microchip_pfsoc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /*
  2. * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
  3. *
  4. * Copyright (c) 2020 Wind River Systems, Inc.
  5. *
  6. * Author:
  7. * Bin Meng <bin.meng@windriver.com>
  8. *
  9. * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
  10. *
  11. * 0) CLINT (Core Level Interruptor)
  12. * 1) PLIC (Platform Level Interrupt Controller)
  13. * 2) eNVM (Embedded Non-Volatile Memory)
  14. * 3) MMUARTs (Multi-Mode UART)
  15. * 4) Cadence eMMC/SDHC controller and an SD card connected to it
  16. * 5) SiFive Platform DMA (Direct Memory Access Controller)
  17. * 6) GEM (Gigabit Ethernet MAC Controller)
  18. *
  19. * This board currently generates devicetree dynamically that indicates at least
  20. * two harts and up to five harts.
  21. *
  22. * This program is free software; you can redistribute it and/or modify it
  23. * under the terms and conditions of the GNU General Public License,
  24. * version 2 or later, as published by the Free Software Foundation.
  25. *
  26. * This program is distributed in the hope it will be useful, but WITHOUT
  27. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  28. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  29. * more details.
  30. *
  31. * You should have received a copy of the GNU General Public License along with
  32. * this program. If not, see <http://www.gnu.org/licenses/>.
  33. */
  34. #include "qemu/osdep.h"
  35. #include "qemu/error-report.h"
  36. #include "qemu/log.h"
  37. #include "qemu/units.h"
  38. #include "qemu/cutils.h"
  39. #include "qapi/error.h"
  40. #include "hw/boards.h"
  41. #include "hw/irq.h"
  42. #include "hw/loader.h"
  43. #include "hw/sysbus.h"
  44. #include "chardev/char.h"
  45. #include "hw/cpu/cluster.h"
  46. #include "target/riscv/cpu.h"
  47. #include "hw/misc/unimp.h"
  48. #include "hw/riscv/boot.h"
  49. #include "hw/riscv/riscv_hart.h"
  50. #include "hw/riscv/microchip_pfsoc.h"
  51. #include "hw/intc/sifive_clint.h"
  52. #include "hw/intc/sifive_plic.h"
  53. #include "sysemu/sysemu.h"
  54. /*
  55. * The BIOS image used by this machine is called Hart Software Services (HSS).
  56. * See https://github.com/polarfire-soc/hart-software-services
  57. */
  58. #define BIOS_FILENAME "hss.bin"
  59. #define RESET_VECTOR 0x20220000
  60. /* CLINT timebase frequency */
  61. #define CLINT_TIMEBASE_FREQ 1000000
  62. /* GEM version */
  63. #define GEM_REVISION 0x0107010c
  64. static const struct MemmapEntry {
  65. hwaddr base;
  66. hwaddr size;
  67. } microchip_pfsoc_memmap[] = {
  68. [MICROCHIP_PFSOC_DEBUG] = { 0x0, 0x1000 },
  69. [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
  70. [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
  71. [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
  72. [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
  73. [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
  74. [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
  75. [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
  76. [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
  77. [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
  78. [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
  79. [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
  80. [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
  81. [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
  82. [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
  83. [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
  84. [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
  85. [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
  86. [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
  87. [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
  88. [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
  89. [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
  90. [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
  91. [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
  92. [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
  93. [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
  94. [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
  95. [MICROCHIP_PFSOC_IOSCB_CFG] = { 0x37080000, 0x1000 },
  96. [MICROCHIP_PFSOC_DRAM] = { 0x80000000, 0x0 },
  97. };
  98. static void microchip_pfsoc_soc_instance_init(Object *obj)
  99. {
  100. MachineState *ms = MACHINE(qdev_get_machine());
  101. MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
  102. object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
  103. qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
  104. object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
  105. TYPE_RISCV_HART_ARRAY);
  106. qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
  107. qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
  108. qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
  109. TYPE_RISCV_CPU_SIFIVE_E51);
  110. qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
  111. object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
  112. qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
  113. object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
  114. TYPE_RISCV_HART_ARRAY);
  115. qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
  116. qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
  117. qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
  118. TYPE_RISCV_CPU_SIFIVE_U54);
  119. qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
  120. object_initialize_child(obj, "dma-controller", &s->dma,
  121. TYPE_SIFIVE_PDMA);
  122. object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
  123. object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
  124. object_initialize_child(obj, "sd-controller", &s->sdhci,
  125. TYPE_CADENCE_SDHCI);
  126. }
  127. static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
  128. {
  129. MachineState *ms = MACHINE(qdev_get_machine());
  130. MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
  131. const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
  132. MemoryRegion *system_memory = get_system_memory();
  133. MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
  134. MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
  135. MemoryRegion *envm_data = g_new(MemoryRegion, 1);
  136. char *plic_hart_config;
  137. size_t plic_hart_config_len;
  138. NICInfo *nd;
  139. int i;
  140. sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
  141. sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
  142. /*
  143. * The cluster must be realized after the RISC-V hart array container,
  144. * as the container's CPU object is only created on realize, and the
  145. * CPU must exist and have been parented into the cluster before the
  146. * cluster is realized.
  147. */
  148. qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
  149. qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
  150. /* E51 DTIM */
  151. memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
  152. memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
  153. memory_region_add_subregion(system_memory,
  154. memmap[MICROCHIP_PFSOC_E51_DTIM].base,
  155. e51_dtim_mem);
  156. /* Bus Error Units */
  157. create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
  158. memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
  159. memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
  160. create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
  161. memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
  162. memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
  163. create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
  164. memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
  165. memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
  166. create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
  167. memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
  168. memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
  169. create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
  170. memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
  171. memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
  172. /* CLINT */
  173. sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base,
  174. memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus,
  175. SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
  176. CLINT_TIMEBASE_FREQ, false);
  177. /* L2 cache controller */
  178. create_unimplemented_device("microchip.pfsoc.l2cc",
  179. memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
  180. /*
  181. * Add L2-LIM at reset size.
  182. * This should be reduced in size as the L2 Cache Controller WayEnable
  183. * register is incremented. Unfortunately I don't see a nice (or any) way
  184. * to handle reducing or blocking out the L2 LIM while still allowing it
  185. * be re returned to all enabled after a reset. For the time being, just
  186. * leave it enabled all the time. This won't break anything, but will be
  187. * too generous to misbehaving guests.
  188. */
  189. memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
  190. memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
  191. memory_region_add_subregion(system_memory,
  192. memmap[MICROCHIP_PFSOC_L2LIM].base,
  193. l2lim_mem);
  194. /* create PLIC hart topology configuration string */
  195. plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
  196. ms->smp.cpus;
  197. plic_hart_config = g_malloc0(plic_hart_config_len);
  198. for (i = 0; i < ms->smp.cpus; i++) {
  199. if (i != 0) {
  200. strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
  201. plic_hart_config_len);
  202. } else {
  203. strncat(plic_hart_config, "M", plic_hart_config_len);
  204. }
  205. plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
  206. }
  207. /* PLIC */
  208. s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
  209. plic_hart_config, 0,
  210. MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
  211. MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
  212. MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
  213. MICROCHIP_PFSOC_PLIC_PENDING_BASE,
  214. MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
  215. MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
  216. MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
  217. MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
  218. memmap[MICROCHIP_PFSOC_PLIC].size);
  219. g_free(plic_hart_config);
  220. /* DMA */
  221. sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
  222. sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
  223. memmap[MICROCHIP_PFSOC_DMA].base);
  224. for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
  225. sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
  226. qdev_get_gpio_in(DEVICE(s->plic),
  227. MICROCHIP_PFSOC_DMA_IRQ0 + i));
  228. }
  229. /* SYSREG */
  230. create_unimplemented_device("microchip.pfsoc.sysreg",
  231. memmap[MICROCHIP_PFSOC_SYSREG].base,
  232. memmap[MICROCHIP_PFSOC_SYSREG].size);
  233. /* MPUCFG */
  234. create_unimplemented_device("microchip.pfsoc.mpucfg",
  235. memmap[MICROCHIP_PFSOC_MPUCFG].base,
  236. memmap[MICROCHIP_PFSOC_MPUCFG].size);
  237. /* SDHCI */
  238. sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
  239. sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
  240. memmap[MICROCHIP_PFSOC_EMMC_SD].base);
  241. sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
  242. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
  243. /* MMUARTs */
  244. s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
  245. memmap[MICROCHIP_PFSOC_MMUART0].base,
  246. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
  247. serial_hd(0));
  248. s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
  249. memmap[MICROCHIP_PFSOC_MMUART1].base,
  250. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
  251. serial_hd(1));
  252. s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
  253. memmap[MICROCHIP_PFSOC_MMUART2].base,
  254. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
  255. serial_hd(2));
  256. s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
  257. memmap[MICROCHIP_PFSOC_MMUART3].base,
  258. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
  259. serial_hd(3));
  260. s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
  261. memmap[MICROCHIP_PFSOC_MMUART4].base,
  262. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
  263. serial_hd(4));
  264. /* GEMs */
  265. nd = &nd_table[0];
  266. if (nd->used) {
  267. qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
  268. qdev_set_nic_properties(DEVICE(&s->gem0), nd);
  269. }
  270. nd = &nd_table[1];
  271. if (nd->used) {
  272. qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
  273. qdev_set_nic_properties(DEVICE(&s->gem1), nd);
  274. }
  275. object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
  276. object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
  277. sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
  278. sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
  279. memmap[MICROCHIP_PFSOC_GEM0].base);
  280. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
  281. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
  282. object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
  283. object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
  284. sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
  285. sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
  286. memmap[MICROCHIP_PFSOC_GEM1].base);
  287. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
  288. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
  289. /* GPIOs */
  290. create_unimplemented_device("microchip.pfsoc.gpio0",
  291. memmap[MICROCHIP_PFSOC_GPIO0].base,
  292. memmap[MICROCHIP_PFSOC_GPIO0].size);
  293. create_unimplemented_device("microchip.pfsoc.gpio1",
  294. memmap[MICROCHIP_PFSOC_GPIO1].base,
  295. memmap[MICROCHIP_PFSOC_GPIO1].size);
  296. create_unimplemented_device("microchip.pfsoc.gpio2",
  297. memmap[MICROCHIP_PFSOC_GPIO2].base,
  298. memmap[MICROCHIP_PFSOC_GPIO2].size);
  299. /* eNVM */
  300. memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
  301. memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
  302. &error_fatal);
  303. memory_region_add_subregion(system_memory,
  304. memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
  305. envm_data);
  306. /* IOSCBCFG */
  307. create_unimplemented_device("microchip.pfsoc.ioscb.cfg",
  308. memmap[MICROCHIP_PFSOC_IOSCB_CFG].base,
  309. memmap[MICROCHIP_PFSOC_IOSCB_CFG].size);
  310. }
  311. static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
  312. {
  313. DeviceClass *dc = DEVICE_CLASS(oc);
  314. dc->realize = microchip_pfsoc_soc_realize;
  315. /* Reason: Uses serial_hds in realize function, thus can't be used twice */
  316. dc->user_creatable = false;
  317. }
  318. static const TypeInfo microchip_pfsoc_soc_type_info = {
  319. .name = TYPE_MICROCHIP_PFSOC,
  320. .parent = TYPE_DEVICE,
  321. .instance_size = sizeof(MicrochipPFSoCState),
  322. .instance_init = microchip_pfsoc_soc_instance_init,
  323. .class_init = microchip_pfsoc_soc_class_init,
  324. };
  325. static void microchip_pfsoc_soc_register_types(void)
  326. {
  327. type_register_static(&microchip_pfsoc_soc_type_info);
  328. }
  329. type_init(microchip_pfsoc_soc_register_types)
  330. static void microchip_icicle_kit_machine_init(MachineState *machine)
  331. {
  332. MachineClass *mc = MACHINE_GET_CLASS(machine);
  333. const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
  334. MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
  335. MemoryRegion *system_memory = get_system_memory();
  336. MemoryRegion *main_mem = g_new(MemoryRegion, 1);
  337. DriveInfo *dinfo = drive_get_next(IF_SD);
  338. /* Sanity check on RAM size */
  339. if (machine->ram_size < mc->default_ram_size) {
  340. char *sz = size_to_str(mc->default_ram_size);
  341. error_report("Invalid RAM size, should be bigger than %s", sz);
  342. g_free(sz);
  343. exit(EXIT_FAILURE);
  344. }
  345. /* Initialize SoC */
  346. object_initialize_child(OBJECT(machine), "soc", &s->soc,
  347. TYPE_MICROCHIP_PFSOC);
  348. qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
  349. /* Register RAM */
  350. memory_region_init_ram(main_mem, NULL, "microchip.icicle.kit.ram",
  351. machine->ram_size, &error_fatal);
  352. memory_region_add_subregion(system_memory,
  353. memmap[MICROCHIP_PFSOC_DRAM].base, main_mem);
  354. /* Load the firmware */
  355. riscv_find_and_load_firmware(machine, BIOS_FILENAME, RESET_VECTOR, NULL);
  356. /* Attach an SD card */
  357. if (dinfo) {
  358. CadenceSDHCIState *sdhci = &(s->soc.sdhci);
  359. DeviceState *card = qdev_new(TYPE_SD_CARD);
  360. qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
  361. &error_fatal);
  362. qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
  363. }
  364. }
  365. static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
  366. {
  367. MachineClass *mc = MACHINE_CLASS(oc);
  368. mc->desc = "Microchip PolarFire SoC Icicle Kit";
  369. mc->init = microchip_icicle_kit_machine_init;
  370. mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
  371. MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
  372. mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
  373. mc->default_cpus = mc->min_cpus;
  374. mc->default_ram_size = 1 * GiB;
  375. }
  376. static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
  377. .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
  378. .parent = TYPE_MACHINE,
  379. .class_init = microchip_icicle_kit_machine_class_init,
  380. .instance_size = sizeof(MicrochipIcicleKitState),
  381. };
  382. static void microchip_icicle_kit_machine_init_register_types(void)
  383. {
  384. type_register_static(&microchip_icicle_kit_machine_typeinfo);
  385. }
  386. type_init(microchip_icicle_kit_machine_init_register_types)