hpet.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807
  1. /*
  2. * High Precision Event Timer emulation
  3. *
  4. * Copyright (c) 2007 Alexander Graf
  5. * Copyright (c) 2008 IBM Corporation
  6. *
  7. * Authors: Beth Kon <bkon@us.ibm.com>
  8. *
  9. * This library is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2 of the License, or (at your option) any later version.
  13. *
  14. * This library is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  21. *
  22. * *****************************************************************
  23. *
  24. * This driver attempts to emulate an HPET device in software.
  25. */
  26. #include "qemu/osdep.h"
  27. #include "hw/i386/pc.h"
  28. #include "hw/irq.h"
  29. #include "qapi/error.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/timer/hpet.h"
  33. #include "hw/sysbus.h"
  34. #include "hw/rtc/mc146818rtc.h"
  35. #include "hw/rtc/mc146818rtc_regs.h"
  36. #include "migration/vmstate.h"
  37. #include "hw/timer/i8254.h"
  38. #include "exec/address-spaces.h"
  39. #include "qom/object.h"
  40. //#define HPET_DEBUG
  41. #ifdef HPET_DEBUG
  42. #define DPRINTF printf
  43. #else
  44. #define DPRINTF(...)
  45. #endif
  46. #define HPET_MSI_SUPPORT 0
  47. OBJECT_DECLARE_SIMPLE_TYPE(HPETState, HPET)
  48. struct HPETState;
  49. typedef struct HPETTimer { /* timers */
  50. uint8_t tn; /*timer number*/
  51. QEMUTimer *qemu_timer;
  52. struct HPETState *state;
  53. /* Memory-mapped, software visible timer registers */
  54. uint64_t config; /* configuration/cap */
  55. uint64_t cmp; /* comparator */
  56. uint64_t fsb; /* FSB route */
  57. /* Hidden register state */
  58. uint64_t period; /* Last value written to comparator */
  59. uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
  60. * mode. Next pop will be actual timer expiration.
  61. */
  62. } HPETTimer;
  63. struct HPETState {
  64. /*< private >*/
  65. SysBusDevice parent_obj;
  66. /*< public >*/
  67. MemoryRegion iomem;
  68. uint64_t hpet_offset;
  69. bool hpet_offset_saved;
  70. qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
  71. uint32_t flags;
  72. uint8_t rtc_irq_level;
  73. qemu_irq pit_enabled;
  74. uint8_t num_timers;
  75. uint32_t intcap;
  76. HPETTimer timer[HPET_MAX_TIMERS];
  77. /* Memory-mapped, software visible registers */
  78. uint64_t capability; /* capabilities */
  79. uint64_t config; /* configuration */
  80. uint64_t isr; /* interrupt status reg */
  81. uint64_t hpet_counter; /* main counter */
  82. uint8_t hpet_id; /* instance id */
  83. };
  84. static uint32_t hpet_in_legacy_mode(HPETState *s)
  85. {
  86. return s->config & HPET_CFG_LEGACY;
  87. }
  88. static uint32_t timer_int_route(struct HPETTimer *timer)
  89. {
  90. return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
  91. }
  92. static uint32_t timer_fsb_route(HPETTimer *t)
  93. {
  94. return t->config & HPET_TN_FSB_ENABLE;
  95. }
  96. static uint32_t hpet_enabled(HPETState *s)
  97. {
  98. return s->config & HPET_CFG_ENABLE;
  99. }
  100. static uint32_t timer_is_periodic(HPETTimer *t)
  101. {
  102. return t->config & HPET_TN_PERIODIC;
  103. }
  104. static uint32_t timer_enabled(HPETTimer *t)
  105. {
  106. return t->config & HPET_TN_ENABLE;
  107. }
  108. static uint32_t hpet_time_after(uint64_t a, uint64_t b)
  109. {
  110. return ((int32_t)(b - a) < 0);
  111. }
  112. static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
  113. {
  114. return ((int64_t)(b - a) < 0);
  115. }
  116. static uint64_t ticks_to_ns(uint64_t value)
  117. {
  118. return value * HPET_CLK_PERIOD;
  119. }
  120. static uint64_t ns_to_ticks(uint64_t value)
  121. {
  122. return value / HPET_CLK_PERIOD;
  123. }
  124. static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
  125. {
  126. new &= mask;
  127. new |= old & ~mask;
  128. return new;
  129. }
  130. static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
  131. {
  132. return (!(old & mask) && (new & mask));
  133. }
  134. static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
  135. {
  136. return ((old & mask) && !(new & mask));
  137. }
  138. static uint64_t hpet_get_ticks(HPETState *s)
  139. {
  140. return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
  141. }
  142. /*
  143. * calculate diff between comparator value and current ticks
  144. */
  145. static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
  146. {
  147. if (t->config & HPET_TN_32BIT) {
  148. uint32_t diff, cmp;
  149. cmp = (uint32_t)t->cmp;
  150. diff = cmp - (uint32_t)current;
  151. diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
  152. return (uint64_t)diff;
  153. } else {
  154. uint64_t diff, cmp;
  155. cmp = t->cmp;
  156. diff = cmp - current;
  157. diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
  158. return diff;
  159. }
  160. }
  161. static void update_irq(struct HPETTimer *timer, int set)
  162. {
  163. uint64_t mask;
  164. HPETState *s;
  165. int route;
  166. if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
  167. /* if LegacyReplacementRoute bit is set, HPET specification requires
  168. * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
  169. * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
  170. */
  171. route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
  172. } else {
  173. route = timer_int_route(timer);
  174. }
  175. s = timer->state;
  176. mask = 1 << timer->tn;
  177. if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
  178. s->isr &= ~mask;
  179. if (!timer_fsb_route(timer)) {
  180. qemu_irq_lower(s->irqs[route]);
  181. }
  182. } else if (timer_fsb_route(timer)) {
  183. address_space_stl_le(&address_space_memory, timer->fsb >> 32,
  184. timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
  185. NULL);
  186. } else if (timer->config & HPET_TN_TYPE_LEVEL) {
  187. s->isr |= mask;
  188. qemu_irq_raise(s->irqs[route]);
  189. } else {
  190. s->isr &= ~mask;
  191. qemu_irq_pulse(s->irqs[route]);
  192. }
  193. }
  194. static int hpet_pre_save(void *opaque)
  195. {
  196. HPETState *s = opaque;
  197. /* save current counter value */
  198. if (hpet_enabled(s)) {
  199. s->hpet_counter = hpet_get_ticks(s);
  200. }
  201. return 0;
  202. }
  203. static int hpet_pre_load(void *opaque)
  204. {
  205. HPETState *s = opaque;
  206. /* version 1 only supports 3, later versions will load the actual value */
  207. s->num_timers = HPET_MIN_TIMERS;
  208. return 0;
  209. }
  210. static bool hpet_validate_num_timers(void *opaque, int version_id)
  211. {
  212. HPETState *s = opaque;
  213. if (s->num_timers < HPET_MIN_TIMERS) {
  214. return false;
  215. } else if (s->num_timers > HPET_MAX_TIMERS) {
  216. return false;
  217. }
  218. return true;
  219. }
  220. static int hpet_post_load(void *opaque, int version_id)
  221. {
  222. HPETState *s = opaque;
  223. /* Recalculate the offset between the main counter and guest time */
  224. if (!s->hpet_offset_saved) {
  225. s->hpet_offset = ticks_to_ns(s->hpet_counter)
  226. - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  227. }
  228. /* Push number of timers into capability returned via HPET_ID */
  229. s->capability &= ~HPET_ID_NUM_TIM_MASK;
  230. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  231. hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  232. /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
  233. s->flags &= ~(1 << HPET_MSI_SUPPORT);
  234. if (s->timer[0].config & HPET_TN_FSB_CAP) {
  235. s->flags |= 1 << HPET_MSI_SUPPORT;
  236. }
  237. return 0;
  238. }
  239. static bool hpet_offset_needed(void *opaque)
  240. {
  241. HPETState *s = opaque;
  242. return hpet_enabled(s) && s->hpet_offset_saved;
  243. }
  244. static bool hpet_rtc_irq_level_needed(void *opaque)
  245. {
  246. HPETState *s = opaque;
  247. return s->rtc_irq_level != 0;
  248. }
  249. static const VMStateDescription vmstate_hpet_rtc_irq_level = {
  250. .name = "hpet/rtc_irq_level",
  251. .version_id = 1,
  252. .minimum_version_id = 1,
  253. .needed = hpet_rtc_irq_level_needed,
  254. .fields = (VMStateField[]) {
  255. VMSTATE_UINT8(rtc_irq_level, HPETState),
  256. VMSTATE_END_OF_LIST()
  257. }
  258. };
  259. static const VMStateDescription vmstate_hpet_offset = {
  260. .name = "hpet/offset",
  261. .version_id = 1,
  262. .minimum_version_id = 1,
  263. .needed = hpet_offset_needed,
  264. .fields = (VMStateField[]) {
  265. VMSTATE_UINT64(hpet_offset, HPETState),
  266. VMSTATE_END_OF_LIST()
  267. }
  268. };
  269. static const VMStateDescription vmstate_hpet_timer = {
  270. .name = "hpet_timer",
  271. .version_id = 1,
  272. .minimum_version_id = 1,
  273. .fields = (VMStateField[]) {
  274. VMSTATE_UINT8(tn, HPETTimer),
  275. VMSTATE_UINT64(config, HPETTimer),
  276. VMSTATE_UINT64(cmp, HPETTimer),
  277. VMSTATE_UINT64(fsb, HPETTimer),
  278. VMSTATE_UINT64(period, HPETTimer),
  279. VMSTATE_UINT8(wrap_flag, HPETTimer),
  280. VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
  281. VMSTATE_END_OF_LIST()
  282. }
  283. };
  284. static const VMStateDescription vmstate_hpet = {
  285. .name = "hpet",
  286. .version_id = 2,
  287. .minimum_version_id = 1,
  288. .pre_save = hpet_pre_save,
  289. .pre_load = hpet_pre_load,
  290. .post_load = hpet_post_load,
  291. .fields = (VMStateField[]) {
  292. VMSTATE_UINT64(config, HPETState),
  293. VMSTATE_UINT64(isr, HPETState),
  294. VMSTATE_UINT64(hpet_counter, HPETState),
  295. VMSTATE_UINT8_V(num_timers, HPETState, 2),
  296. VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
  297. VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
  298. vmstate_hpet_timer, HPETTimer),
  299. VMSTATE_END_OF_LIST()
  300. },
  301. .subsections = (const VMStateDescription*[]) {
  302. &vmstate_hpet_rtc_irq_level,
  303. &vmstate_hpet_offset,
  304. NULL
  305. }
  306. };
  307. /*
  308. * timer expiration callback
  309. */
  310. static void hpet_timer(void *opaque)
  311. {
  312. HPETTimer *t = opaque;
  313. uint64_t diff;
  314. uint64_t period = t->period;
  315. uint64_t cur_tick = hpet_get_ticks(t->state);
  316. if (timer_is_periodic(t) && period != 0) {
  317. if (t->config & HPET_TN_32BIT) {
  318. while (hpet_time_after(cur_tick, t->cmp)) {
  319. t->cmp = (uint32_t)(t->cmp + t->period);
  320. }
  321. } else {
  322. while (hpet_time_after64(cur_tick, t->cmp)) {
  323. t->cmp += period;
  324. }
  325. }
  326. diff = hpet_calculate_diff(t, cur_tick);
  327. timer_mod(t->qemu_timer,
  328. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
  329. } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
  330. if (t->wrap_flag) {
  331. diff = hpet_calculate_diff(t, cur_tick);
  332. timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  333. (int64_t)ticks_to_ns(diff));
  334. t->wrap_flag = 0;
  335. }
  336. }
  337. update_irq(t, 1);
  338. }
  339. static void hpet_set_timer(HPETTimer *t)
  340. {
  341. uint64_t diff;
  342. uint32_t wrap_diff; /* how many ticks until we wrap? */
  343. uint64_t cur_tick = hpet_get_ticks(t->state);
  344. /* whenever new timer is being set up, make sure wrap_flag is 0 */
  345. t->wrap_flag = 0;
  346. diff = hpet_calculate_diff(t, cur_tick);
  347. /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
  348. * counter wraps in addition to an interrupt with comparator match.
  349. */
  350. if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
  351. wrap_diff = 0xffffffff - (uint32_t)cur_tick;
  352. if (wrap_diff < (uint32_t)diff) {
  353. diff = wrap_diff;
  354. t->wrap_flag = 1;
  355. }
  356. }
  357. timer_mod(t->qemu_timer,
  358. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
  359. }
  360. static void hpet_del_timer(HPETTimer *t)
  361. {
  362. timer_del(t->qemu_timer);
  363. update_irq(t, 0);
  364. }
  365. static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
  366. unsigned size)
  367. {
  368. HPETState *s = opaque;
  369. uint64_t cur_tick, index;
  370. DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
  371. index = addr;
  372. /*address range of all TN regs*/
  373. if (index >= 0x100 && index <= 0x3ff) {
  374. uint8_t timer_id = (addr - 0x100) / 0x20;
  375. HPETTimer *timer = &s->timer[timer_id];
  376. if (timer_id > s->num_timers) {
  377. DPRINTF("qemu: timer id out of range\n");
  378. return 0;
  379. }
  380. switch ((addr - 0x100) % 0x20) {
  381. case HPET_TN_CFG:
  382. return timer->config;
  383. case HPET_TN_CFG + 4: // Interrupt capabilities
  384. return timer->config >> 32;
  385. case HPET_TN_CMP: // comparator register
  386. return timer->cmp;
  387. case HPET_TN_CMP + 4:
  388. return timer->cmp >> 32;
  389. case HPET_TN_ROUTE:
  390. return timer->fsb;
  391. case HPET_TN_ROUTE + 4:
  392. return timer->fsb >> 32;
  393. default:
  394. DPRINTF("qemu: invalid hpet_ram_readl\n");
  395. break;
  396. }
  397. } else {
  398. switch (index) {
  399. case HPET_ID:
  400. return s->capability;
  401. case HPET_PERIOD:
  402. return s->capability >> 32;
  403. case HPET_CFG:
  404. return s->config;
  405. case HPET_CFG + 4:
  406. DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
  407. return 0;
  408. case HPET_COUNTER:
  409. if (hpet_enabled(s)) {
  410. cur_tick = hpet_get_ticks(s);
  411. } else {
  412. cur_tick = s->hpet_counter;
  413. }
  414. DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
  415. return cur_tick;
  416. case HPET_COUNTER + 4:
  417. if (hpet_enabled(s)) {
  418. cur_tick = hpet_get_ticks(s);
  419. } else {
  420. cur_tick = s->hpet_counter;
  421. }
  422. DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
  423. return cur_tick >> 32;
  424. case HPET_STATUS:
  425. return s->isr;
  426. default:
  427. DPRINTF("qemu: invalid hpet_ram_readl\n");
  428. break;
  429. }
  430. }
  431. return 0;
  432. }
  433. static void hpet_ram_write(void *opaque, hwaddr addr,
  434. uint64_t value, unsigned size)
  435. {
  436. int i;
  437. HPETState *s = opaque;
  438. uint64_t old_val, new_val, val, index;
  439. DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = 0x%" PRIx64 "\n",
  440. addr, value);
  441. index = addr;
  442. old_val = hpet_ram_read(opaque, addr, 4);
  443. new_val = value;
  444. /*address range of all TN regs*/
  445. if (index >= 0x100 && index <= 0x3ff) {
  446. uint8_t timer_id = (addr - 0x100) / 0x20;
  447. HPETTimer *timer = &s->timer[timer_id];
  448. DPRINTF("qemu: hpet_ram_writel timer_id = 0x%x\n", timer_id);
  449. if (timer_id > s->num_timers) {
  450. DPRINTF("qemu: timer id out of range\n");
  451. return;
  452. }
  453. switch ((addr - 0x100) % 0x20) {
  454. case HPET_TN_CFG:
  455. DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
  456. if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
  457. update_irq(timer, 0);
  458. }
  459. val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
  460. timer->config = (timer->config & 0xffffffff00000000ULL) | val;
  461. if (new_val & HPET_TN_32BIT) {
  462. timer->cmp = (uint32_t)timer->cmp;
  463. timer->period = (uint32_t)timer->period;
  464. }
  465. if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
  466. hpet_enabled(s)) {
  467. hpet_set_timer(timer);
  468. } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
  469. hpet_del_timer(timer);
  470. }
  471. break;
  472. case HPET_TN_CFG + 4: // Interrupt capabilities
  473. DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
  474. break;
  475. case HPET_TN_CMP: // comparator register
  476. DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
  477. if (timer->config & HPET_TN_32BIT) {
  478. new_val = (uint32_t)new_val;
  479. }
  480. if (!timer_is_periodic(timer)
  481. || (timer->config & HPET_TN_SETVAL)) {
  482. timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
  483. }
  484. if (timer_is_periodic(timer)) {
  485. /*
  486. * FIXME: Clamp period to reasonable min value?
  487. * Clamp period to reasonable max value
  488. */
  489. new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
  490. timer->period =
  491. (timer->period & 0xffffffff00000000ULL) | new_val;
  492. }
  493. timer->config &= ~HPET_TN_SETVAL;
  494. if (hpet_enabled(s)) {
  495. hpet_set_timer(timer);
  496. }
  497. break;
  498. case HPET_TN_CMP + 4: // comparator register high order
  499. DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
  500. if (!timer_is_periodic(timer)
  501. || (timer->config & HPET_TN_SETVAL)) {
  502. timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
  503. } else {
  504. /*
  505. * FIXME: Clamp period to reasonable min value?
  506. * Clamp period to reasonable max value
  507. */
  508. new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
  509. timer->period =
  510. (timer->period & 0xffffffffULL) | new_val << 32;
  511. }
  512. timer->config &= ~HPET_TN_SETVAL;
  513. if (hpet_enabled(s)) {
  514. hpet_set_timer(timer);
  515. }
  516. break;
  517. case HPET_TN_ROUTE:
  518. timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
  519. break;
  520. case HPET_TN_ROUTE + 4:
  521. timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
  522. break;
  523. default:
  524. DPRINTF("qemu: invalid hpet_ram_writel\n");
  525. break;
  526. }
  527. return;
  528. } else {
  529. switch (index) {
  530. case HPET_ID:
  531. return;
  532. case HPET_CFG:
  533. val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
  534. s->config = (s->config & 0xffffffff00000000ULL) | val;
  535. if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  536. /* Enable main counter and interrupt generation. */
  537. s->hpet_offset =
  538. ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  539. for (i = 0; i < s->num_timers; i++) {
  540. if ((&s->timer[i])->cmp != ~0ULL) {
  541. hpet_set_timer(&s->timer[i]);
  542. }
  543. }
  544. } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  545. /* Halt main counter and disable interrupt generation. */
  546. s->hpet_counter = hpet_get_ticks(s);
  547. for (i = 0; i < s->num_timers; i++) {
  548. hpet_del_timer(&s->timer[i]);
  549. }
  550. }
  551. /* i8254 and RTC output pins are disabled
  552. * when HPET is in legacy mode */
  553. if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  554. qemu_set_irq(s->pit_enabled, 0);
  555. qemu_irq_lower(s->irqs[0]);
  556. qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
  557. } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  558. qemu_irq_lower(s->irqs[0]);
  559. qemu_set_irq(s->pit_enabled, 1);
  560. qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
  561. }
  562. break;
  563. case HPET_CFG + 4:
  564. DPRINTF("qemu: invalid HPET_CFG+4 write\n");
  565. break;
  566. case HPET_STATUS:
  567. val = new_val & s->isr;
  568. for (i = 0; i < s->num_timers; i++) {
  569. if (val & (1 << i)) {
  570. update_irq(&s->timer[i], 0);
  571. }
  572. }
  573. break;
  574. case HPET_COUNTER:
  575. if (hpet_enabled(s)) {
  576. DPRINTF("qemu: Writing counter while HPET enabled!\n");
  577. }
  578. s->hpet_counter =
  579. (s->hpet_counter & 0xffffffff00000000ULL) | value;
  580. DPRINTF("qemu: HPET counter written. ctr = 0x%" PRIx64 " -> "
  581. "%" PRIx64 "\n", value, s->hpet_counter);
  582. break;
  583. case HPET_COUNTER + 4:
  584. if (hpet_enabled(s)) {
  585. DPRINTF("qemu: Writing counter while HPET enabled!\n");
  586. }
  587. s->hpet_counter =
  588. (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
  589. DPRINTF("qemu: HPET counter + 4 written. ctr = 0x%" PRIx64 " -> "
  590. "%" PRIx64 "\n", value, s->hpet_counter);
  591. break;
  592. default:
  593. DPRINTF("qemu: invalid hpet_ram_writel\n");
  594. break;
  595. }
  596. }
  597. }
  598. static const MemoryRegionOps hpet_ram_ops = {
  599. .read = hpet_ram_read,
  600. .write = hpet_ram_write,
  601. .valid = {
  602. .min_access_size = 4,
  603. .max_access_size = 4,
  604. },
  605. .endianness = DEVICE_NATIVE_ENDIAN,
  606. };
  607. static void hpet_reset(DeviceState *d)
  608. {
  609. HPETState *s = HPET(d);
  610. SysBusDevice *sbd = SYS_BUS_DEVICE(d);
  611. int i;
  612. for (i = 0; i < s->num_timers; i++) {
  613. HPETTimer *timer = &s->timer[i];
  614. hpet_del_timer(timer);
  615. timer->cmp = ~0ULL;
  616. timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
  617. if (s->flags & (1 << HPET_MSI_SUPPORT)) {
  618. timer->config |= HPET_TN_FSB_CAP;
  619. }
  620. /* advertise availability of ioapic int */
  621. timer->config |= (uint64_t)s->intcap << 32;
  622. timer->period = 0ULL;
  623. timer->wrap_flag = 0;
  624. }
  625. qemu_set_irq(s->pit_enabled, 1);
  626. s->hpet_counter = 0ULL;
  627. s->hpet_offset = 0ULL;
  628. s->config = 0ULL;
  629. hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  630. hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
  631. /* to document that the RTC lowers its output on reset as well */
  632. s->rtc_irq_level = 0;
  633. }
  634. static void hpet_handle_legacy_irq(void *opaque, int n, int level)
  635. {
  636. HPETState *s = HPET(opaque);
  637. if (n == HPET_LEGACY_PIT_INT) {
  638. if (!hpet_in_legacy_mode(s)) {
  639. qemu_set_irq(s->irqs[0], level);
  640. }
  641. } else {
  642. s->rtc_irq_level = level;
  643. if (!hpet_in_legacy_mode(s)) {
  644. qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
  645. }
  646. }
  647. }
  648. static void hpet_init(Object *obj)
  649. {
  650. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  651. HPETState *s = HPET(obj);
  652. /* HPET Area */
  653. memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
  654. sysbus_init_mmio(sbd, &s->iomem);
  655. }
  656. static void hpet_realize(DeviceState *dev, Error **errp)
  657. {
  658. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  659. HPETState *s = HPET(dev);
  660. int i;
  661. HPETTimer *timer;
  662. if (!s->intcap) {
  663. warn_report("Hpet's intcap not initialized");
  664. }
  665. if (hpet_cfg.count == UINT8_MAX) {
  666. /* first instance */
  667. hpet_cfg.count = 0;
  668. }
  669. if (hpet_cfg.count == 8) {
  670. error_setg(errp, "Only 8 instances of HPET is allowed");
  671. return;
  672. }
  673. s->hpet_id = hpet_cfg.count++;
  674. for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
  675. sysbus_init_irq(sbd, &s->irqs[i]);
  676. }
  677. if (s->num_timers < HPET_MIN_TIMERS) {
  678. s->num_timers = HPET_MIN_TIMERS;
  679. } else if (s->num_timers > HPET_MAX_TIMERS) {
  680. s->num_timers = HPET_MAX_TIMERS;
  681. }
  682. for (i = 0; i < HPET_MAX_TIMERS; i++) {
  683. timer = &s->timer[i];
  684. timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
  685. timer->tn = i;
  686. timer->state = s;
  687. }
  688. /* 64-bit main counter; LegacyReplacementRoute. */
  689. s->capability = 0x8086a001ULL;
  690. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  691. s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
  692. qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
  693. qdev_init_gpio_out(dev, &s->pit_enabled, 1);
  694. }
  695. static Property hpet_device_properties[] = {
  696. DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
  697. DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
  698. DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
  699. DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
  700. DEFINE_PROP_END_OF_LIST(),
  701. };
  702. static void hpet_device_class_init(ObjectClass *klass, void *data)
  703. {
  704. DeviceClass *dc = DEVICE_CLASS(klass);
  705. dc->realize = hpet_realize;
  706. dc->reset = hpet_reset;
  707. dc->vmsd = &vmstate_hpet;
  708. device_class_set_props(dc, hpet_device_properties);
  709. }
  710. static const TypeInfo hpet_device_info = {
  711. .name = TYPE_HPET,
  712. .parent = TYPE_SYS_BUS_DEVICE,
  713. .instance_size = sizeof(HPETState),
  714. .instance_init = hpet_init,
  715. .class_init = hpet_device_class_init,
  716. };
  717. static void hpet_register_types(void)
  718. {
  719. type_register_static(&hpet_device_info);
  720. }
  721. type_init(hpet_register_types)