2
0

eccmemctl.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. /*
  2. * QEMU Sparc Sun4m ECC memory controller emulation
  3. *
  4. * Copyright (c) 2007 Robert Reif
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "hw/irq.h"
  26. #include "hw/qdev-properties.h"
  27. #include "hw/sysbus.h"
  28. #include "migration/vmstate.h"
  29. #include "qemu/module.h"
  30. #include "trace.h"
  31. #include "qom/object.h"
  32. /* There are 3 versions of this chip used in SMP sun4m systems:
  33. * MCC (version 0, implementation 0) SS-600MP
  34. * EMC (version 0, implementation 1) SS-10
  35. * SMC (version 0, implementation 2) SS-10SX and SS-20
  36. *
  37. * Chipset docs:
  38. * "Sun-4M System Architecture (revision 2.0) by Chuck Narad", 950-1373-01,
  39. * http://mediacast.sun.com/users/Barton808/media/Sun4M_SystemArchitecture_edited2.pdf
  40. */
  41. #define ECC_MCC 0x00000000
  42. #define ECC_EMC 0x10000000
  43. #define ECC_SMC 0x20000000
  44. /* Register indexes */
  45. #define ECC_MER 0 /* Memory Enable Register */
  46. #define ECC_MDR 1 /* Memory Delay Register */
  47. #define ECC_MFSR 2 /* Memory Fault Status Register */
  48. #define ECC_VCR 3 /* Video Configuration Register */
  49. #define ECC_MFAR0 4 /* Memory Fault Address Register 0 */
  50. #define ECC_MFAR1 5 /* Memory Fault Address Register 1 */
  51. #define ECC_DR 6 /* Diagnostic Register */
  52. #define ECC_ECR0 7 /* Event Count Register 0 */
  53. #define ECC_ECR1 8 /* Event Count Register 1 */
  54. /* ECC fault control register */
  55. #define ECC_MER_EE 0x00000001 /* Enable ECC checking */
  56. #define ECC_MER_EI 0x00000002 /* Enable Interrupts on
  57. correctable errors */
  58. #define ECC_MER_MRR0 0x00000004 /* SIMM 0 */
  59. #define ECC_MER_MRR1 0x00000008 /* SIMM 1 */
  60. #define ECC_MER_MRR2 0x00000010 /* SIMM 2 */
  61. #define ECC_MER_MRR3 0x00000020 /* SIMM 3 */
  62. #define ECC_MER_MRR4 0x00000040 /* SIMM 4 */
  63. #define ECC_MER_MRR5 0x00000080 /* SIMM 5 */
  64. #define ECC_MER_MRR6 0x00000100 /* SIMM 6 */
  65. #define ECC_MER_MRR7 0x00000200 /* SIMM 7 */
  66. #define ECC_MER_REU 0x00000100 /* Memory Refresh Enable (600MP) */
  67. #define ECC_MER_MRR 0x000003fc /* MRR mask */
  68. #define ECC_MER_A 0x00000400 /* Memory controller addr map select */
  69. #define ECC_MER_DCI 0x00000800 /* Disables Coherent Invalidate ACK */
  70. #define ECC_MER_VER 0x0f000000 /* Version */
  71. #define ECC_MER_IMPL 0xf0000000 /* Implementation */
  72. #define ECC_MER_MASK_0 0x00000103 /* Version 0 (MCC) mask */
  73. #define ECC_MER_MASK_1 0x00000bff /* Version 1 (EMC) mask */
  74. #define ECC_MER_MASK_2 0x00000bff /* Version 2 (SMC) mask */
  75. /* ECC memory delay register */
  76. #define ECC_MDR_RRI 0x000003ff /* Refresh Request Interval */
  77. #define ECC_MDR_MI 0x00001c00 /* MIH Delay */
  78. #define ECC_MDR_CI 0x0000e000 /* Coherent Invalidate Delay */
  79. #define ECC_MDR_MDL 0x001f0000 /* MBus Master arbitration delay */
  80. #define ECC_MDR_MDH 0x03e00000 /* MBus Master arbitration delay */
  81. #define ECC_MDR_GAD 0x7c000000 /* Graphics Arbitration Delay */
  82. #define ECC_MDR_RSC 0x80000000 /* Refresh load control */
  83. #define ECC_MDR_MASK 0x7fffffff
  84. /* ECC fault status register */
  85. #define ECC_MFSR_CE 0x00000001 /* Correctable error */
  86. #define ECC_MFSR_BS 0x00000002 /* C2 graphics bad slot access */
  87. #define ECC_MFSR_TO 0x00000004 /* Timeout on write */
  88. #define ECC_MFSR_UE 0x00000008 /* Uncorrectable error */
  89. #define ECC_MFSR_DW 0x000000f0 /* Index of double word in block */
  90. #define ECC_MFSR_SYND 0x0000ff00 /* Syndrome for correctable error */
  91. #define ECC_MFSR_ME 0x00010000 /* Multiple errors */
  92. #define ECC_MFSR_C2ERR 0x00020000 /* C2 graphics error */
  93. /* ECC fault address register 0 */
  94. #define ECC_MFAR0_PADDR 0x0000000f /* PA[32-35] */
  95. #define ECC_MFAR0_TYPE 0x000000f0 /* Transaction type */
  96. #define ECC_MFAR0_SIZE 0x00000700 /* Transaction size */
  97. #define ECC_MFAR0_CACHE 0x00000800 /* Mapped cacheable */
  98. #define ECC_MFAR0_LOCK 0x00001000 /* Error occurred in atomic cycle */
  99. #define ECC_MFAR0_BMODE 0x00002000 /* Boot mode */
  100. #define ECC_MFAR0_VADDR 0x003fc000 /* VA[12-19] (superset bits) */
  101. #define ECC_MFAR0_S 0x08000000 /* Supervisor mode */
  102. #define ECC_MFARO_MID 0xf0000000 /* Module ID */
  103. /* ECC diagnostic register */
  104. #define ECC_DR_CBX 0x00000001
  105. #define ECC_DR_CB0 0x00000002
  106. #define ECC_DR_CB1 0x00000004
  107. #define ECC_DR_CB2 0x00000008
  108. #define ECC_DR_CB4 0x00000010
  109. #define ECC_DR_CB8 0x00000020
  110. #define ECC_DR_CB16 0x00000040
  111. #define ECC_DR_CB32 0x00000080
  112. #define ECC_DR_DMODE 0x00000c00
  113. #define ECC_NREGS 9
  114. #define ECC_SIZE (ECC_NREGS * sizeof(uint32_t))
  115. #define ECC_DIAG_SIZE 4
  116. #define ECC_DIAG_MASK (ECC_DIAG_SIZE - 1)
  117. #define TYPE_ECC_MEMCTL "eccmemctl"
  118. OBJECT_DECLARE_SIMPLE_TYPE(ECCState, ECC_MEMCTL)
  119. struct ECCState {
  120. SysBusDevice parent_obj;
  121. MemoryRegion iomem, iomem_diag;
  122. qemu_irq irq;
  123. uint32_t regs[ECC_NREGS];
  124. uint8_t diag[ECC_DIAG_SIZE];
  125. uint32_t version;
  126. };
  127. static void ecc_mem_write(void *opaque, hwaddr addr, uint64_t val,
  128. unsigned size)
  129. {
  130. ECCState *s = opaque;
  131. switch (addr >> 2) {
  132. case ECC_MER:
  133. if (s->version == ECC_MCC)
  134. s->regs[ECC_MER] = (val & ECC_MER_MASK_0);
  135. else if (s->version == ECC_EMC)
  136. s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_1);
  137. else if (s->version == ECC_SMC)
  138. s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_2);
  139. trace_ecc_mem_writel_mer(val);
  140. break;
  141. case ECC_MDR:
  142. s->regs[ECC_MDR] = val & ECC_MDR_MASK;
  143. trace_ecc_mem_writel_mdr(val);
  144. break;
  145. case ECC_MFSR:
  146. s->regs[ECC_MFSR] = val;
  147. qemu_irq_lower(s->irq);
  148. trace_ecc_mem_writel_mfsr(val);
  149. break;
  150. case ECC_VCR:
  151. s->regs[ECC_VCR] = val;
  152. trace_ecc_mem_writel_vcr(val);
  153. break;
  154. case ECC_DR:
  155. s->regs[ECC_DR] = val;
  156. trace_ecc_mem_writel_dr(val);
  157. break;
  158. case ECC_ECR0:
  159. s->regs[ECC_ECR0] = val;
  160. trace_ecc_mem_writel_ecr0(val);
  161. break;
  162. case ECC_ECR1:
  163. s->regs[ECC_ECR0] = val;
  164. trace_ecc_mem_writel_ecr1(val);
  165. break;
  166. }
  167. }
  168. static uint64_t ecc_mem_read(void *opaque, hwaddr addr,
  169. unsigned size)
  170. {
  171. ECCState *s = opaque;
  172. uint32_t ret = 0;
  173. switch (addr >> 2) {
  174. case ECC_MER:
  175. ret = s->regs[ECC_MER];
  176. trace_ecc_mem_readl_mer(ret);
  177. break;
  178. case ECC_MDR:
  179. ret = s->regs[ECC_MDR];
  180. trace_ecc_mem_readl_mdr(ret);
  181. break;
  182. case ECC_MFSR:
  183. ret = s->regs[ECC_MFSR];
  184. trace_ecc_mem_readl_mfsr(ret);
  185. break;
  186. case ECC_VCR:
  187. ret = s->regs[ECC_VCR];
  188. trace_ecc_mem_readl_vcr(ret);
  189. break;
  190. case ECC_MFAR0:
  191. ret = s->regs[ECC_MFAR0];
  192. trace_ecc_mem_readl_mfar0(ret);
  193. break;
  194. case ECC_MFAR1:
  195. ret = s->regs[ECC_MFAR1];
  196. trace_ecc_mem_readl_mfar1(ret);
  197. break;
  198. case ECC_DR:
  199. ret = s->regs[ECC_DR];
  200. trace_ecc_mem_readl_dr(ret);
  201. break;
  202. case ECC_ECR0:
  203. ret = s->regs[ECC_ECR0];
  204. trace_ecc_mem_readl_ecr0(ret);
  205. break;
  206. case ECC_ECR1:
  207. ret = s->regs[ECC_ECR0];
  208. trace_ecc_mem_readl_ecr1(ret);
  209. break;
  210. }
  211. return ret;
  212. }
  213. static const MemoryRegionOps ecc_mem_ops = {
  214. .read = ecc_mem_read,
  215. .write = ecc_mem_write,
  216. .endianness = DEVICE_NATIVE_ENDIAN,
  217. .valid = {
  218. .min_access_size = 4,
  219. .max_access_size = 4,
  220. },
  221. };
  222. static void ecc_diag_mem_write(void *opaque, hwaddr addr,
  223. uint64_t val, unsigned size)
  224. {
  225. ECCState *s = opaque;
  226. trace_ecc_diag_mem_writeb(addr, val);
  227. s->diag[addr & ECC_DIAG_MASK] = val;
  228. }
  229. static uint64_t ecc_diag_mem_read(void *opaque, hwaddr addr,
  230. unsigned size)
  231. {
  232. ECCState *s = opaque;
  233. uint32_t ret = s->diag[(int)addr];
  234. trace_ecc_diag_mem_readb(addr, ret);
  235. return ret;
  236. }
  237. static const MemoryRegionOps ecc_diag_mem_ops = {
  238. .read = ecc_diag_mem_read,
  239. .write = ecc_diag_mem_write,
  240. .endianness = DEVICE_NATIVE_ENDIAN,
  241. .valid = {
  242. .min_access_size = 1,
  243. .max_access_size = 1,
  244. },
  245. };
  246. static const VMStateDescription vmstate_ecc = {
  247. .name ="ECC",
  248. .version_id = 3,
  249. .minimum_version_id = 3,
  250. .fields = (VMStateField[]) {
  251. VMSTATE_UINT32_ARRAY(regs, ECCState, ECC_NREGS),
  252. VMSTATE_BUFFER(diag, ECCState),
  253. VMSTATE_UINT32(version, ECCState),
  254. VMSTATE_END_OF_LIST()
  255. }
  256. };
  257. static void ecc_reset(DeviceState *d)
  258. {
  259. ECCState *s = ECC_MEMCTL(d);
  260. if (s->version == ECC_MCC) {
  261. s->regs[ECC_MER] &= ECC_MER_REU;
  262. } else {
  263. s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL | ECC_MER_MRR |
  264. ECC_MER_DCI);
  265. }
  266. s->regs[ECC_MDR] = 0x20;
  267. s->regs[ECC_MFSR] = 0;
  268. s->regs[ECC_VCR] = 0;
  269. s->regs[ECC_MFAR0] = 0x07c00000;
  270. s->regs[ECC_MFAR1] = 0;
  271. s->regs[ECC_DR] = 0;
  272. s->regs[ECC_ECR0] = 0;
  273. s->regs[ECC_ECR1] = 0;
  274. }
  275. static void ecc_init(Object *obj)
  276. {
  277. ECCState *s = ECC_MEMCTL(obj);
  278. SysBusDevice *dev = SYS_BUS_DEVICE(obj);
  279. sysbus_init_irq(dev, &s->irq);
  280. memory_region_init_io(&s->iomem, obj, &ecc_mem_ops, s, "ecc", ECC_SIZE);
  281. sysbus_init_mmio(dev, &s->iomem);
  282. }
  283. static void ecc_realize(DeviceState *dev, Error **errp)
  284. {
  285. ECCState *s = ECC_MEMCTL(dev);
  286. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  287. s->regs[0] = s->version;
  288. if (s->version == ECC_MCC) { // SS-600MP only
  289. memory_region_init_io(&s->iomem_diag, OBJECT(dev), &ecc_diag_mem_ops, s,
  290. "ecc.diag", ECC_DIAG_SIZE);
  291. sysbus_init_mmio(sbd, &s->iomem_diag);
  292. }
  293. }
  294. static Property ecc_properties[] = {
  295. DEFINE_PROP_UINT32("version", ECCState, version, -1),
  296. DEFINE_PROP_END_OF_LIST(),
  297. };
  298. static void ecc_class_init(ObjectClass *klass, void *data)
  299. {
  300. DeviceClass *dc = DEVICE_CLASS(klass);
  301. dc->realize = ecc_realize;
  302. dc->reset = ecc_reset;
  303. dc->vmsd = &vmstate_ecc;
  304. device_class_set_props(dc, ecc_properties);
  305. }
  306. static const TypeInfo ecc_info = {
  307. .name = TYPE_ECC_MEMCTL,
  308. .parent = TYPE_SYS_BUS_DEVICE,
  309. .instance_size = sizeof(ECCState),
  310. .instance_init = ecc_init,
  311. .class_init = ecc_class_init,
  312. };
  313. static void ecc_register_types(void)
  314. {
  315. type_register_static(&ecc_info);
  316. }
  317. type_init(ecc_register_types)