123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- #!/usr/bin/env python
- #
- # Simple benchmarking framework
- #
- # Copyright (c) 2019 Virtuozzo International GmbH.
- #
- # This program is free software; you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation; either version 2 of the License, or
- # (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <http://www.gnu.org/licenses/>.
- #
- def bench_one(test_func, test_env, test_case, count=5, initial_run=True):
- """Benchmark one test-case
- test_func -- benchmarking function with prototype
- test_func(env, case), which takes test_env and test_case
- arguments and returns {'seconds': int} (which is benchmark
- result) on success and {'error': str} on error. Returned
- dict may contain any other additional fields.
- test_env -- test environment - opaque first argument for test_func
- test_case -- test case - opaque second argument for test_func
- count -- how many times to call test_func, to calculate average
- initial_run -- do initial run of test_func, which don't get into result
- Returns dict with the following fields:
- 'runs': list of test_func results
- 'average': average seconds per run (exists only if at least one run
- succeeded)
- 'delta': maximum delta between test_func result and the average
- (exists only if at least one run succeeded)
- 'n-failed': number of failed runs (exists only if at least one run
- failed)
- """
- if initial_run:
- print(' #initial run:')
- print(' ', test_func(test_env, test_case))
- runs = []
- for i in range(count):
- print(' #run {}'.format(i+1))
- res = test_func(test_env, test_case)
- print(' ', res)
- runs.append(res)
- result = {'runs': runs}
- successed = [r for r in runs if ('seconds' in r)]
- if successed:
- avg = sum(r['seconds'] for r in successed) / len(successed)
- result['average'] = avg
- result['delta'] = max(abs(r['seconds'] - avg) for r in successed)
- if len(successed) < count:
- result['n-failed'] = count - len(successed)
- return result
- def ascii_one(result):
- """Return ASCII representation of bench_one() returned dict."""
- if 'average' in result:
- s = '{:.2f} +- {:.2f}'.format(result['average'], result['delta'])
- if 'n-failed' in result:
- s += '\n({} failed)'.format(result['n-failed'])
- return s
- else:
- return 'FAILED'
- def bench(test_func, test_envs, test_cases, *args, **vargs):
- """Fill benchmark table
- test_func -- benchmarking function, see bench_one for description
- test_envs -- list of test environments, see bench_one
- test_cases -- list of test cases, see bench_one
- args, vargs -- additional arguments for bench_one
- Returns dict with the following fields:
- 'envs': test_envs
- 'cases': test_cases
- 'tab': filled 2D array, where cell [i][j] is bench_one result for
- test_cases[i] for test_envs[j] (i.e., rows are test cases and
- columns are test environments)
- """
- tab = {}
- results = {
- 'envs': test_envs,
- 'cases': test_cases,
- 'tab': tab
- }
- n = 1
- n_tests = len(test_envs) * len(test_cases)
- for env in test_envs:
- for case in test_cases:
- print('Testing {}/{}: {} :: {}'.format(n, n_tests,
- env['id'], case['id']))
- if case['id'] not in tab:
- tab[case['id']] = {}
- tab[case['id']][env['id']] = bench_one(test_func, env, case,
- *args, **vargs)
- n += 1
- print('Done')
- return results
- def ascii(results):
- """Return ASCII representation of bench() returned dict."""
- from tabulate import tabulate
- tab = [[""] + [c['id'] for c in results['envs']]]
- for case in results['cases']:
- row = [case['id']]
- for env in results['envs']:
- row.append(ascii_one(results['tab'][case['id']][env['id']]))
- tab.append(row)
- return tabulate(tab)
|