sun4m.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587
  1. /*
  2. * QEMU Sun4m & Sun4d & Sun4c System Emulator
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "qapi/error.h"
  27. #include "qemu-common.h"
  28. #include "cpu.h"
  29. #include "hw/sysbus.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/sparc/sun4m_iommu.h"
  33. #include "hw/rtc/m48t59.h"
  34. #include "migration/vmstate.h"
  35. #include "hw/sparc/sparc32_dma.h"
  36. #include "hw/block/fdc.h"
  37. #include "sysemu/reset.h"
  38. #include "sysemu/runstate.h"
  39. #include "sysemu/sysemu.h"
  40. #include "net/net.h"
  41. #include "hw/boards.h"
  42. #include "hw/scsi/esp.h"
  43. #include "hw/nvram/sun_nvram.h"
  44. #include "hw/qdev-properties.h"
  45. #include "hw/nvram/chrp_nvram.h"
  46. #include "hw/nvram/fw_cfg.h"
  47. #include "hw/char/escc.h"
  48. #include "hw/misc/empty_slot.h"
  49. #include "hw/misc/unimp.h"
  50. #include "hw/irq.h"
  51. #include "hw/loader.h"
  52. #include "elf.h"
  53. #include "trace.h"
  54. #include "qom/object.h"
  55. /*
  56. * Sun4m architecture was used in the following machines:
  57. *
  58. * SPARCserver 6xxMP/xx
  59. * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
  60. * SPARCclassic X (4/10)
  61. * SPARCstation LX/ZX (4/30)
  62. * SPARCstation Voyager
  63. * SPARCstation 10/xx, SPARCserver 10/xx
  64. * SPARCstation 5, SPARCserver 5
  65. * SPARCstation 20/xx, SPARCserver 20
  66. * SPARCstation 4
  67. *
  68. * See for example: http://www.sunhelp.org/faq/sunref1.html
  69. */
  70. #define KERNEL_LOAD_ADDR 0x00004000
  71. #define CMDLINE_ADDR 0x007ff000
  72. #define INITRD_LOAD_ADDR 0x00800000
  73. #define PROM_SIZE_MAX (1 * MiB)
  74. #define PROM_VADDR 0xffd00000
  75. #define PROM_FILENAME "openbios-sparc32"
  76. #define CFG_ADDR 0xd00000510ULL
  77. #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
  78. #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
  79. #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
  80. #define MAX_CPUS 16
  81. #define MAX_PILS 16
  82. #define MAX_VSIMMS 4
  83. #define ESCC_CLOCK 4915200
  84. struct sun4m_hwdef {
  85. hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
  86. hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
  87. hwaddr serial_base, fd_base;
  88. hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
  89. hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
  90. hwaddr bpp_base, dbri_base, sx_base;
  91. struct {
  92. hwaddr reg_base, vram_base;
  93. } vsimm[MAX_VSIMMS];
  94. hwaddr ecc_base;
  95. uint64_t max_mem;
  96. uint32_t ecc_version;
  97. uint32_t iommu_version;
  98. uint16_t machine_id;
  99. uint8_t nvram_machine_id;
  100. };
  101. const char *fw_cfg_arch_key_name(uint16_t key)
  102. {
  103. static const struct {
  104. uint16_t key;
  105. const char *name;
  106. } fw_cfg_arch_wellknown_keys[] = {
  107. {FW_CFG_SUN4M_DEPTH, "depth"},
  108. {FW_CFG_SUN4M_WIDTH, "width"},
  109. {FW_CFG_SUN4M_HEIGHT, "height"},
  110. };
  111. for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
  112. if (fw_cfg_arch_wellknown_keys[i].key == key) {
  113. return fw_cfg_arch_wellknown_keys[i].name;
  114. }
  115. }
  116. return NULL;
  117. }
  118. static void fw_cfg_boot_set(void *opaque, const char *boot_device,
  119. Error **errp)
  120. {
  121. fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  122. }
  123. static void nvram_init(Nvram *nvram, uint8_t *macaddr,
  124. const char *cmdline, const char *boot_devices,
  125. ram_addr_t RAM_size, uint32_t kernel_size,
  126. int width, int height, int depth,
  127. int nvram_machine_id, const char *arch)
  128. {
  129. unsigned int i;
  130. int sysp_end;
  131. uint8_t image[0x1ff0];
  132. NvramClass *k = NVRAM_GET_CLASS(nvram);
  133. memset(image, '\0', sizeof(image));
  134. /* OpenBIOS nvram variables partition */
  135. sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
  136. /* Free space partition */
  137. chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
  138. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
  139. nvram_machine_id);
  140. for (i = 0; i < sizeof(image); i++) {
  141. (k->write)(nvram, i, image[i]);
  142. }
  143. }
  144. void cpu_check_irqs(CPUSPARCState *env)
  145. {
  146. CPUState *cs;
  147. /* We should be holding the BQL before we mess with IRQs */
  148. g_assert(qemu_mutex_iothread_locked());
  149. if (env->pil_in && (env->interrupt_index == 0 ||
  150. (env->interrupt_index & ~15) == TT_EXTINT)) {
  151. unsigned int i;
  152. for (i = 15; i > 0; i--) {
  153. if (env->pil_in & (1 << i)) {
  154. int old_interrupt = env->interrupt_index;
  155. env->interrupt_index = TT_EXTINT | i;
  156. if (old_interrupt != env->interrupt_index) {
  157. cs = env_cpu(env);
  158. trace_sun4m_cpu_interrupt(i);
  159. cpu_interrupt(cs, CPU_INTERRUPT_HARD);
  160. }
  161. break;
  162. }
  163. }
  164. } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
  165. cs = env_cpu(env);
  166. trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
  167. env->interrupt_index = 0;
  168. cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
  169. }
  170. }
  171. static void cpu_kick_irq(SPARCCPU *cpu)
  172. {
  173. CPUSPARCState *env = &cpu->env;
  174. CPUState *cs = CPU(cpu);
  175. cs->halted = 0;
  176. cpu_check_irqs(env);
  177. qemu_cpu_kick(cs);
  178. }
  179. static void cpu_set_irq(void *opaque, int irq, int level)
  180. {
  181. SPARCCPU *cpu = opaque;
  182. CPUSPARCState *env = &cpu->env;
  183. if (level) {
  184. trace_sun4m_cpu_set_irq_raise(irq);
  185. env->pil_in |= 1 << irq;
  186. cpu_kick_irq(cpu);
  187. } else {
  188. trace_sun4m_cpu_set_irq_lower(irq);
  189. env->pil_in &= ~(1 << irq);
  190. cpu_check_irqs(env);
  191. }
  192. }
  193. static void dummy_cpu_set_irq(void *opaque, int irq, int level)
  194. {
  195. }
  196. static void sun4m_cpu_reset(void *opaque)
  197. {
  198. SPARCCPU *cpu = opaque;
  199. CPUState *cs = CPU(cpu);
  200. cpu_reset(cs);
  201. }
  202. static void cpu_halt_signal(void *opaque, int irq, int level)
  203. {
  204. if (level && current_cpu) {
  205. cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
  206. }
  207. }
  208. static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
  209. {
  210. return addr - 0xf0000000ULL;
  211. }
  212. static unsigned long sun4m_load_kernel(const char *kernel_filename,
  213. const char *initrd_filename,
  214. ram_addr_t RAM_size,
  215. uint32_t *initrd_size)
  216. {
  217. int linux_boot;
  218. unsigned int i;
  219. long kernel_size;
  220. uint8_t *ptr;
  221. linux_boot = (kernel_filename != NULL);
  222. kernel_size = 0;
  223. if (linux_boot) {
  224. int bswap_needed;
  225. #ifdef BSWAP_NEEDED
  226. bswap_needed = 1;
  227. #else
  228. bswap_needed = 0;
  229. #endif
  230. kernel_size = load_elf(kernel_filename, NULL,
  231. translate_kernel_address, NULL,
  232. NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  233. if (kernel_size < 0)
  234. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  235. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  236. TARGET_PAGE_SIZE);
  237. if (kernel_size < 0)
  238. kernel_size = load_image_targphys(kernel_filename,
  239. KERNEL_LOAD_ADDR,
  240. RAM_size - KERNEL_LOAD_ADDR);
  241. if (kernel_size < 0) {
  242. error_report("could not load kernel '%s'", kernel_filename);
  243. exit(1);
  244. }
  245. /* load initrd */
  246. *initrd_size = 0;
  247. if (initrd_filename) {
  248. *initrd_size = load_image_targphys(initrd_filename,
  249. INITRD_LOAD_ADDR,
  250. RAM_size - INITRD_LOAD_ADDR);
  251. if ((int)*initrd_size < 0) {
  252. error_report("could not load initial ram disk '%s'",
  253. initrd_filename);
  254. exit(1);
  255. }
  256. }
  257. if (*initrd_size > 0) {
  258. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  259. ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
  260. if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
  261. stl_p(ptr + 16, INITRD_LOAD_ADDR);
  262. stl_p(ptr + 20, *initrd_size);
  263. break;
  264. }
  265. }
  266. }
  267. }
  268. return kernel_size;
  269. }
  270. static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
  271. {
  272. DeviceState *dev;
  273. SysBusDevice *s;
  274. dev = qdev_new(TYPE_SUN4M_IOMMU);
  275. qdev_prop_set_uint32(dev, "version", version);
  276. s = SYS_BUS_DEVICE(dev);
  277. sysbus_realize_and_unref(s, &error_fatal);
  278. sysbus_connect_irq(s, 0, irq);
  279. sysbus_mmio_map(s, 0, addr);
  280. return s;
  281. }
  282. static void *sparc32_dma_init(hwaddr dma_base,
  283. hwaddr esp_base, qemu_irq espdma_irq,
  284. hwaddr le_base, qemu_irq ledma_irq)
  285. {
  286. DeviceState *dma;
  287. ESPDMADeviceState *espdma;
  288. LEDMADeviceState *ledma;
  289. SysBusESPState *esp;
  290. SysBusPCNetState *lance;
  291. dma = qdev_new(TYPE_SPARC32_DMA);
  292. sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
  293. sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
  294. espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
  295. OBJECT(dma), "espdma"));
  296. sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
  297. esp = ESP(object_resolve_path_component(OBJECT(espdma), "esp"));
  298. sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
  299. scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
  300. ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
  301. OBJECT(dma), "ledma"));
  302. sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
  303. lance = SYSBUS_PCNET(object_resolve_path_component(
  304. OBJECT(ledma), "lance"));
  305. sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
  306. return dma;
  307. }
  308. static DeviceState *slavio_intctl_init(hwaddr addr,
  309. hwaddr addrg,
  310. qemu_irq **parent_irq)
  311. {
  312. DeviceState *dev;
  313. SysBusDevice *s;
  314. unsigned int i, j;
  315. dev = qdev_new("slavio_intctl");
  316. s = SYS_BUS_DEVICE(dev);
  317. sysbus_realize_and_unref(s, &error_fatal);
  318. for (i = 0; i < MAX_CPUS; i++) {
  319. for (j = 0; j < MAX_PILS; j++) {
  320. sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
  321. }
  322. }
  323. sysbus_mmio_map(s, 0, addrg);
  324. for (i = 0; i < MAX_CPUS; i++) {
  325. sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
  326. }
  327. return dev;
  328. }
  329. #define SYS_TIMER_OFFSET 0x10000ULL
  330. #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
  331. static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
  332. qemu_irq *cpu_irqs, unsigned int num_cpus)
  333. {
  334. DeviceState *dev;
  335. SysBusDevice *s;
  336. unsigned int i;
  337. dev = qdev_new("slavio_timer");
  338. qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
  339. s = SYS_BUS_DEVICE(dev);
  340. sysbus_realize_and_unref(s, &error_fatal);
  341. sysbus_connect_irq(s, 0, master_irq);
  342. sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
  343. for (i = 0; i < MAX_CPUS; i++) {
  344. sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
  345. sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
  346. }
  347. }
  348. static qemu_irq slavio_system_powerdown;
  349. static void slavio_powerdown_req(Notifier *n, void *opaque)
  350. {
  351. qemu_irq_raise(slavio_system_powerdown);
  352. }
  353. static Notifier slavio_system_powerdown_notifier = {
  354. .notify = slavio_powerdown_req
  355. };
  356. #define MISC_LEDS 0x01600000
  357. #define MISC_CFG 0x01800000
  358. #define MISC_DIAG 0x01a00000
  359. #define MISC_MDM 0x01b00000
  360. #define MISC_SYS 0x01f00000
  361. static void slavio_misc_init(hwaddr base,
  362. hwaddr aux1_base,
  363. hwaddr aux2_base, qemu_irq irq,
  364. qemu_irq fdc_tc)
  365. {
  366. DeviceState *dev;
  367. SysBusDevice *s;
  368. dev = qdev_new("slavio_misc");
  369. s = SYS_BUS_DEVICE(dev);
  370. sysbus_realize_and_unref(s, &error_fatal);
  371. if (base) {
  372. /* 8 bit registers */
  373. /* Slavio control */
  374. sysbus_mmio_map(s, 0, base + MISC_CFG);
  375. /* Diagnostics */
  376. sysbus_mmio_map(s, 1, base + MISC_DIAG);
  377. /* Modem control */
  378. sysbus_mmio_map(s, 2, base + MISC_MDM);
  379. /* 16 bit registers */
  380. /* ss600mp diag LEDs */
  381. sysbus_mmio_map(s, 3, base + MISC_LEDS);
  382. /* 32 bit registers */
  383. /* System control */
  384. sysbus_mmio_map(s, 4, base + MISC_SYS);
  385. }
  386. if (aux1_base) {
  387. /* AUX 1 (Misc System Functions) */
  388. sysbus_mmio_map(s, 5, aux1_base);
  389. }
  390. if (aux2_base) {
  391. /* AUX 2 (Software Powerdown Control) */
  392. sysbus_mmio_map(s, 6, aux2_base);
  393. }
  394. sysbus_connect_irq(s, 0, irq);
  395. sysbus_connect_irq(s, 1, fdc_tc);
  396. slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
  397. qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
  398. }
  399. static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
  400. {
  401. DeviceState *dev;
  402. SysBusDevice *s;
  403. dev = qdev_new("eccmemctl");
  404. qdev_prop_set_uint32(dev, "version", version);
  405. s = SYS_BUS_DEVICE(dev);
  406. sysbus_realize_and_unref(s, &error_fatal);
  407. sysbus_connect_irq(s, 0, irq);
  408. sysbus_mmio_map(s, 0, base);
  409. if (version == 0) { // SS-600MP only
  410. sysbus_mmio_map(s, 1, base + 0x1000);
  411. }
  412. }
  413. static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
  414. {
  415. DeviceState *dev;
  416. SysBusDevice *s;
  417. dev = qdev_new("apc");
  418. s = SYS_BUS_DEVICE(dev);
  419. sysbus_realize_and_unref(s, &error_fatal);
  420. /* Power management (APC) XXX: not a Slavio device */
  421. sysbus_mmio_map(s, 0, power_base);
  422. sysbus_connect_irq(s, 0, cpu_halt);
  423. }
  424. static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  425. int height, int depth)
  426. {
  427. DeviceState *dev;
  428. SysBusDevice *s;
  429. dev = qdev_new("SUNW,tcx");
  430. qdev_prop_set_uint32(dev, "vram_size", vram_size);
  431. qdev_prop_set_uint16(dev, "width", width);
  432. qdev_prop_set_uint16(dev, "height", height);
  433. qdev_prop_set_uint16(dev, "depth", depth);
  434. s = SYS_BUS_DEVICE(dev);
  435. sysbus_realize_and_unref(s, &error_fatal);
  436. /* 10/ROM : FCode ROM */
  437. sysbus_mmio_map(s, 0, addr);
  438. /* 2/STIP : Stipple */
  439. sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
  440. /* 3/BLIT : Blitter */
  441. sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
  442. /* 5/RSTIP : Raw Stipple */
  443. sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
  444. /* 6/RBLIT : Raw Blitter */
  445. sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
  446. /* 7/TEC : Transform Engine */
  447. sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
  448. /* 8/CMAP : DAC */
  449. sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
  450. /* 9/THC : */
  451. if (depth == 8) {
  452. sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
  453. } else {
  454. sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
  455. }
  456. /* 11/DHC : */
  457. sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
  458. /* 12/ALT : */
  459. sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
  460. /* 0/DFB8 : 8-bit plane */
  461. sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
  462. /* 1/DFB24 : 24bit plane */
  463. sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
  464. /* 4/RDFB32: Raw framebuffer. Control plane */
  465. sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
  466. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  467. if (depth == 8) {
  468. sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
  469. }
  470. sysbus_connect_irq(s, 0, irq);
  471. }
  472. static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  473. int height, int depth)
  474. {
  475. DeviceState *dev;
  476. SysBusDevice *s;
  477. dev = qdev_new("cgthree");
  478. qdev_prop_set_uint32(dev, "vram-size", vram_size);
  479. qdev_prop_set_uint16(dev, "width", width);
  480. qdev_prop_set_uint16(dev, "height", height);
  481. qdev_prop_set_uint16(dev, "depth", depth);
  482. s = SYS_BUS_DEVICE(dev);
  483. sysbus_realize_and_unref(s, &error_fatal);
  484. /* FCode ROM */
  485. sysbus_mmio_map(s, 0, addr);
  486. /* DAC */
  487. sysbus_mmio_map(s, 1, addr + 0x400000ULL);
  488. /* 8-bit plane */
  489. sysbus_mmio_map(s, 2, addr + 0x800000ULL);
  490. sysbus_connect_irq(s, 0, irq);
  491. }
  492. /* NCR89C100/MACIO Internal ID register */
  493. #define TYPE_MACIO_ID_REGISTER "macio_idreg"
  494. static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
  495. static void idreg_init(hwaddr addr)
  496. {
  497. DeviceState *dev;
  498. SysBusDevice *s;
  499. dev = qdev_new(TYPE_MACIO_ID_REGISTER);
  500. s = SYS_BUS_DEVICE(dev);
  501. sysbus_realize_and_unref(s, &error_fatal);
  502. sysbus_mmio_map(s, 0, addr);
  503. address_space_write_rom(&address_space_memory, addr,
  504. MEMTXATTRS_UNSPECIFIED,
  505. idreg_data, sizeof(idreg_data));
  506. }
  507. OBJECT_DECLARE_SIMPLE_TYPE(IDRegState, MACIO_ID_REGISTER)
  508. struct IDRegState {
  509. SysBusDevice parent_obj;
  510. MemoryRegion mem;
  511. };
  512. static void idreg_realize(DeviceState *ds, Error **errp)
  513. {
  514. IDRegState *s = MACIO_ID_REGISTER(ds);
  515. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  516. Error *local_err = NULL;
  517. memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
  518. sizeof(idreg_data), &local_err);
  519. if (local_err) {
  520. error_propagate(errp, local_err);
  521. return;
  522. }
  523. vmstate_register_ram_global(&s->mem);
  524. memory_region_set_readonly(&s->mem, true);
  525. sysbus_init_mmio(dev, &s->mem);
  526. }
  527. static void idreg_class_init(ObjectClass *oc, void *data)
  528. {
  529. DeviceClass *dc = DEVICE_CLASS(oc);
  530. dc->realize = idreg_realize;
  531. }
  532. static const TypeInfo idreg_info = {
  533. .name = TYPE_MACIO_ID_REGISTER,
  534. .parent = TYPE_SYS_BUS_DEVICE,
  535. .instance_size = sizeof(IDRegState),
  536. .class_init = idreg_class_init,
  537. };
  538. #define TYPE_TCX_AFX "tcx_afx"
  539. OBJECT_DECLARE_SIMPLE_TYPE(AFXState, TCX_AFX)
  540. struct AFXState {
  541. SysBusDevice parent_obj;
  542. MemoryRegion mem;
  543. };
  544. /* SS-5 TCX AFX register */
  545. static void afx_init(hwaddr addr)
  546. {
  547. DeviceState *dev;
  548. SysBusDevice *s;
  549. dev = qdev_new(TYPE_TCX_AFX);
  550. s = SYS_BUS_DEVICE(dev);
  551. sysbus_realize_and_unref(s, &error_fatal);
  552. sysbus_mmio_map(s, 0, addr);
  553. }
  554. static void afx_realize(DeviceState *ds, Error **errp)
  555. {
  556. AFXState *s = TCX_AFX(ds);
  557. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  558. Error *local_err = NULL;
  559. memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
  560. &local_err);
  561. if (local_err) {
  562. error_propagate(errp, local_err);
  563. return;
  564. }
  565. vmstate_register_ram_global(&s->mem);
  566. sysbus_init_mmio(dev, &s->mem);
  567. }
  568. static void afx_class_init(ObjectClass *oc, void *data)
  569. {
  570. DeviceClass *dc = DEVICE_CLASS(oc);
  571. dc->realize = afx_realize;
  572. }
  573. static const TypeInfo afx_info = {
  574. .name = TYPE_TCX_AFX,
  575. .parent = TYPE_SYS_BUS_DEVICE,
  576. .instance_size = sizeof(AFXState),
  577. .class_init = afx_class_init,
  578. };
  579. #define TYPE_OPENPROM "openprom"
  580. typedef struct PROMState PROMState;
  581. DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM,
  582. TYPE_OPENPROM)
  583. struct PROMState {
  584. SysBusDevice parent_obj;
  585. MemoryRegion prom;
  586. };
  587. /* Boot PROM (OpenBIOS) */
  588. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  589. {
  590. hwaddr *base_addr = (hwaddr *)opaque;
  591. return addr + *base_addr - PROM_VADDR;
  592. }
  593. static void prom_init(hwaddr addr, const char *bios_name)
  594. {
  595. DeviceState *dev;
  596. SysBusDevice *s;
  597. char *filename;
  598. int ret;
  599. dev = qdev_new(TYPE_OPENPROM);
  600. s = SYS_BUS_DEVICE(dev);
  601. sysbus_realize_and_unref(s, &error_fatal);
  602. sysbus_mmio_map(s, 0, addr);
  603. /* load boot prom */
  604. if (bios_name == NULL) {
  605. bios_name = PROM_FILENAME;
  606. }
  607. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  608. if (filename) {
  609. ret = load_elf(filename, NULL,
  610. translate_prom_address, &addr, NULL,
  611. NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  612. if (ret < 0 || ret > PROM_SIZE_MAX) {
  613. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  614. }
  615. g_free(filename);
  616. } else {
  617. ret = -1;
  618. }
  619. if (ret < 0 || ret > PROM_SIZE_MAX) {
  620. error_report("could not load prom '%s'", bios_name);
  621. exit(1);
  622. }
  623. }
  624. static void prom_realize(DeviceState *ds, Error **errp)
  625. {
  626. PROMState *s = OPENPROM(ds);
  627. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  628. Error *local_err = NULL;
  629. memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
  630. PROM_SIZE_MAX, &local_err);
  631. if (local_err) {
  632. error_propagate(errp, local_err);
  633. return;
  634. }
  635. vmstate_register_ram_global(&s->prom);
  636. memory_region_set_readonly(&s->prom, true);
  637. sysbus_init_mmio(dev, &s->prom);
  638. }
  639. static Property prom_properties[] = {
  640. {/* end of property list */},
  641. };
  642. static void prom_class_init(ObjectClass *klass, void *data)
  643. {
  644. DeviceClass *dc = DEVICE_CLASS(klass);
  645. device_class_set_props(dc, prom_properties);
  646. dc->realize = prom_realize;
  647. }
  648. static const TypeInfo prom_info = {
  649. .name = TYPE_OPENPROM,
  650. .parent = TYPE_SYS_BUS_DEVICE,
  651. .instance_size = sizeof(PROMState),
  652. .class_init = prom_class_init,
  653. };
  654. #define TYPE_SUN4M_MEMORY "memory"
  655. typedef struct RamDevice RamDevice;
  656. DECLARE_INSTANCE_CHECKER(RamDevice, SUN4M_RAM,
  657. TYPE_SUN4M_MEMORY)
  658. struct RamDevice {
  659. SysBusDevice parent_obj;
  660. HostMemoryBackend *memdev;
  661. };
  662. /* System RAM */
  663. static void ram_realize(DeviceState *dev, Error **errp)
  664. {
  665. RamDevice *d = SUN4M_RAM(dev);
  666. MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
  667. sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
  668. }
  669. static void ram_initfn(Object *obj)
  670. {
  671. RamDevice *d = SUN4M_RAM(obj);
  672. object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
  673. (Object **)&d->memdev,
  674. object_property_allow_set_link,
  675. OBJ_PROP_LINK_STRONG);
  676. object_property_set_description(obj, "memdev", "Set RAM backend"
  677. "Valid value is ID of a hostmem backend");
  678. }
  679. static void ram_class_init(ObjectClass *klass, void *data)
  680. {
  681. DeviceClass *dc = DEVICE_CLASS(klass);
  682. dc->realize = ram_realize;
  683. }
  684. static const TypeInfo ram_info = {
  685. .name = TYPE_SUN4M_MEMORY,
  686. .parent = TYPE_SYS_BUS_DEVICE,
  687. .instance_size = sizeof(RamDevice),
  688. .instance_init = ram_initfn,
  689. .class_init = ram_class_init,
  690. };
  691. static void cpu_devinit(const char *cpu_type, unsigned int id,
  692. uint64_t prom_addr, qemu_irq **cpu_irqs)
  693. {
  694. SPARCCPU *cpu;
  695. CPUSPARCState *env;
  696. cpu = SPARC_CPU(object_new(cpu_type));
  697. env = &cpu->env;
  698. cpu_sparc_set_id(env, id);
  699. qemu_register_reset(sun4m_cpu_reset, cpu);
  700. object_property_set_bool(OBJECT(cpu), "start-powered-off", id != 0,
  701. &error_fatal);
  702. qdev_realize_and_unref(DEVICE(cpu), NULL, &error_fatal);
  703. *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
  704. env->prom_addr = prom_addr;
  705. }
  706. static void dummy_fdc_tc(void *opaque, int irq, int level)
  707. {
  708. }
  709. static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
  710. MachineState *machine)
  711. {
  712. DeviceState *slavio_intctl;
  713. unsigned int i;
  714. void *nvram;
  715. qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
  716. qemu_irq fdc_tc;
  717. unsigned long kernel_size;
  718. uint32_t initrd_size;
  719. DriveInfo *fd[MAX_FD];
  720. FWCfgState *fw_cfg;
  721. DeviceState *dev;
  722. SysBusDevice *s;
  723. unsigned int smp_cpus = machine->smp.cpus;
  724. unsigned int max_cpus = machine->smp.max_cpus;
  725. Object *ram_memdev = object_resolve_path_type(machine->ram_memdev_id,
  726. TYPE_MEMORY_BACKEND, NULL);
  727. if (machine->ram_size > hwdef->max_mem) {
  728. error_report("Too much memory for this machine: %" PRId64 ","
  729. " maximum %" PRId64,
  730. machine->ram_size / MiB, hwdef->max_mem / MiB);
  731. exit(1);
  732. }
  733. /* init CPUs */
  734. for(i = 0; i < smp_cpus; i++) {
  735. cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
  736. }
  737. for (i = smp_cpus; i < MAX_CPUS; i++)
  738. cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
  739. /* Create and map RAM frontend */
  740. dev = qdev_new("memory");
  741. object_property_set_link(OBJECT(dev), "memdev", ram_memdev, &error_fatal);
  742. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  743. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
  744. /* models without ECC don't trap when missing ram is accessed */
  745. if (!hwdef->ecc_base) {
  746. empty_slot_init("ecc", machine->ram_size,
  747. hwdef->max_mem - machine->ram_size);
  748. }
  749. prom_init(hwdef->slavio_base, bios_name);
  750. slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
  751. hwdef->intctl_base + 0x10000ULL,
  752. cpu_irqs);
  753. for (i = 0; i < 32; i++) {
  754. slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
  755. }
  756. for (i = 0; i < MAX_CPUS; i++) {
  757. slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
  758. }
  759. if (hwdef->idreg_base) {
  760. idreg_init(hwdef->idreg_base);
  761. }
  762. if (hwdef->afx_base) {
  763. afx_init(hwdef->afx_base);
  764. }
  765. iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
  766. if (hwdef->iommu_pad_base) {
  767. /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
  768. Software shouldn't use aliased addresses, neither should it crash
  769. when does. Using empty_slot instead of aliasing can help with
  770. debugging such accesses */
  771. empty_slot_init("iommu.alias",
  772. hwdef->iommu_pad_base, hwdef->iommu_pad_len);
  773. }
  774. sparc32_dma_init(hwdef->dma_base,
  775. hwdef->esp_base, slavio_irq[18],
  776. hwdef->le_base, slavio_irq[16]);
  777. if (graphic_depth != 8 && graphic_depth != 24) {
  778. error_report("Unsupported depth: %d", graphic_depth);
  779. exit (1);
  780. }
  781. if (vga_interface_type != VGA_NONE) {
  782. if (vga_interface_type == VGA_CG3) {
  783. if (graphic_depth != 8) {
  784. error_report("Unsupported depth: %d", graphic_depth);
  785. exit(1);
  786. }
  787. if (!(graphic_width == 1024 && graphic_height == 768) &&
  788. !(graphic_width == 1152 && graphic_height == 900)) {
  789. error_report("Unsupported resolution: %d x %d", graphic_width,
  790. graphic_height);
  791. exit(1);
  792. }
  793. /* sbus irq 5 */
  794. cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  795. graphic_width, graphic_height, graphic_depth);
  796. } else {
  797. /* If no display specified, default to TCX */
  798. if (graphic_depth != 8 && graphic_depth != 24) {
  799. error_report("Unsupported depth: %d", graphic_depth);
  800. exit(1);
  801. }
  802. if (!(graphic_width == 1024 && graphic_height == 768)) {
  803. error_report("Unsupported resolution: %d x %d",
  804. graphic_width, graphic_height);
  805. exit(1);
  806. }
  807. tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  808. graphic_width, graphic_height, graphic_depth);
  809. }
  810. }
  811. for (i = 0; i < MAX_VSIMMS; i++) {
  812. /* vsimm registers probed by OBP */
  813. if (hwdef->vsimm[i].reg_base) {
  814. char *name = g_strdup_printf("vsimm[%d]", i);
  815. empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
  816. g_free(name);
  817. }
  818. }
  819. if (hwdef->sx_base) {
  820. create_unimplemented_device("SUNW,sx", hwdef->sx_base, 0x2000);
  821. }
  822. nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
  823. slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
  824. /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
  825. Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
  826. dev = qdev_new(TYPE_ESCC);
  827. qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
  828. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  829. qdev_prop_set_uint32(dev, "it_shift", 1);
  830. qdev_prop_set_chr(dev, "chrB", NULL);
  831. qdev_prop_set_chr(dev, "chrA", NULL);
  832. qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
  833. qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
  834. s = SYS_BUS_DEVICE(dev);
  835. sysbus_realize_and_unref(s, &error_fatal);
  836. sysbus_connect_irq(s, 0, slavio_irq[14]);
  837. sysbus_connect_irq(s, 1, slavio_irq[14]);
  838. sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
  839. dev = qdev_new(TYPE_ESCC);
  840. qdev_prop_set_uint32(dev, "disabled", 0);
  841. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  842. qdev_prop_set_uint32(dev, "it_shift", 1);
  843. qdev_prop_set_chr(dev, "chrB", serial_hd(1));
  844. qdev_prop_set_chr(dev, "chrA", serial_hd(0));
  845. qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
  846. qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
  847. s = SYS_BUS_DEVICE(dev);
  848. sysbus_realize_and_unref(s, &error_fatal);
  849. sysbus_connect_irq(s, 0, slavio_irq[15]);
  850. sysbus_connect_irq(s, 1, slavio_irq[15]);
  851. sysbus_mmio_map(s, 0, hwdef->serial_base);
  852. if (hwdef->apc_base) {
  853. apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
  854. }
  855. if (hwdef->fd_base) {
  856. /* there is zero or one floppy drive */
  857. memset(fd, 0, sizeof(fd));
  858. fd[0] = drive_get(IF_FLOPPY, 0, 0);
  859. sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
  860. &fdc_tc);
  861. } else {
  862. fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
  863. }
  864. slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
  865. slavio_irq[30], fdc_tc);
  866. if (hwdef->cs_base) {
  867. sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
  868. slavio_irq[5]);
  869. }
  870. if (hwdef->dbri_base) {
  871. /* ISDN chip with attached CS4215 audio codec */
  872. /* prom space */
  873. create_unimplemented_device("SUNW,DBRI.prom",
  874. hwdef->dbri_base + 0x1000, 0x30);
  875. /* reg space */
  876. create_unimplemented_device("SUNW,DBRI",
  877. hwdef->dbri_base + 0x10000, 0x100);
  878. }
  879. if (hwdef->bpp_base) {
  880. /* parallel port */
  881. create_unimplemented_device("SUNW,bpp", hwdef->bpp_base, 0x20);
  882. }
  883. initrd_size = 0;
  884. kernel_size = sun4m_load_kernel(machine->kernel_filename,
  885. machine->initrd_filename,
  886. machine->ram_size, &initrd_size);
  887. nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
  888. machine->boot_order, machine->ram_size, kernel_size,
  889. graphic_width, graphic_height, graphic_depth,
  890. hwdef->nvram_machine_id, "Sun4m");
  891. if (hwdef->ecc_base)
  892. ecc_init(hwdef->ecc_base, slavio_irq[28],
  893. hwdef->ecc_version);
  894. dev = qdev_new(TYPE_FW_CFG_MEM);
  895. fw_cfg = FW_CFG(dev);
  896. qdev_prop_set_uint32(dev, "data_width", 1);
  897. qdev_prop_set_bit(dev, "dma_enabled", false);
  898. object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
  899. OBJECT(fw_cfg));
  900. s = SYS_BUS_DEVICE(dev);
  901. sysbus_realize_and_unref(s, &error_fatal);
  902. sysbus_mmio_map(s, 0, CFG_ADDR);
  903. sysbus_mmio_map(s, 1, CFG_ADDR + 2);
  904. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
  905. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
  906. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
  907. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  908. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
  909. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
  910. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
  911. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
  912. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  913. if (machine->kernel_cmdline) {
  914. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
  915. pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
  916. machine->kernel_cmdline);
  917. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
  918. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  919. strlen(machine->kernel_cmdline) + 1);
  920. } else {
  921. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
  922. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  923. }
  924. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
  925. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  926. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
  927. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  928. }
  929. enum {
  930. ss5_id = 32,
  931. vger_id,
  932. lx_id,
  933. ss4_id,
  934. scls_id,
  935. sbook_id,
  936. ss10_id = 64,
  937. ss20_id,
  938. ss600mp_id,
  939. };
  940. static const struct sun4m_hwdef sun4m_hwdefs[] = {
  941. /* SS-5 */
  942. {
  943. .iommu_base = 0x10000000,
  944. .iommu_pad_base = 0x10004000,
  945. .iommu_pad_len = 0x0fffb000,
  946. .tcx_base = 0x50000000,
  947. .cs_base = 0x6c000000,
  948. .slavio_base = 0x70000000,
  949. .ms_kb_base = 0x71000000,
  950. .serial_base = 0x71100000,
  951. .nvram_base = 0x71200000,
  952. .fd_base = 0x71400000,
  953. .counter_base = 0x71d00000,
  954. .intctl_base = 0x71e00000,
  955. .idreg_base = 0x78000000,
  956. .dma_base = 0x78400000,
  957. .esp_base = 0x78800000,
  958. .le_base = 0x78c00000,
  959. .apc_base = 0x6a000000,
  960. .afx_base = 0x6e000000,
  961. .aux1_base = 0x71900000,
  962. .aux2_base = 0x71910000,
  963. .nvram_machine_id = 0x80,
  964. .machine_id = ss5_id,
  965. .iommu_version = 0x05000000,
  966. .max_mem = 0x10000000,
  967. },
  968. /* SS-10 */
  969. {
  970. .iommu_base = 0xfe0000000ULL,
  971. .tcx_base = 0xe20000000ULL,
  972. .slavio_base = 0xff0000000ULL,
  973. .ms_kb_base = 0xff1000000ULL,
  974. .serial_base = 0xff1100000ULL,
  975. .nvram_base = 0xff1200000ULL,
  976. .fd_base = 0xff1700000ULL,
  977. .counter_base = 0xff1300000ULL,
  978. .intctl_base = 0xff1400000ULL,
  979. .idreg_base = 0xef0000000ULL,
  980. .dma_base = 0xef0400000ULL,
  981. .esp_base = 0xef0800000ULL,
  982. .le_base = 0xef0c00000ULL,
  983. .apc_base = 0xefa000000ULL, // XXX should not exist
  984. .aux1_base = 0xff1800000ULL,
  985. .aux2_base = 0xff1a01000ULL,
  986. .ecc_base = 0xf00000000ULL,
  987. .ecc_version = 0x10000000, // version 0, implementation 1
  988. .nvram_machine_id = 0x72,
  989. .machine_id = ss10_id,
  990. .iommu_version = 0x03000000,
  991. .max_mem = 0xf00000000ULL,
  992. },
  993. /* SS-600MP */
  994. {
  995. .iommu_base = 0xfe0000000ULL,
  996. .tcx_base = 0xe20000000ULL,
  997. .slavio_base = 0xff0000000ULL,
  998. .ms_kb_base = 0xff1000000ULL,
  999. .serial_base = 0xff1100000ULL,
  1000. .nvram_base = 0xff1200000ULL,
  1001. .counter_base = 0xff1300000ULL,
  1002. .intctl_base = 0xff1400000ULL,
  1003. .dma_base = 0xef0081000ULL,
  1004. .esp_base = 0xef0080000ULL,
  1005. .le_base = 0xef0060000ULL,
  1006. .apc_base = 0xefa000000ULL, // XXX should not exist
  1007. .aux1_base = 0xff1800000ULL,
  1008. .aux2_base = 0xff1a01000ULL, // XXX should not exist
  1009. .ecc_base = 0xf00000000ULL,
  1010. .ecc_version = 0x00000000, // version 0, implementation 0
  1011. .nvram_machine_id = 0x71,
  1012. .machine_id = ss600mp_id,
  1013. .iommu_version = 0x01000000,
  1014. .max_mem = 0xf00000000ULL,
  1015. },
  1016. /* SS-20 */
  1017. {
  1018. .iommu_base = 0xfe0000000ULL,
  1019. .tcx_base = 0xe20000000ULL,
  1020. .slavio_base = 0xff0000000ULL,
  1021. .ms_kb_base = 0xff1000000ULL,
  1022. .serial_base = 0xff1100000ULL,
  1023. .nvram_base = 0xff1200000ULL,
  1024. .fd_base = 0xff1700000ULL,
  1025. .counter_base = 0xff1300000ULL,
  1026. .intctl_base = 0xff1400000ULL,
  1027. .idreg_base = 0xef0000000ULL,
  1028. .dma_base = 0xef0400000ULL,
  1029. .esp_base = 0xef0800000ULL,
  1030. .le_base = 0xef0c00000ULL,
  1031. .bpp_base = 0xef4800000ULL,
  1032. .apc_base = 0xefa000000ULL, // XXX should not exist
  1033. .aux1_base = 0xff1800000ULL,
  1034. .aux2_base = 0xff1a01000ULL,
  1035. .dbri_base = 0xee0000000ULL,
  1036. .sx_base = 0xf80000000ULL,
  1037. .vsimm = {
  1038. {
  1039. .reg_base = 0x9c000000ULL,
  1040. .vram_base = 0xfc000000ULL
  1041. }, {
  1042. .reg_base = 0x90000000ULL,
  1043. .vram_base = 0xf0000000ULL
  1044. }, {
  1045. .reg_base = 0x94000000ULL
  1046. }, {
  1047. .reg_base = 0x98000000ULL
  1048. }
  1049. },
  1050. .ecc_base = 0xf00000000ULL,
  1051. .ecc_version = 0x20000000, // version 0, implementation 2
  1052. .nvram_machine_id = 0x72,
  1053. .machine_id = ss20_id,
  1054. .iommu_version = 0x13000000,
  1055. .max_mem = 0xf00000000ULL,
  1056. },
  1057. /* Voyager */
  1058. {
  1059. .iommu_base = 0x10000000,
  1060. .tcx_base = 0x50000000,
  1061. .slavio_base = 0x70000000,
  1062. .ms_kb_base = 0x71000000,
  1063. .serial_base = 0x71100000,
  1064. .nvram_base = 0x71200000,
  1065. .fd_base = 0x71400000,
  1066. .counter_base = 0x71d00000,
  1067. .intctl_base = 0x71e00000,
  1068. .idreg_base = 0x78000000,
  1069. .dma_base = 0x78400000,
  1070. .esp_base = 0x78800000,
  1071. .le_base = 0x78c00000,
  1072. .apc_base = 0x71300000, // pmc
  1073. .aux1_base = 0x71900000,
  1074. .aux2_base = 0x71910000,
  1075. .nvram_machine_id = 0x80,
  1076. .machine_id = vger_id,
  1077. .iommu_version = 0x05000000,
  1078. .max_mem = 0x10000000,
  1079. },
  1080. /* LX */
  1081. {
  1082. .iommu_base = 0x10000000,
  1083. .iommu_pad_base = 0x10004000,
  1084. .iommu_pad_len = 0x0fffb000,
  1085. .tcx_base = 0x50000000,
  1086. .slavio_base = 0x70000000,
  1087. .ms_kb_base = 0x71000000,
  1088. .serial_base = 0x71100000,
  1089. .nvram_base = 0x71200000,
  1090. .fd_base = 0x71400000,
  1091. .counter_base = 0x71d00000,
  1092. .intctl_base = 0x71e00000,
  1093. .idreg_base = 0x78000000,
  1094. .dma_base = 0x78400000,
  1095. .esp_base = 0x78800000,
  1096. .le_base = 0x78c00000,
  1097. .aux1_base = 0x71900000,
  1098. .aux2_base = 0x71910000,
  1099. .nvram_machine_id = 0x80,
  1100. .machine_id = lx_id,
  1101. .iommu_version = 0x04000000,
  1102. .max_mem = 0x10000000,
  1103. },
  1104. /* SS-4 */
  1105. {
  1106. .iommu_base = 0x10000000,
  1107. .tcx_base = 0x50000000,
  1108. .cs_base = 0x6c000000,
  1109. .slavio_base = 0x70000000,
  1110. .ms_kb_base = 0x71000000,
  1111. .serial_base = 0x71100000,
  1112. .nvram_base = 0x71200000,
  1113. .fd_base = 0x71400000,
  1114. .counter_base = 0x71d00000,
  1115. .intctl_base = 0x71e00000,
  1116. .idreg_base = 0x78000000,
  1117. .dma_base = 0x78400000,
  1118. .esp_base = 0x78800000,
  1119. .le_base = 0x78c00000,
  1120. .apc_base = 0x6a000000,
  1121. .aux1_base = 0x71900000,
  1122. .aux2_base = 0x71910000,
  1123. .nvram_machine_id = 0x80,
  1124. .machine_id = ss4_id,
  1125. .iommu_version = 0x05000000,
  1126. .max_mem = 0x10000000,
  1127. },
  1128. /* SPARCClassic */
  1129. {
  1130. .iommu_base = 0x10000000,
  1131. .tcx_base = 0x50000000,
  1132. .slavio_base = 0x70000000,
  1133. .ms_kb_base = 0x71000000,
  1134. .serial_base = 0x71100000,
  1135. .nvram_base = 0x71200000,
  1136. .fd_base = 0x71400000,
  1137. .counter_base = 0x71d00000,
  1138. .intctl_base = 0x71e00000,
  1139. .idreg_base = 0x78000000,
  1140. .dma_base = 0x78400000,
  1141. .esp_base = 0x78800000,
  1142. .le_base = 0x78c00000,
  1143. .apc_base = 0x6a000000,
  1144. .aux1_base = 0x71900000,
  1145. .aux2_base = 0x71910000,
  1146. .nvram_machine_id = 0x80,
  1147. .machine_id = scls_id,
  1148. .iommu_version = 0x05000000,
  1149. .max_mem = 0x10000000,
  1150. },
  1151. /* SPARCbook */
  1152. {
  1153. .iommu_base = 0x10000000,
  1154. .tcx_base = 0x50000000, // XXX
  1155. .slavio_base = 0x70000000,
  1156. .ms_kb_base = 0x71000000,
  1157. .serial_base = 0x71100000,
  1158. .nvram_base = 0x71200000,
  1159. .fd_base = 0x71400000,
  1160. .counter_base = 0x71d00000,
  1161. .intctl_base = 0x71e00000,
  1162. .idreg_base = 0x78000000,
  1163. .dma_base = 0x78400000,
  1164. .esp_base = 0x78800000,
  1165. .le_base = 0x78c00000,
  1166. .apc_base = 0x6a000000,
  1167. .aux1_base = 0x71900000,
  1168. .aux2_base = 0x71910000,
  1169. .nvram_machine_id = 0x80,
  1170. .machine_id = sbook_id,
  1171. .iommu_version = 0x05000000,
  1172. .max_mem = 0x10000000,
  1173. },
  1174. };
  1175. /* SPARCstation 5 hardware initialisation */
  1176. static void ss5_init(MachineState *machine)
  1177. {
  1178. sun4m_hw_init(&sun4m_hwdefs[0], machine);
  1179. }
  1180. /* SPARCstation 10 hardware initialisation */
  1181. static void ss10_init(MachineState *machine)
  1182. {
  1183. sun4m_hw_init(&sun4m_hwdefs[1], machine);
  1184. }
  1185. /* SPARCserver 600MP hardware initialisation */
  1186. static void ss600mp_init(MachineState *machine)
  1187. {
  1188. sun4m_hw_init(&sun4m_hwdefs[2], machine);
  1189. }
  1190. /* SPARCstation 20 hardware initialisation */
  1191. static void ss20_init(MachineState *machine)
  1192. {
  1193. sun4m_hw_init(&sun4m_hwdefs[3], machine);
  1194. }
  1195. /* SPARCstation Voyager hardware initialisation */
  1196. static void vger_init(MachineState *machine)
  1197. {
  1198. sun4m_hw_init(&sun4m_hwdefs[4], machine);
  1199. }
  1200. /* SPARCstation LX hardware initialisation */
  1201. static void ss_lx_init(MachineState *machine)
  1202. {
  1203. sun4m_hw_init(&sun4m_hwdefs[5], machine);
  1204. }
  1205. /* SPARCstation 4 hardware initialisation */
  1206. static void ss4_init(MachineState *machine)
  1207. {
  1208. sun4m_hw_init(&sun4m_hwdefs[6], machine);
  1209. }
  1210. /* SPARCClassic hardware initialisation */
  1211. static void scls_init(MachineState *machine)
  1212. {
  1213. sun4m_hw_init(&sun4m_hwdefs[7], machine);
  1214. }
  1215. /* SPARCbook hardware initialisation */
  1216. static void sbook_init(MachineState *machine)
  1217. {
  1218. sun4m_hw_init(&sun4m_hwdefs[8], machine);
  1219. }
  1220. static void ss5_class_init(ObjectClass *oc, void *data)
  1221. {
  1222. MachineClass *mc = MACHINE_CLASS(oc);
  1223. mc->desc = "Sun4m platform, SPARCstation 5";
  1224. mc->init = ss5_init;
  1225. mc->block_default_type = IF_SCSI;
  1226. mc->is_default = true;
  1227. mc->default_boot_order = "c";
  1228. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1229. mc->default_display = "tcx";
  1230. mc->default_ram_id = "sun4m.ram";
  1231. }
  1232. static const TypeInfo ss5_type = {
  1233. .name = MACHINE_TYPE_NAME("SS-5"),
  1234. .parent = TYPE_MACHINE,
  1235. .class_init = ss5_class_init,
  1236. };
  1237. static void ss10_class_init(ObjectClass *oc, void *data)
  1238. {
  1239. MachineClass *mc = MACHINE_CLASS(oc);
  1240. mc->desc = "Sun4m platform, SPARCstation 10";
  1241. mc->init = ss10_init;
  1242. mc->block_default_type = IF_SCSI;
  1243. mc->max_cpus = 4;
  1244. mc->default_boot_order = "c";
  1245. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1246. mc->default_display = "tcx";
  1247. mc->default_ram_id = "sun4m.ram";
  1248. }
  1249. static const TypeInfo ss10_type = {
  1250. .name = MACHINE_TYPE_NAME("SS-10"),
  1251. .parent = TYPE_MACHINE,
  1252. .class_init = ss10_class_init,
  1253. };
  1254. static void ss600mp_class_init(ObjectClass *oc, void *data)
  1255. {
  1256. MachineClass *mc = MACHINE_CLASS(oc);
  1257. mc->desc = "Sun4m platform, SPARCserver 600MP";
  1258. mc->init = ss600mp_init;
  1259. mc->block_default_type = IF_SCSI;
  1260. mc->max_cpus = 4;
  1261. mc->default_boot_order = "c";
  1262. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1263. mc->default_display = "tcx";
  1264. mc->default_ram_id = "sun4m.ram";
  1265. }
  1266. static const TypeInfo ss600mp_type = {
  1267. .name = MACHINE_TYPE_NAME("SS-600MP"),
  1268. .parent = TYPE_MACHINE,
  1269. .class_init = ss600mp_class_init,
  1270. };
  1271. static void ss20_class_init(ObjectClass *oc, void *data)
  1272. {
  1273. MachineClass *mc = MACHINE_CLASS(oc);
  1274. mc->desc = "Sun4m platform, SPARCstation 20";
  1275. mc->init = ss20_init;
  1276. mc->block_default_type = IF_SCSI;
  1277. mc->max_cpus = 4;
  1278. mc->default_boot_order = "c";
  1279. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1280. mc->default_display = "tcx";
  1281. mc->default_ram_id = "sun4m.ram";
  1282. }
  1283. static const TypeInfo ss20_type = {
  1284. .name = MACHINE_TYPE_NAME("SS-20"),
  1285. .parent = TYPE_MACHINE,
  1286. .class_init = ss20_class_init,
  1287. };
  1288. static void voyager_class_init(ObjectClass *oc, void *data)
  1289. {
  1290. MachineClass *mc = MACHINE_CLASS(oc);
  1291. mc->desc = "Sun4m platform, SPARCstation Voyager";
  1292. mc->init = vger_init;
  1293. mc->block_default_type = IF_SCSI;
  1294. mc->default_boot_order = "c";
  1295. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1296. mc->default_display = "tcx";
  1297. mc->default_ram_id = "sun4m.ram";
  1298. }
  1299. static const TypeInfo voyager_type = {
  1300. .name = MACHINE_TYPE_NAME("Voyager"),
  1301. .parent = TYPE_MACHINE,
  1302. .class_init = voyager_class_init,
  1303. };
  1304. static void ss_lx_class_init(ObjectClass *oc, void *data)
  1305. {
  1306. MachineClass *mc = MACHINE_CLASS(oc);
  1307. mc->desc = "Sun4m platform, SPARCstation LX";
  1308. mc->init = ss_lx_init;
  1309. mc->block_default_type = IF_SCSI;
  1310. mc->default_boot_order = "c";
  1311. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1312. mc->default_display = "tcx";
  1313. mc->default_ram_id = "sun4m.ram";
  1314. }
  1315. static const TypeInfo ss_lx_type = {
  1316. .name = MACHINE_TYPE_NAME("LX"),
  1317. .parent = TYPE_MACHINE,
  1318. .class_init = ss_lx_class_init,
  1319. };
  1320. static void ss4_class_init(ObjectClass *oc, void *data)
  1321. {
  1322. MachineClass *mc = MACHINE_CLASS(oc);
  1323. mc->desc = "Sun4m platform, SPARCstation 4";
  1324. mc->init = ss4_init;
  1325. mc->block_default_type = IF_SCSI;
  1326. mc->default_boot_order = "c";
  1327. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1328. mc->default_display = "tcx";
  1329. mc->default_ram_id = "sun4m.ram";
  1330. }
  1331. static const TypeInfo ss4_type = {
  1332. .name = MACHINE_TYPE_NAME("SS-4"),
  1333. .parent = TYPE_MACHINE,
  1334. .class_init = ss4_class_init,
  1335. };
  1336. static void scls_class_init(ObjectClass *oc, void *data)
  1337. {
  1338. MachineClass *mc = MACHINE_CLASS(oc);
  1339. mc->desc = "Sun4m platform, SPARCClassic";
  1340. mc->init = scls_init;
  1341. mc->block_default_type = IF_SCSI;
  1342. mc->default_boot_order = "c";
  1343. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1344. mc->default_display = "tcx";
  1345. mc->default_ram_id = "sun4m.ram";
  1346. }
  1347. static const TypeInfo scls_type = {
  1348. .name = MACHINE_TYPE_NAME("SPARCClassic"),
  1349. .parent = TYPE_MACHINE,
  1350. .class_init = scls_class_init,
  1351. };
  1352. static void sbook_class_init(ObjectClass *oc, void *data)
  1353. {
  1354. MachineClass *mc = MACHINE_CLASS(oc);
  1355. mc->desc = "Sun4m platform, SPARCbook";
  1356. mc->init = sbook_init;
  1357. mc->block_default_type = IF_SCSI;
  1358. mc->default_boot_order = "c";
  1359. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1360. mc->default_display = "tcx";
  1361. mc->default_ram_id = "sun4m.ram";
  1362. }
  1363. static const TypeInfo sbook_type = {
  1364. .name = MACHINE_TYPE_NAME("SPARCbook"),
  1365. .parent = TYPE_MACHINE,
  1366. .class_init = sbook_class_init,
  1367. };
  1368. static void sun4m_register_types(void)
  1369. {
  1370. type_register_static(&idreg_info);
  1371. type_register_static(&afx_info);
  1372. type_register_static(&prom_info);
  1373. type_register_static(&ram_info);
  1374. type_register_static(&ss5_type);
  1375. type_register_static(&ss10_type);
  1376. type_register_static(&ss600mp_type);
  1377. type_register_static(&ss20_type);
  1378. type_register_static(&voyager_type);
  1379. type_register_static(&ss_lx_type);
  1380. type_register_static(&ss4_type);
  1381. type_register_static(&scls_type);
  1382. type_register_static(&sbook_type);
  1383. }
  1384. type_init(sun4m_register_types)