) {
- fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
- binfo->loader_start);
- goto fail;
- }
- }
- rc = fdt_path_offset(fdt, "/chosen");
- if (rc < 0) {
- qemu_fdt_add_subnode(fdt, "/chosen");
- }
- if (ms->kernel_cmdline && *ms->kernel_cmdline) {
- rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
- ms->kernel_cmdline);
- if (rc < 0) {
- fprintf(stderr, "couldn't set /chosen/bootargs\n");
- goto fail;
- }
- }
- if (binfo->initrd_size) {
- rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
- binfo->initrd_start);
- if (rc < 0) {
- fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
- goto fail;
- }
- rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
- binfo->initrd_start + binfo->initrd_size);
- if (rc < 0) {
- fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
- goto fail;
- }
- }
- fdt_add_psci_node(fdt);
- if (binfo->modify_dtb) {
- binfo->modify_dtb(binfo, fdt);
- }
- qemu_fdt_dumpdtb(fdt, size);
- /* Put the DTB into the memory map as a ROM image: this will ensure
- * the DTB is copied again upon reset, even if addr points into RAM.
- */
- rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
- g_free(fdt);
- return size;
- fail:
- g_free(fdt);
- return -1;
- }
- static void do_cpu_reset(void *opaque)
- {
- ARMCPU *cpu = opaque;
- CPUState *cs = CPU(cpu);
- CPUARMState *env = &cpu->env;
- const struct arm_boot_info *info = env->boot_info;
- cpu_reset(cs);
- if (info) {
- if (!info->is_linux) {
- int i;
- /* Jump to the entry point. */
- uint64_t entry = info->entry;
- switch (info->endianness) {
- case ARM_ENDIANNESS_LE:
- env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
- for (i = 1; i < 4; ++i) {
- env->cp15.sctlr_el[i] &= ~SCTLR_EE;
- }
- env->uncached_cpsr &= ~CPSR_E;
- break;
- case ARM_ENDIANNESS_BE8:
- env->cp15.sctlr_el[1] |= SCTLR_E0E;
- for (i = 1; i < 4; ++i) {
- env->cp15.sctlr_el[i] |= SCTLR_EE;
- }
- env->uncached_cpsr |= CPSR_E;
- break;
- case ARM_ENDIANNESS_BE32:
- env->cp15.sctlr_el[1] |= SCTLR_B;
- break;
- case ARM_ENDIANNESS_UNKNOWN:
- break; /* Board's decision */
- default:
- g_assert_not_reached();
- }
- cpu_set_pc(cs, entry);
- } else {
- /* If we are booting Linux then we need to check whether we are
- * booting into secure or non-secure state and adjust the state
- * accordingly. Out of reset, ARM is defined to be in secure state
- * (SCR.NS = 0), we change that here if non-secure boot has been
- * requested.
- */
- if (arm_feature(env, ARM_FEATURE_EL3)) {
- /* AArch64 is defined to come out of reset into EL3 if enabled.
- * If we are booting Linux then we need to adjust our EL as
- * Linux expects us to be in EL2 or EL1. AArch32 resets into
- * SVC, which Linux expects, so no privilege/exception level to
- * adjust.
- */
- if (env->aarch64) {
- env->cp15.scr_el3 |= SCR_RW;
- if (arm_feature(env, ARM_FEATURE_EL2)) {
- env->cp15.hcr_el2 |= HCR_RW;
- env->pstate = PSTATE_MODE_EL2h;
- } else {
- env->pstate = PSTATE_MODE_EL1h;
- }
- /* AArch64 kernels never boot in secure mode */
- assert(!info->secure_boot);
- /* This hook is only supported for AArch32 currently:
- * bootloader_aarch64[] will not call the hook, and
- * the code above has already dropped us into EL2 or EL1.
- */
- assert(!info->secure_board_setup);
- }
- if (arm_feature(env, ARM_FEATURE_EL2)) {
- /* If we have EL2 then Linux expects the HVC insn to work */
- env->cp15.scr_el3 |= SCR_HCE;
- }
- /* Set to non-secure if not a secure boot */
- if (!info->secure_boot &&
- (cs != first_cpu || !info->secure_board_setup)) {
- /* Linux expects non-secure state */
- env->cp15.scr_el3 |= SCR_NS;
- /* Set NSACR.{CP11,CP10} so NS can access the FPU */
- env->cp15.nsacr |= 3 << 10;
- }
- }
- if (!env->aarch64 && !info->secure_boot &&
- arm_feature(env, ARM_FEATURE_EL2)) {
- /*
- * This is an AArch32 boot not to Secure state, and
- * we have Hyp mode available, so boot the kernel into
- * Hyp mode. This is not how the CPU comes out of reset,
- * so we need to manually put it there.
- */
- cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
- }
- if (cs == first_cpu) {
- AddressSpace *as = arm_boot_address_space(cpu, info);
- cpu_set_pc(cs, info->loader_start);
- if (!have_dtb(info)) {
- if (old_param) {
- set_kernel_args_old(info, as);
- } else {
- set_kernel_args(info, as);
- }
- }
- } else {
- info->secondary_cpu_reset_hook(cpu, info);
- }
- }
- arm_rebuild_hflags(env);
- }
- }
- /**
- * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
- * by key.
- * @fw_cfg: The firmware config instance to store the data in.
- * @size_key: The firmware config key to store the size of the loaded
- * data under, with fw_cfg_add_i32().
- * @data_key: The firmware config key to store the loaded data under,
- * with fw_cfg_add_bytes().
- * @image_name: The name of the image file to load. If it is NULL, the
- * function returns without doing anything.
- * @try_decompress: Whether the image should be decompressed (gunzipped) before
- * adding it to fw_cfg. If decompression fails, the image is
- * loaded as-is.
- *
- * In case of failure, the function prints an error message to stderr and the
- * process exits with status 1.
- */
- static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
- uint16_t data_key, const char *image_name,
- bool try_decompress)
- {
- size_t size = -1;
- uint8_t *data;
- if (image_name == NULL) {
- return;
- }
- if (try_decompress) {
- size = load_image_gzipped_buffer(image_name,
- LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
- }
- if (size == (size_t)-1) {
- gchar *contents;
- gsize length;
- if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
- error_report("failed to load \"%s\"", image_name);
- exit(1);
- }
- size = length;
- data = (uint8_t *)contents;
- }
- fw_cfg_add_i32(fw_cfg, size_key, size);
- fw_cfg_add_bytes(fw_cfg, data_key, data, size);
- }
- static int do_arm_linux_init(Object *obj, void *opaque)
- {
- if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
- ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
- ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
- struct arm_boot_info *info = opaque;
- if (albifc->arm_linux_init) {
- albifc->arm_linux_init(albif, info->secure_boot);
- }
- }
- return 0;
- }
- static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
- uint64_t *lowaddr, uint64_t *highaddr,
- int elf_machine, AddressSpace *as)
- {
- bool elf_is64;
- union {
- Elf32_Ehdr h32;
- Elf64_Ehdr h64;
- } elf_header;
- int data_swab = 0;
- bool big_endian;
- int64_t ret = -1;
- Error *err = NULL;
- load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
- if (err) {
- error_free(err);
- return ret;
- }
- if (elf_is64) {
- big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
- info->endianness = big_endian ? ARM_ENDIANNESS_BE8
- : ARM_ENDIANNESS_LE;
- } else {
- big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
- if (big_endian) {
- if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
- info->endianness = ARM_ENDIANNESS_BE8;
- } else {
- info->endianness = ARM_ENDIANNESS_BE32;
- /* In BE32, the CPU has a different view of the per-byte
- * address map than the rest of the system. BE32 ELF files
- * are organised such that they can be programmed through
- * the CPU's per-word byte-reversed view of the world. QEMU
- * however loads ELF files independently of the CPU. So
- * tell the ELF loader to byte reverse the data for us.
- */
- data_swab = 2;
- }
- } else {
- info->endianness = ARM_ENDIANNESS_LE;
- }
- }
- ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
- pentry, lowaddr, highaddr, big_endian, elf_machine,
- 1, data_swab, as);
- if (ret <= 0) {
- /* The header loaded but the image didn't */
- exit(1);
- }
- return ret;
- }
- static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
- hwaddr *entry, AddressSpace *as)
- {
- hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
- uint64_t kernel_size = 0;
- uint8_t *buffer;
- int size;
- /* On aarch64, it's the bootloader's job to uncompress the kernel. */
- size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
- &buffer);
- if (size < 0) {
- gsize len;
- /* Load as raw file otherwise */
- if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
- return -1;
- }
- size = len;
- }
- /* check the arm64 magic header value -- very old kernels may not have it */
- if (size > ARM64_MAGIC_OFFSET + 4 &&
- memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
- uint64_t hdrvals[2];
- /* The arm64 Image header has text_offset and image_size fields at 8 and
- * 16 bytes into the Image header, respectively. The text_offset field
- * is only valid if the image_size is non-zero.
- */
- memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
- kernel_size = le64_to_cpu(hdrvals[1]);
- if (kernel_size != 0) {
- kernel_load_offset = le64_to_cpu(hdrvals[0]);
- /*
- * We write our startup "bootloader" at the very bottom of RAM,
- * so that bit can't be used for the image. Luckily the Image
- * format specification is that the image requests only an offset
- * from a 2MB boundary, not an absolute load address. So if the
- * image requests an offset that might mean it overlaps with the
- * bootloader, we can just load it starting at 2MB+offset rather
- * than 0MB + offset.
- */
- if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
- kernel_load_offset += 2 * MiB;
- }
- }
- }
- /*
- * Kernels before v3.17 don't populate the image_size field, and
- * raw images have no header. For those our best guess at the size
- * is the size of the Image file itself.
- */
- if (kernel_size == 0) {
- kernel_size = size;
- }
- *entry = mem_base + kernel_load_offset;
- rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
- g_free(buffer);
- return kernel_size;
- }
- static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
- struct arm_boot_info *info)
- {
- /* Set up for a direct boot of a kernel image file. */
- CPUState *cs;
- AddressSpace *as = arm_boot_address_space(cpu, info);
- int kernel_size;
- int initrd_size;
- int is_linux = 0;
- uint64_t elf_entry;
- /* Addresses of first byte used and first byte not used by the image */
- uint64_t image_low_addr = 0, image_high_addr = 0;
- int elf_machine;
- hwaddr entry;
- static const ARMInsnFixup *primary_loader;
- uint64_t ram_end = info->loader_start + info->ram_size;
- if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
- primary_loader = bootloader_aarch64;
- elf_machine = EM_AARCH64;
- } else {
- primary_loader = bootloader;
- if (!info->write_board_setup) {
- primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
- }
- elf_machine = EM_ARM;
- }
- if (!info->secondary_cpu_reset_hook) {
- info->secondary_cpu_reset_hook = default_reset_secondary;
- }
- if (!info->write_secondary_boot) {
- info->write_secondary_boot = default_write_secondary;
- }
- if (info->nb_cpus == 0)
- info->nb_cpus = 1;
- /* Assume that raw images are linux kernels, and ELF images are not. */
- kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
- &image_high_addr, elf_machine, as);
- if (kernel_size > 0 && have_dtb(info)) {
- /*
- * If there is still some room left at the base of RAM, try and put
- * the DTB there like we do for images loaded with -bios or -pflash.
- */
- if (image_low_addr > info->loader_start
- || image_high_addr < info->loader_start) {
- /*
- * Set image_low_addr as address limit for arm_load_dtb if it may be
- * pointing into RAM, otherwise pass '0' (no limit)
- */
- if (image_low_addr < info->loader_start) {
- image_low_addr = 0;
- }
- info->dtb_start = info->loader_start;
- info->dtb_limit = image_low_addr;
- }
- }
- entry = elf_entry;
- if (kernel_size < 0) {
- uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
- kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
- &is_linux, NULL, NULL, as);
- if (kernel_size >= 0) {
- image_low_addr = loadaddr;
- image_high_addr = image_low_addr + kernel_size;
- }
- }
- if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
- kernel_size = load_aarch64_image(info->kernel_filename,
- info->loader_start, &entry, as);
- is_linux = 1;
- if (kernel_size >= 0) {
- image_low_addr = entry;
- image_high_addr = image_low_addr + kernel_size;
- }
- } else if (kernel_size < 0) {
- /* 32-bit ARM */
- entry = info->loader_start + KERNEL_LOAD_ADDR;
- kernel_size = load_image_targphys_as(info->kernel_filename, entry,
- ram_end - KERNEL_LOAD_ADDR, as);
- is_linux = 1;
- if (kernel_size >= 0) {
- image_low_addr = entry;
- image_high_addr = image_low_addr + kernel_size;
- }
- }
- if (kernel_size < 0) {
- error_report("could not load kernel '%s'", info->kernel_filename);
- exit(1);
- }
- if (kernel_size > info->ram_size) {
- error_report("kernel '%s' is too large to fit in RAM "
- "(kernel size %d, RAM size %" PRId64 ")",
- info->kernel_filename, kernel_size, info->ram_size);
- exit(1);
- }
- info->entry = entry;
- /*
- * We want to put the initrd far enough into RAM that when the
- * kernel is uncompressed it will not clobber the initrd. However
- * on boards without much RAM we must ensure that we still leave
- * enough room for a decent sized initrd, and on boards with large
- * amounts of RAM we must avoid the initrd being so far up in RAM
- * that it is outside lowmem and inaccessible to the kernel.
- * So for boards with less than 256MB of RAM we put the initrd
- * halfway into RAM, and for boards with 256MB of RAM or more we put
- * the initrd at 128MB.
- * We also refuse to put the initrd somewhere that will definitely
- * overlay the kernel we just loaded, though for kernel formats which
- * don't tell us their exact size (eg self-decompressing 32-bit kernels)
- * we might still make a bad choice here.
- */
- info->initrd_start = info->loader_start +
- MIN(info->ram_size / 2, 128 * MiB);
- if (image_high_addr) {
- info->initrd_start = MAX(info->initrd_start, image_high_addr);
- }
- info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
- if (is_linux) {
- uint32_t fixupcontext[FIXUP_MAX];
- if (info->initrd_filename) {
- if (info->initrd_start >= ram_end) {
- error_report("not enough space after kernel to load initrd");
- exit(1);
- }
- initrd_size = load_ramdisk_as(info->initrd_filename,
- info->initrd_start,
- ram_end - info->initrd_start, as);
- if (initrd_size < 0) {
- initrd_size = load_image_targphys_as(info->initrd_filename,
- info->initrd_start,
- ram_end -
- info->initrd_start,
- as);
- }
- if (initrd_size < 0) {
- error_report("could not load initrd '%s'",
- info->initrd_filename);
- exit(1);
- }
- if (info->initrd_start + initrd_size > ram_end) {
- error_report("could not load initrd '%s': "
- "too big to fit into RAM after the kernel",
- info->initrd_filename);
- exit(1);
- }
- } else {
- initrd_size = 0;
- }
- info->initrd_size = initrd_size;
- fixupcontext[FIXUP_BOARDID] = info->board_id;
- fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
- /*
- * for device tree boot, we pass the DTB directly in r2. Otherwise
- * we point to the kernel args.
- */
- if (have_dtb(info)) {
- hwaddr align;
- if (elf_machine == EM_AARCH64) {
- /*
- * Some AArch64 kernels on early bootup map the fdt region as
- *
- * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
- *
- * Let's play safe and prealign it to 2MB to give us some space.
- */
- align = 2 * MiB;
- } else {
- /*
- * Some 32bit kernels will trash anything in the 4K page the
- * initrd ends in, so make sure the DTB isn't caught up in that.
- */
- align = 4 * KiB;
- }
- /* Place the DTB after the initrd in memory with alignment. */
- info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
- align);
- if (info->dtb_start >= ram_end) {
- error_report("Not enough space for DTB after kernel/initrd");
- exit(1);
- }
- fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
- fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
- } else {
- fixupcontext[FIXUP_ARGPTR_LO] =
- info->loader_start + KERNEL_ARGS_ADDR;
- fixupcontext[FIXUP_ARGPTR_HI] =
- (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
- if (info->ram_size >= 4 * GiB) {
- error_report("RAM size must be less than 4GB to boot"
- " Linux kernel using ATAGS (try passing a device tree"
- " using -dtb)");
- exit(1);
- }
- }
- fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
- fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
- write_bootloader("bootloader", info->loader_start,
- primary_loader, fixupcontext, as);
- if (info->nb_cpus > 1) {
- info->write_secondary_boot(cpu, info);
- }
- if (info->write_board_setup) {
- info->write_board_setup(cpu, info);
- }
- /*
- * Notify devices which need to fake up firmware initialization
- * that we're doing a direct kernel boot.
- */
- object_child_foreach_recursive(object_get_root(),
- do_arm_linux_init, info);
- }
- info->is_linux = is_linux;
- for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
- ARM_CPU(cs)->env.boot_info = info;
- }
- }
- static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
- {
- /* Set up for booting firmware (which might load a kernel via fw_cfg) */
- if (have_dtb(info)) {
- /*
- * If we have a device tree blob, but no kernel to supply it to (or
- * the kernel is supposed to be loaded by the bootloader), copy the
- * DTB to the base of RAM for the bootloader to pick up.
- */
- info->dtb_start = info->loader_start;
- }
- if (info->kernel_filename) {
- FWCfgState *fw_cfg;
- bool try_decompressing_kernel;
- fw_cfg = fw_cfg_find();
- try_decompressing_kernel = arm_feature(&cpu->env,
- ARM_FEATURE_AARCH64);
- /*
- * Expose the kernel, the command line, and the initrd in fw_cfg.
- * We don't process them here at all, it's all left to the
- * firmware.
- */
- load_image_to_fw_cfg(fw_cfg,
- FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
- info->kernel_filename,
- try_decompressing_kernel);
- load_image_to_fw_cfg(fw_cfg,
- FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
- info->initrd_filename, false);
- if (info->kernel_cmdline) {
- fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
- strlen(info->kernel_cmdline) + 1);
- fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
- info->kernel_cmdline);
- }
- }
- /*
- * We will start from address 0 (typically a boot ROM image) in the
- * same way as hardware. Leave env->boot_info NULL, so that
- * do_cpu_reset() knows it does not need to alter the PC on reset.
- */
- }
- void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
- {
- CPUState *cs;
- AddressSpace *as = arm_boot_address_space(cpu, info);
- /*
- * CPU objects (unlike devices) are not automatically reset on system
- * reset, so we must always register a handler to do so. If we're
- * actually loading a kernel, the handler is also responsible for
- * arranging that we start it correctly.
- */
- for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
- qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
- }
- /*
- * The board code is not supposed to set secure_board_setup unless
- * running its code in secure mode is actually possible, and KVM
- * doesn't support secure.
- */
- assert(!(info->secure_board_setup && kvm_enabled()));
- info->kernel_filename = ms->kernel_filename;
- info->kernel_cmdline = ms->kernel_cmdline;
- info->initrd_filename = ms->initrd_filename;
- info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
- info->dtb_limit = 0;
- /* Load the kernel. */
- if (!info->kernel_filename || info->firmware_loaded) {
- arm_setup_firmware_boot(cpu, info);
- } else {
- arm_setup_direct_kernel_boot(cpu, info);
- }
- if (!info->skip_dtb_autoload && have_dtb(info)) {
- if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
- exit(1);
- }
- }
- }
- static const TypeInfo arm_linux_boot_if_info = {
- .name = TYPE_ARM_LINUX_BOOT_IF,
- .parent = TYPE_INTERFACE,
- .class_size = sizeof(ARMLinuxBootIfClass),
- };
- static void arm_linux_boot_register_types(void)
- {
- type_register_static(&arm_linux_boot_if_info);
- }
- type_init(arm_linux_boot_register_types)
|