123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724 |
- #ifndef QEMU_H
- #define QEMU_H
- #include "hostdep.h"
- #include "cpu.h"
- #include "exec/exec-all.h"
- #include "exec/cpu_ldst.h"
- #undef DEBUG_REMAP
- #ifdef DEBUG_REMAP
- #endif /* DEBUG_REMAP */
- #include "exec/user/abitypes.h"
- #include "exec/user/thunk.h"
- #include "syscall_defs.h"
- #include "target_syscall.h"
- #include "exec/gdbstub.h"
- /* This is the size of the host kernel's sigset_t, needed where we make
- * direct system calls that take a sigset_t pointer and a size.
- */
- #define SIGSET_T_SIZE (_NSIG / 8)
- /* This struct is used to hold certain information about the image.
- * Basically, it replicates in user space what would be certain
- * task_struct fields in the kernel
- */
- struct image_info {
- abi_ulong load_bias;
- abi_ulong load_addr;
- abi_ulong start_code;
- abi_ulong end_code;
- abi_ulong start_data;
- abi_ulong end_data;
- abi_ulong start_brk;
- abi_ulong brk;
- abi_ulong reserve_brk;
- abi_ulong start_mmap;
- abi_ulong start_stack;
- abi_ulong stack_limit;
- abi_ulong entry;
- abi_ulong code_offset;
- abi_ulong data_offset;
- abi_ulong saved_auxv;
- abi_ulong auxv_len;
- abi_ulong arg_start;
- abi_ulong arg_end;
- abi_ulong arg_strings;
- abi_ulong env_strings;
- abi_ulong file_string;
- uint32_t elf_flags;
- int personality;
- abi_ulong alignment;
- /* The fields below are used in FDPIC mode. */
- abi_ulong loadmap_addr;
- uint16_t nsegs;
- void *loadsegs;
- abi_ulong pt_dynamic_addr;
- abi_ulong interpreter_loadmap_addr;
- abi_ulong interpreter_pt_dynamic_addr;
- struct image_info *other_info;
- #ifdef TARGET_MIPS
- int fp_abi;
- int interp_fp_abi;
- #endif
- };
- #ifdef TARGET_I386
- /* Information about the current linux thread */
- struct vm86_saved_state {
- uint32_t eax; /* return code */
- uint32_t ebx;
- uint32_t ecx;
- uint32_t edx;
- uint32_t esi;
- uint32_t edi;
- uint32_t ebp;
- uint32_t esp;
- uint32_t eflags;
- uint32_t eip;
- uint16_t cs, ss, ds, es, fs, gs;
- };
- #endif
- #if defined(TARGET_ARM) && defined(TARGET_ABI32)
- /* FPU emulator */
- #include "nwfpe/fpa11.h"
- #endif
- #define MAX_SIGQUEUE_SIZE 1024
- struct emulated_sigtable {
- int pending; /* true if signal is pending */
- target_siginfo_t info;
- };
- /* NOTE: we force a big alignment so that the stack stored after is
- aligned too */
- typedef struct TaskState {
- pid_t ts_tid; /* tid (or pid) of this task */
- #ifdef TARGET_ARM
- # ifdef TARGET_ABI32
- /* FPA state */
- FPA11 fpa;
- # endif
- int swi_errno;
- #endif
- #if defined(TARGET_I386) && !defined(TARGET_X86_64)
- abi_ulong target_v86;
- struct vm86_saved_state vm86_saved_regs;
- struct target_vm86plus_struct vm86plus;
- uint32_t v86flags;
- uint32_t v86mask;
- #endif
- abi_ulong child_tidptr;
- #ifdef TARGET_M68K
- abi_ulong tp_value;
- #endif
- #if defined(TARGET_ARM) || defined(TARGET_M68K)
- /* Extra fields for semihosted binaries. */
- abi_ulong heap_base;
- abi_ulong heap_limit;
- #endif
- abi_ulong stack_base;
- int used; /* non zero if used */
- struct image_info *info;
- struct linux_binprm *bprm;
- struct emulated_sigtable sync_signal;
- struct emulated_sigtable sigtab[TARGET_NSIG];
- /* This thread's signal mask, as requested by the guest program.
- * The actual signal mask of this thread may differ:
- * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
- * + sometimes we block all signals to avoid races
- */
- sigset_t signal_mask;
- /* The signal mask imposed by a guest sigsuspend syscall, if we are
- * currently in the middle of such a syscall
- */
- sigset_t sigsuspend_mask;
- /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
- int in_sigsuspend;
- /* Nonzero if process_pending_signals() needs to do something (either
- * handle a pending signal or unblock signals).
- * This flag is written from a signal handler so should be accessed via
- * the atomic_read() and atomic_set() functions. (It is not accessed
- * from multiple threads.)
- */
- int signal_pending;
- /* This thread's sigaltstack, if it has one */
- struct target_sigaltstack sigaltstack_used;
- } __attribute__((aligned(16))) TaskState;
- extern char *exec_path;
- void init_task_state(TaskState *ts);
- void task_settid(TaskState *);
- void stop_all_tasks(void);
- extern const char *qemu_uname_release;
- extern unsigned long mmap_min_addr;
- /* ??? See if we can avoid exposing so much of the loader internals. */
- /* Read a good amount of data initially, to hopefully get all the
- program headers loaded. */
- #define BPRM_BUF_SIZE 1024
- /*
- * This structure is used to hold the arguments that are
- * used when loading binaries.
- */
- struct linux_binprm {
- char buf[BPRM_BUF_SIZE] __attribute__((aligned));
- abi_ulong p;
- int fd;
- int e_uid, e_gid;
- int argc, envc;
- char **argv;
- char **envp;
- char * filename; /* Name of binary */
- int (*core_dump)(int, const CPUArchState *); /* coredump routine */
- };
- typedef struct IOCTLEntry IOCTLEntry;
- typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
- int fd, int cmd, abi_long arg);
- struct IOCTLEntry {
- int target_cmd;
- unsigned int host_cmd;
- const char *name;
- int access;
- do_ioctl_fn *do_ioctl;
- const argtype arg_type[5];
- };
- extern IOCTLEntry ioctl_entries[];
- #define IOC_R 0x0001
- #define IOC_W 0x0002
- #define IOC_RW (IOC_R | IOC_W)
- void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
- abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
- abi_ulong stringp, int push_ptr);
- int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
- struct target_pt_regs * regs, struct image_info *infop,
- struct linux_binprm *);
- /* Returns true if the image uses the FDPIC ABI. If this is the case,
- * we have to provide some information (loadmap, pt_dynamic_info) such
- * that the program can be relocated adequately. This is also useful
- * when handling signals.
- */
- int info_is_fdpic(struct image_info *info);
- uint32_t get_elf_eflags(int fd);
- int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
- int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
- abi_long memcpy_to_target(abi_ulong dest, const void *src,
- unsigned long len);
- void target_set_brk(abi_ulong new_brk);
- abi_long do_brk(abi_ulong new_brk);
- void syscall_init(void);
- abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
- abi_long arg2, abi_long arg3, abi_long arg4,
- abi_long arg5, abi_long arg6, abi_long arg7,
- abi_long arg8);
- extern __thread CPUState *thread_cpu;
- void cpu_loop(CPUArchState *env);
- const char *target_strerror(int err);
- int get_osversion(void);
- void init_qemu_uname_release(void);
- void fork_start(void);
- void fork_end(int child);
- /**
- * probe_guest_base:
- * @image_name: the executable being loaded
- * @loaddr: the lowest fixed address in the executable
- * @hiaddr: the highest fixed address in the executable
- *
- * Creates the initial guest address space in the host memory space.
- *
- * If @loaddr == 0, then no address in the executable is fixed,
- * i.e. it is fully relocatable. In that case @hiaddr is the size
- * of the executable.
- *
- * This function will not return if a valid value for guest_base
- * cannot be chosen. On return, the executable loader can expect
- *
- * target_mmap(loaddr, hiaddr - loaddr, ...)
- *
- * to succeed.
- */
- void probe_guest_base(const char *image_name,
- abi_ulong loaddr, abi_ulong hiaddr);
- #include "qemu/log.h"
- /* safe_syscall.S */
- /**
- * safe_syscall:
- * @int number: number of system call to make
- * ...: arguments to the system call
- *
- * Call a system call if guest signal not pending.
- * This has the same API as the libc syscall() function, except that it
- * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
- *
- * Returns: the system call result, or -1 with an error code in errno
- * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
- * with any of the host errno values.)
- */
- /* A guide to using safe_syscall() to handle interactions between guest
- * syscalls and guest signals:
- *
- * Guest syscalls come in two flavours:
- *
- * (1) Non-interruptible syscalls
- *
- * These are guest syscalls that never get interrupted by signals and
- * so never return EINTR. They can be implemented straightforwardly in
- * QEMU: just make sure that if the implementation code has to make any
- * blocking calls that those calls are retried if they return EINTR.
- * It's also OK to implement these with safe_syscall, though it will be
- * a little less efficient if a signal is delivered at the 'wrong' moment.
- *
- * Some non-interruptible syscalls need to be handled using block_signals()
- * to block signals for the duration of the syscall. This mainly applies
- * to code which needs to modify the data structures used by the
- * host_signal_handler() function and the functions it calls, including
- * all syscalls which change the thread's signal mask.
- *
- * (2) Interruptible syscalls
- *
- * These are guest syscalls that can be interrupted by signals and
- * for which we need to either return EINTR or arrange for the guest
- * syscall to be restarted. This category includes both syscalls which
- * always restart (and in the kernel return -ERESTARTNOINTR), ones
- * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
- * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
- * if the handler was registered with SA_RESTART (kernel returns
- * -ERESTARTSYS). System calls which are only interruptible in some
- * situations (like 'open') also need to be handled this way.
- *
- * Here it is important that the host syscall is made
- * via this safe_syscall() function, and *not* via the host libc.
- * If the host libc is used then the implementation will appear to work
- * most of the time, but there will be a race condition where a
- * signal could arrive just before we make the host syscall inside libc,
- * and then then guest syscall will not correctly be interrupted.
- * Instead the implementation of the guest syscall can use the safe_syscall
- * function but otherwise just return the result or errno in the usual
- * way; the main loop code will take care of restarting the syscall
- * if appropriate.
- *
- * (If the implementation needs to make multiple host syscalls this is
- * OK; any which might really block must be via safe_syscall(); for those
- * which are only technically blocking (ie which we know in practice won't
- * stay in the host kernel indefinitely) it's OK to use libc if necessary.
- * You must be able to cope with backing out correctly if some safe_syscall
- * you make in the implementation returns either -TARGET_ERESTARTSYS or
- * EINTR though.)
- *
- * block_signals() cannot be used for interruptible syscalls.
- *
- *
- * How and why the safe_syscall implementation works:
- *
- * The basic setup is that we make the host syscall via a known
- * section of host native assembly. If a signal occurs, our signal
- * handler checks the interrupted host PC against the addresse of that
- * known section. If the PC is before or at the address of the syscall
- * instruction then we change the PC to point at a "return
- * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
- * (causing the safe_syscall() call to immediately return that value).
- * Then in the main.c loop if we see this magic return value we adjust
- * the guest PC to wind it back to before the system call, and invoke
- * the guest signal handler as usual.
- *
- * This winding-back will happen in two cases:
- * (1) signal came in just before we took the host syscall (a race);
- * in this case we'll take the guest signal and have another go
- * at the syscall afterwards, and this is indistinguishable for the
- * guest from the timing having been different such that the guest
- * signal really did win the race
- * (2) signal came in while the host syscall was blocking, and the
- * host kernel decided the syscall should be restarted;
- * in this case we want to restart the guest syscall also, and so
- * rewinding is the right thing. (Note that "restart" semantics mean
- * "first call the signal handler, then reattempt the syscall".)
- * The other situation to consider is when a signal came in while the
- * host syscall was blocking, and the host kernel decided that the syscall
- * should not be restarted; in this case QEMU's host signal handler will
- * be invoked with the PC pointing just after the syscall instruction,
- * with registers indicating an EINTR return; the special code in the
- * handler will not kick in, and we will return EINTR to the guest as
- * we should.
- *
- * Notice that we can leave the host kernel to make the decision for
- * us about whether to do a restart of the syscall or not; we do not
- * need to check SA_RESTART flags in QEMU or distinguish the various
- * kinds of restartability.
- */
- #ifdef HAVE_SAFE_SYSCALL
- /* The core part of this function is implemented in assembly */
- extern long safe_syscall_base(int *pending, long number, ...);
- #define safe_syscall(...) \
- ({ \
- long ret_; \
- int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
- ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
- if (is_error(ret_)) { \
- errno = -ret_; \
- ret_ = -1; \
- } \
- ret_; \
- })
- #else
- /* Fallback for architectures which don't yet provide a safe-syscall assembly
- * fragment; note that this is racy!
- * This should go away when all host architectures have been updated.
- */
- #define safe_syscall syscall
- #endif
- /* syscall.c */
- int host_to_target_waitstatus(int status);
- /* strace.c */
- void print_syscall(int num,
- abi_long arg1, abi_long arg2, abi_long arg3,
- abi_long arg4, abi_long arg5, abi_long arg6);
- void print_syscall_ret(int num, abi_long ret,
- abi_long arg1, abi_long arg2, abi_long arg3,
- abi_long arg4, abi_long arg5, abi_long arg6);
- /**
- * print_taken_signal:
- * @target_signum: target signal being taken
- * @tinfo: target_siginfo_t which will be passed to the guest for the signal
- *
- * Print strace output indicating that this signal is being taken by the guest,
- * in a format similar to:
- * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
- */
- void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
- /* signal.c */
- void process_pending_signals(CPUArchState *cpu_env);
- void signal_init(void);
- int queue_signal(CPUArchState *env, int sig, int si_type,
- target_siginfo_t *info);
- void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
- void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
- int target_to_host_signal(int sig);
- int host_to_target_signal(int sig);
- long do_sigreturn(CPUArchState *env);
- long do_rt_sigreturn(CPUArchState *env);
- abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
- int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
- abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
- abi_ulong unew_ctx, abi_long ctx_size);
- /**
- * block_signals: block all signals while handling this guest syscall
- *
- * Block all signals, and arrange that the signal mask is returned to
- * its correct value for the guest before we resume execution of guest code.
- * If this function returns non-zero, then the caller should immediately
- * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
- * signal and restart execution of the syscall.
- * If block_signals() returns zero, then the caller can continue with
- * emulation of the system call knowing that no signals can be taken
- * (and therefore that no race conditions will result).
- * This should only be called once, because if it is called a second time
- * it will always return non-zero. (Think of it like a mutex that can't
- * be recursively locked.)
- * Signals will be unblocked again by process_pending_signals().
- *
- * Return value: non-zero if there was a pending signal, zero if not.
- */
- int block_signals(void); /* Returns non zero if signal pending */
- #ifdef TARGET_I386
- /* vm86.c */
- void save_v86_state(CPUX86State *env);
- void handle_vm86_trap(CPUX86State *env, int trapno);
- void handle_vm86_fault(CPUX86State *env);
- int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
- #elif defined(TARGET_SPARC64)
- void sparc64_set_context(CPUSPARCState *env);
- void sparc64_get_context(CPUSPARCState *env);
- #endif
- /* mmap.c */
- int target_mprotect(abi_ulong start, abi_ulong len, int prot);
- abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
- int flags, int fd, abi_ulong offset);
- int target_munmap(abi_ulong start, abi_ulong len);
- abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
- abi_ulong new_size, unsigned long flags,
- abi_ulong new_addr);
- extern unsigned long last_brk;
- extern abi_ulong mmap_next_start;
- abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
- void mmap_fork_start(void);
- void mmap_fork_end(int child);
- /* main.c */
- extern unsigned long guest_stack_size;
- /* user access */
- #define VERIFY_READ 0
- #define VERIFY_WRITE 1 /* implies read access */
- static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
- {
- return guest_addr_valid(addr) &&
- (size == 0 || guest_addr_valid(addr + size - 1)) &&
- page_check_range((target_ulong)addr, size,
- (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
- }
- /* NOTE __get_user and __put_user use host pointers and don't check access.
- These are usually used to access struct data members once the struct has
- been locked - usually with lock_user_struct. */
- /*
- * Tricky points:
- * - Use __builtin_choose_expr to avoid type promotion from ?:,
- * - Invalid sizes result in a compile time error stemming from
- * the fact that abort has no parameters.
- * - It's easier to use the endian-specific unaligned load/store
- * functions than host-endian unaligned load/store plus tswapN.
- * - The pragmas are necessary only to silence a clang false-positive
- * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
- * - gcc has bugs in its _Pragma() support in some versions, eg
- * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
- * include the warning-suppression pragmas for clang
- */
- #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
- #define PRAGMA_DISABLE_PACKED_WARNING \
- _Pragma("GCC diagnostic push"); \
- _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
- #define PRAGMA_REENABLE_PACKED_WARNING \
- _Pragma("GCC diagnostic pop")
- #else
- #define PRAGMA_DISABLE_PACKED_WARNING
- #define PRAGMA_REENABLE_PACKED_WARNING
- #endif
- #define __put_user_e(x, hptr, e) \
- do { \
- PRAGMA_DISABLE_PACKED_WARNING; \
- (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
- __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
- __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
- __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
- ((hptr), (x)), (void)0); \
- PRAGMA_REENABLE_PACKED_WARNING; \
- } while (0)
- #define __get_user_e(x, hptr, e) \
- do { \
- PRAGMA_DISABLE_PACKED_WARNING; \
- ((x) = (typeof(*hptr))( \
- __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
- __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
- __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
- __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
- (hptr)), (void)0); \
- PRAGMA_REENABLE_PACKED_WARNING; \
- } while (0)
- #ifdef TARGET_WORDS_BIGENDIAN
- # define __put_user(x, hptr) __put_user_e(x, hptr, be)
- # define __get_user(x, hptr) __get_user_e(x, hptr, be)
- #else
- # define __put_user(x, hptr) __put_user_e(x, hptr, le)
- # define __get_user(x, hptr) __get_user_e(x, hptr, le)
- #endif
- /* put_user()/get_user() take a guest address and check access */
- /* These are usually used to access an atomic data type, such as an int,
- * that has been passed by address. These internally perform locking
- * and unlocking on the data type.
- */
- #define put_user(x, gaddr, target_type) \
- ({ \
- abi_ulong __gaddr = (gaddr); \
- target_type *__hptr; \
- abi_long __ret = 0; \
- if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
- __put_user((x), __hptr); \
- unlock_user(__hptr, __gaddr, sizeof(target_type)); \
- } else \
- __ret = -TARGET_EFAULT; \
- __ret; \
- })
- #define get_user(x, gaddr, target_type) \
- ({ \
- abi_ulong __gaddr = (gaddr); \
- target_type *__hptr; \
- abi_long __ret = 0; \
- if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
- __get_user((x), __hptr); \
- unlock_user(__hptr, __gaddr, 0); \
- } else { \
- /* avoid warning */ \
- (x) = 0; \
- __ret = -TARGET_EFAULT; \
- } \
- __ret; \
- })
- #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
- #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
- #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
- #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
- #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
- #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
- #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
- #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
- #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
- #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
- #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
- #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
- #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
- #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
- #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
- #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
- #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
- #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
- #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
- #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
- /* copy_from_user() and copy_to_user() are usually used to copy data
- * buffers between the target and host. These internally perform
- * locking/unlocking of the memory.
- */
- abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
- abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
- /* Functions for accessing guest memory. The tget and tput functions
- read/write single values, byteswapping as necessary. The lock_user function
- gets a pointer to a contiguous area of guest memory, but does not perform
- any byteswapping. lock_user may return either a pointer to the guest
- memory, or a temporary buffer. */
- /* Lock an area of guest memory into the host. If copy is true then the
- host area will have the same contents as the guest. */
- static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
- {
- if (!access_ok(type, guest_addr, len))
- return NULL;
- #ifdef DEBUG_REMAP
- {
- void *addr;
- addr = g_malloc(len);
- if (copy)
- memcpy(addr, g2h(guest_addr), len);
- else
- memset(addr, 0, len);
- return addr;
- }
- #else
- return g2h(guest_addr);
- #endif
- }
- /* Unlock an area of guest memory. The first LEN bytes must be
- flushed back to guest memory. host_ptr = NULL is explicitly
- allowed and does nothing. */
- static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
- long len)
- {
- #ifdef DEBUG_REMAP
- if (!host_ptr)
- return;
- if (host_ptr == g2h(guest_addr))
- return;
- if (len > 0)
- memcpy(g2h(guest_addr), host_ptr, len);
- g_free(host_ptr);
- #endif
- }
- /* Return the length of a string in target memory or -TARGET_EFAULT if
- access error. */
- abi_long target_strlen(abi_ulong gaddr);
- /* Like lock_user but for null terminated strings. */
- static inline void *lock_user_string(abi_ulong guest_addr)
- {
- abi_long len;
- len = target_strlen(guest_addr);
- if (len < 0)
- return NULL;
- return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
- }
- /* Helper macros for locking/unlocking a target struct. */
- #define lock_user_struct(type, host_ptr, guest_addr, copy) \
- (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
- #define unlock_user_struct(host_ptr, guest_addr, copy) \
- unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
- #include <pthread.h>
- static inline int is_error(abi_long ret)
- {
- return (abi_ulong)ret >= (abi_ulong)(-4096);
- }
- #if TARGET_ABI_BITS == 32
- static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
- {
- #ifdef TARGET_WORDS_BIGENDIAN
- return ((uint64_t)word0 << 32) | word1;
- #else
- return ((uint64_t)word1 << 32) | word0;
- #endif
- }
- #else /* TARGET_ABI_BITS == 32 */
- static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
- {
- return word0;
- }
- #endif /* TARGET_ABI_BITS != 32 */
- /**
- * preexit_cleanup: housekeeping before the guest exits
- *
- * env: the CPU state
- * code: the exit code
- */
- void preexit_cleanup(CPUArchState *env, int code);
- /* Include target-specific struct and function definitions;
- * they may need access to the target-independent structures
- * above, so include them last.
- */
- #include "target_cpu.h"
- #include "target_structs.h"
- #endif /* QEMU_H */
|