2
0

arm_timer.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. /*
  2. * ARM PrimeCell Timer modules.
  3. *
  4. * Copyright (c) 2005-2006 CodeSourcery.
  5. * Written by Paul Brook
  6. *
  7. * This code is licensed under the GPL.
  8. */
  9. #include "qemu/osdep.h"
  10. #include "hw/sysbus.h"
  11. #include "migration/vmstate.h"
  12. #include "qemu/timer.h"
  13. #include "hw/irq.h"
  14. #include "hw/ptimer.h"
  15. #include "hw/qdev-properties.h"
  16. #include "qemu/module.h"
  17. #include "qemu/log.h"
  18. #include "qom/object.h"
  19. /* Common timer implementation. */
  20. #define TIMER_CTRL_ONESHOT (1 << 0)
  21. #define TIMER_CTRL_32BIT (1 << 1)
  22. #define TIMER_CTRL_DIV1 (0 << 2)
  23. #define TIMER_CTRL_DIV16 (1 << 2)
  24. #define TIMER_CTRL_DIV256 (2 << 2)
  25. #define TIMER_CTRL_IE (1 << 5)
  26. #define TIMER_CTRL_PERIODIC (1 << 6)
  27. #define TIMER_CTRL_ENABLE (1 << 7)
  28. typedef struct {
  29. ptimer_state *timer;
  30. uint32_t control;
  31. uint32_t limit;
  32. int freq;
  33. int int_level;
  34. qemu_irq irq;
  35. } arm_timer_state;
  36. /* Check all active timers, and schedule the next timer interrupt. */
  37. static void arm_timer_update(arm_timer_state *s)
  38. {
  39. /* Update interrupts. */
  40. if (s->int_level && (s->control & TIMER_CTRL_IE)) {
  41. qemu_irq_raise(s->irq);
  42. } else {
  43. qemu_irq_lower(s->irq);
  44. }
  45. }
  46. static uint32_t arm_timer_read(void *opaque, hwaddr offset)
  47. {
  48. arm_timer_state *s = (arm_timer_state *)opaque;
  49. switch (offset >> 2) {
  50. case 0: /* TimerLoad */
  51. case 6: /* TimerBGLoad */
  52. return s->limit;
  53. case 1: /* TimerValue */
  54. return ptimer_get_count(s->timer);
  55. case 2: /* TimerControl */
  56. return s->control;
  57. case 4: /* TimerRIS */
  58. return s->int_level;
  59. case 5: /* TimerMIS */
  60. if ((s->control & TIMER_CTRL_IE) == 0)
  61. return 0;
  62. return s->int_level;
  63. default:
  64. qemu_log_mask(LOG_GUEST_ERROR,
  65. "%s: Bad offset %x\n", __func__, (int)offset);
  66. return 0;
  67. }
  68. }
  69. /*
  70. * Reset the timer limit after settings have changed.
  71. * May only be called from inside a ptimer transaction block.
  72. */
  73. static void arm_timer_recalibrate(arm_timer_state *s, int reload)
  74. {
  75. uint32_t limit;
  76. if ((s->control & (TIMER_CTRL_PERIODIC | TIMER_CTRL_ONESHOT)) == 0) {
  77. /* Free running. */
  78. if (s->control & TIMER_CTRL_32BIT)
  79. limit = 0xffffffff;
  80. else
  81. limit = 0xffff;
  82. } else {
  83. /* Periodic. */
  84. limit = s->limit;
  85. }
  86. ptimer_set_limit(s->timer, limit, reload);
  87. }
  88. static void arm_timer_write(void *opaque, hwaddr offset,
  89. uint32_t value)
  90. {
  91. arm_timer_state *s = (arm_timer_state *)opaque;
  92. int freq;
  93. switch (offset >> 2) {
  94. case 0: /* TimerLoad */
  95. s->limit = value;
  96. ptimer_transaction_begin(s->timer);
  97. arm_timer_recalibrate(s, 1);
  98. ptimer_transaction_commit(s->timer);
  99. break;
  100. case 1: /* TimerValue */
  101. /* ??? Linux seems to want to write to this readonly register.
  102. Ignore it. */
  103. break;
  104. case 2: /* TimerControl */
  105. ptimer_transaction_begin(s->timer);
  106. if (s->control & TIMER_CTRL_ENABLE) {
  107. /* Pause the timer if it is running. This may cause some
  108. inaccuracy dure to rounding, but avoids a whole lot of other
  109. messyness. */
  110. ptimer_stop(s->timer);
  111. }
  112. s->control = value;
  113. freq = s->freq;
  114. /* ??? Need to recalculate expiry time after changing divisor. */
  115. switch ((value >> 2) & 3) {
  116. case 1: freq >>= 4; break;
  117. case 2: freq >>= 8; break;
  118. }
  119. arm_timer_recalibrate(s, s->control & TIMER_CTRL_ENABLE);
  120. ptimer_set_freq(s->timer, freq);
  121. if (s->control & TIMER_CTRL_ENABLE) {
  122. /* Restart the timer if still enabled. */
  123. ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
  124. }
  125. ptimer_transaction_commit(s->timer);
  126. break;
  127. case 3: /* TimerIntClr */
  128. s->int_level = 0;
  129. break;
  130. case 6: /* TimerBGLoad */
  131. s->limit = value;
  132. ptimer_transaction_begin(s->timer);
  133. arm_timer_recalibrate(s, 0);
  134. ptimer_transaction_commit(s->timer);
  135. break;
  136. default:
  137. qemu_log_mask(LOG_GUEST_ERROR,
  138. "%s: Bad offset %x\n", __func__, (int)offset);
  139. }
  140. arm_timer_update(s);
  141. }
  142. static void arm_timer_tick(void *opaque)
  143. {
  144. arm_timer_state *s = (arm_timer_state *)opaque;
  145. s->int_level = 1;
  146. arm_timer_update(s);
  147. }
  148. static const VMStateDescription vmstate_arm_timer = {
  149. .name = "arm_timer",
  150. .version_id = 1,
  151. .minimum_version_id = 1,
  152. .fields = (VMStateField[]) {
  153. VMSTATE_UINT32(control, arm_timer_state),
  154. VMSTATE_UINT32(limit, arm_timer_state),
  155. VMSTATE_INT32(int_level, arm_timer_state),
  156. VMSTATE_PTIMER(timer, arm_timer_state),
  157. VMSTATE_END_OF_LIST()
  158. }
  159. };
  160. static arm_timer_state *arm_timer_init(uint32_t freq)
  161. {
  162. arm_timer_state *s;
  163. s = (arm_timer_state *)g_malloc0(sizeof(arm_timer_state));
  164. s->freq = freq;
  165. s->control = TIMER_CTRL_IE;
  166. s->timer = ptimer_init(arm_timer_tick, s, PTIMER_POLICY_DEFAULT);
  167. vmstate_register(NULL, VMSTATE_INSTANCE_ID_ANY, &vmstate_arm_timer, s);
  168. return s;
  169. }
  170. /* ARM PrimeCell SP804 dual timer module.
  171. * Docs at
  172. * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0271d/index.html
  173. */
  174. #define TYPE_SP804 "sp804"
  175. OBJECT_DECLARE_SIMPLE_TYPE(SP804State, SP804)
  176. struct SP804State {
  177. SysBusDevice parent_obj;
  178. MemoryRegion iomem;
  179. arm_timer_state *timer[2];
  180. uint32_t freq0, freq1;
  181. int level[2];
  182. qemu_irq irq;
  183. };
  184. static const uint8_t sp804_ids[] = {
  185. /* Timer ID */
  186. 0x04, 0x18, 0x14, 0,
  187. /* PrimeCell ID */
  188. 0xd, 0xf0, 0x05, 0xb1
  189. };
  190. /* Merge the IRQs from the two component devices. */
  191. static void sp804_set_irq(void *opaque, int irq, int level)
  192. {
  193. SP804State *s = (SP804State *)opaque;
  194. s->level[irq] = level;
  195. qemu_set_irq(s->irq, s->level[0] || s->level[1]);
  196. }
  197. static uint64_t sp804_read(void *opaque, hwaddr offset,
  198. unsigned size)
  199. {
  200. SP804State *s = (SP804State *)opaque;
  201. if (offset < 0x20) {
  202. return arm_timer_read(s->timer[0], offset);
  203. }
  204. if (offset < 0x40) {
  205. return arm_timer_read(s->timer[1], offset - 0x20);
  206. }
  207. /* TimerPeriphID */
  208. if (offset >= 0xfe0 && offset <= 0xffc) {
  209. return sp804_ids[(offset - 0xfe0) >> 2];
  210. }
  211. switch (offset) {
  212. /* Integration Test control registers, which we won't support */
  213. case 0xf00: /* TimerITCR */
  214. case 0xf04: /* TimerITOP (strictly write only but..) */
  215. qemu_log_mask(LOG_UNIMP,
  216. "%s: integration test registers unimplemented\n",
  217. __func__);
  218. return 0;
  219. }
  220. qemu_log_mask(LOG_GUEST_ERROR,
  221. "%s: Bad offset %x\n", __func__, (int)offset);
  222. return 0;
  223. }
  224. static void sp804_write(void *opaque, hwaddr offset,
  225. uint64_t value, unsigned size)
  226. {
  227. SP804State *s = (SP804State *)opaque;
  228. if (offset < 0x20) {
  229. arm_timer_write(s->timer[0], offset, value);
  230. return;
  231. }
  232. if (offset < 0x40) {
  233. arm_timer_write(s->timer[1], offset - 0x20, value);
  234. return;
  235. }
  236. /* Technically we could be writing to the Test Registers, but not likely */
  237. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset %x\n",
  238. __func__, (int)offset);
  239. }
  240. static const MemoryRegionOps sp804_ops = {
  241. .read = sp804_read,
  242. .write = sp804_write,
  243. .endianness = DEVICE_NATIVE_ENDIAN,
  244. };
  245. static const VMStateDescription vmstate_sp804 = {
  246. .name = "sp804",
  247. .version_id = 1,
  248. .minimum_version_id = 1,
  249. .fields = (VMStateField[]) {
  250. VMSTATE_INT32_ARRAY(level, SP804State, 2),
  251. VMSTATE_END_OF_LIST()
  252. }
  253. };
  254. static void sp804_init(Object *obj)
  255. {
  256. SP804State *s = SP804(obj);
  257. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  258. sysbus_init_irq(sbd, &s->irq);
  259. memory_region_init_io(&s->iomem, obj, &sp804_ops, s,
  260. "sp804", 0x1000);
  261. sysbus_init_mmio(sbd, &s->iomem);
  262. }
  263. static void sp804_realize(DeviceState *dev, Error **errp)
  264. {
  265. SP804State *s = SP804(dev);
  266. s->timer[0] = arm_timer_init(s->freq0);
  267. s->timer[1] = arm_timer_init(s->freq1);
  268. s->timer[0]->irq = qemu_allocate_irq(sp804_set_irq, s, 0);
  269. s->timer[1]->irq = qemu_allocate_irq(sp804_set_irq, s, 1);
  270. }
  271. /* Integrator/CP timer module. */
  272. #define TYPE_INTEGRATOR_PIT "integrator_pit"
  273. OBJECT_DECLARE_SIMPLE_TYPE(icp_pit_state, INTEGRATOR_PIT)
  274. struct icp_pit_state {
  275. SysBusDevice parent_obj;
  276. MemoryRegion iomem;
  277. arm_timer_state *timer[3];
  278. };
  279. static uint64_t icp_pit_read(void *opaque, hwaddr offset,
  280. unsigned size)
  281. {
  282. icp_pit_state *s = (icp_pit_state *)opaque;
  283. int n;
  284. /* ??? Don't know the PrimeCell ID for this device. */
  285. n = offset >> 8;
  286. if (n > 2) {
  287. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n);
  288. return 0;
  289. }
  290. return arm_timer_read(s->timer[n], offset & 0xff);
  291. }
  292. static void icp_pit_write(void *opaque, hwaddr offset,
  293. uint64_t value, unsigned size)
  294. {
  295. icp_pit_state *s = (icp_pit_state *)opaque;
  296. int n;
  297. n = offset >> 8;
  298. if (n > 2) {
  299. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n);
  300. return;
  301. }
  302. arm_timer_write(s->timer[n], offset & 0xff, value);
  303. }
  304. static const MemoryRegionOps icp_pit_ops = {
  305. .read = icp_pit_read,
  306. .write = icp_pit_write,
  307. .endianness = DEVICE_NATIVE_ENDIAN,
  308. };
  309. static void icp_pit_init(Object *obj)
  310. {
  311. icp_pit_state *s = INTEGRATOR_PIT(obj);
  312. SysBusDevice *dev = SYS_BUS_DEVICE(obj);
  313. /* Timer 0 runs at the system clock speed (40MHz). */
  314. s->timer[0] = arm_timer_init(40000000);
  315. /* The other two timers run at 1MHz. */
  316. s->timer[1] = arm_timer_init(1000000);
  317. s->timer[2] = arm_timer_init(1000000);
  318. sysbus_init_irq(dev, &s->timer[0]->irq);
  319. sysbus_init_irq(dev, &s->timer[1]->irq);
  320. sysbus_init_irq(dev, &s->timer[2]->irq);
  321. memory_region_init_io(&s->iomem, obj, &icp_pit_ops, s,
  322. "icp_pit", 0x1000);
  323. sysbus_init_mmio(dev, &s->iomem);
  324. /* This device has no state to save/restore. The component timers will
  325. save themselves. */
  326. }
  327. static const TypeInfo icp_pit_info = {
  328. .name = TYPE_INTEGRATOR_PIT,
  329. .parent = TYPE_SYS_BUS_DEVICE,
  330. .instance_size = sizeof(icp_pit_state),
  331. .instance_init = icp_pit_init,
  332. };
  333. static Property sp804_properties[] = {
  334. DEFINE_PROP_UINT32("freq0", SP804State, freq0, 1000000),
  335. DEFINE_PROP_UINT32("freq1", SP804State, freq1, 1000000),
  336. DEFINE_PROP_END_OF_LIST(),
  337. };
  338. static void sp804_class_init(ObjectClass *klass, void *data)
  339. {
  340. DeviceClass *k = DEVICE_CLASS(klass);
  341. k->realize = sp804_realize;
  342. device_class_set_props(k, sp804_properties);
  343. k->vmsd = &vmstate_sp804;
  344. }
  345. static const TypeInfo sp804_info = {
  346. .name = TYPE_SP804,
  347. .parent = TYPE_SYS_BUS_DEVICE,
  348. .instance_size = sizeof(SP804State),
  349. .instance_init = sp804_init,
  350. .class_init = sp804_class_init,
  351. };
  352. static void arm_timer_register_types(void)
  353. {
  354. type_register_static(&icp_pit_info);
  355. type_register_static(&sp804_info);
  356. }
  357. type_init(arm_timer_register_types)