slavio_intctl.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. /*
  2. * QEMU Sparc SLAVIO interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "migration/vmstate.h"
  26. #include "monitor/monitor.h"
  27. #include "qemu/module.h"
  28. #include "hw/sysbus.h"
  29. #include "hw/intc/intc.h"
  30. #include "hw/irq.h"
  31. #include "trace.h"
  32. #include "qom/object.h"
  33. //#define DEBUG_IRQ_COUNT
  34. /*
  35. * Registers of interrupt controller in sun4m.
  36. *
  37. * This is the interrupt controller part of chip STP2001 (Slave I/O), also
  38. * produced as NCR89C105. See
  39. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
  40. *
  41. * There is a system master controller and one for each cpu.
  42. *
  43. */
  44. #define MAX_CPUS 16
  45. #define MAX_PILS 16
  46. struct SLAVIO_INTCTLState;
  47. typedef struct SLAVIO_CPUINTCTLState {
  48. MemoryRegion iomem;
  49. struct SLAVIO_INTCTLState *master;
  50. uint32_t intreg_pending;
  51. uint32_t cpu;
  52. uint32_t irl_out;
  53. } SLAVIO_CPUINTCTLState;
  54. #define TYPE_SLAVIO_INTCTL "slavio_intctl"
  55. OBJECT_DECLARE_SIMPLE_TYPE(SLAVIO_INTCTLState, SLAVIO_INTCTL)
  56. struct SLAVIO_INTCTLState {
  57. SysBusDevice parent_obj;
  58. MemoryRegion iomem;
  59. #ifdef DEBUG_IRQ_COUNT
  60. uint64_t irq_count[32];
  61. #endif
  62. qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
  63. SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
  64. uint32_t intregm_pending;
  65. uint32_t intregm_disabled;
  66. uint32_t target_cpu;
  67. };
  68. #define INTCTL_MAXADDR 0xf
  69. #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
  70. #define INTCTLM_SIZE 0x14
  71. #define MASTER_IRQ_MASK ~0x0fa2007f
  72. #define MASTER_DISABLE 0x80000000
  73. #define CPU_SOFTIRQ_MASK 0xfffe0000
  74. #define CPU_IRQ_INT15_IN (1 << 15)
  75. #define CPU_IRQ_TIMER_IN (1 << 14)
  76. static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
  77. // per-cpu interrupt controller
  78. static uint64_t slavio_intctl_mem_readl(void *opaque, hwaddr addr,
  79. unsigned size)
  80. {
  81. SLAVIO_CPUINTCTLState *s = opaque;
  82. uint32_t saddr, ret;
  83. saddr = addr >> 2;
  84. switch (saddr) {
  85. case 0:
  86. ret = s->intreg_pending;
  87. break;
  88. default:
  89. ret = 0;
  90. break;
  91. }
  92. trace_slavio_intctl_mem_readl(s->cpu, addr, ret);
  93. return ret;
  94. }
  95. static void slavio_intctl_mem_writel(void *opaque, hwaddr addr,
  96. uint64_t val, unsigned size)
  97. {
  98. SLAVIO_CPUINTCTLState *s = opaque;
  99. uint32_t saddr;
  100. saddr = addr >> 2;
  101. trace_slavio_intctl_mem_writel(s->cpu, addr, val);
  102. switch (saddr) {
  103. case 1: // clear pending softints
  104. val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
  105. s->intreg_pending &= ~val;
  106. slavio_check_interrupts(s->master, 1);
  107. trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending);
  108. break;
  109. case 2: // set softint
  110. val &= CPU_SOFTIRQ_MASK;
  111. s->intreg_pending |= val;
  112. slavio_check_interrupts(s->master, 1);
  113. trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending);
  114. break;
  115. default:
  116. break;
  117. }
  118. }
  119. static const MemoryRegionOps slavio_intctl_mem_ops = {
  120. .read = slavio_intctl_mem_readl,
  121. .write = slavio_intctl_mem_writel,
  122. .endianness = DEVICE_NATIVE_ENDIAN,
  123. .valid = {
  124. .min_access_size = 4,
  125. .max_access_size = 4,
  126. },
  127. };
  128. // master system interrupt controller
  129. static uint64_t slavio_intctlm_mem_readl(void *opaque, hwaddr addr,
  130. unsigned size)
  131. {
  132. SLAVIO_INTCTLState *s = opaque;
  133. uint32_t saddr, ret;
  134. saddr = addr >> 2;
  135. switch (saddr) {
  136. case 0:
  137. ret = s->intregm_pending & ~MASTER_DISABLE;
  138. break;
  139. case 1:
  140. ret = s->intregm_disabled & MASTER_IRQ_MASK;
  141. break;
  142. case 4:
  143. ret = s->target_cpu;
  144. break;
  145. default:
  146. ret = 0;
  147. break;
  148. }
  149. trace_slavio_intctlm_mem_readl(addr, ret);
  150. return ret;
  151. }
  152. static void slavio_intctlm_mem_writel(void *opaque, hwaddr addr,
  153. uint64_t val, unsigned size)
  154. {
  155. SLAVIO_INTCTLState *s = opaque;
  156. uint32_t saddr;
  157. saddr = addr >> 2;
  158. trace_slavio_intctlm_mem_writel(addr, val);
  159. switch (saddr) {
  160. case 2: // clear (enable)
  161. // Force clear unused bits
  162. val &= MASTER_IRQ_MASK;
  163. s->intregm_disabled &= ~val;
  164. trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled);
  165. slavio_check_interrupts(s, 1);
  166. break;
  167. case 3: // set (disable; doesn't affect pending)
  168. // Force clear unused bits
  169. val &= MASTER_IRQ_MASK;
  170. s->intregm_disabled |= val;
  171. slavio_check_interrupts(s, 1);
  172. trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled);
  173. break;
  174. case 4:
  175. s->target_cpu = val & (MAX_CPUS - 1);
  176. slavio_check_interrupts(s, 1);
  177. trace_slavio_intctlm_mem_writel_target(s->target_cpu);
  178. break;
  179. default:
  180. break;
  181. }
  182. }
  183. static const MemoryRegionOps slavio_intctlm_mem_ops = {
  184. .read = slavio_intctlm_mem_readl,
  185. .write = slavio_intctlm_mem_writel,
  186. .endianness = DEVICE_NATIVE_ENDIAN,
  187. .valid = {
  188. .min_access_size = 4,
  189. .max_access_size = 4,
  190. },
  191. };
  192. static const uint32_t intbit_to_level[] = {
  193. 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12,
  194. 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0,
  195. };
  196. static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
  197. {
  198. uint32_t pending = s->intregm_pending, pil_pending;
  199. unsigned int i, j;
  200. pending &= ~s->intregm_disabled;
  201. trace_slavio_check_interrupts(pending, s->intregm_disabled);
  202. for (i = 0; i < MAX_CPUS; i++) {
  203. pil_pending = 0;
  204. /* If we are the current interrupt target, get hard interrupts */
  205. if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
  206. (i == s->target_cpu)) {
  207. for (j = 0; j < 32; j++) {
  208. if ((pending & (1 << j)) && intbit_to_level[j]) {
  209. pil_pending |= 1 << intbit_to_level[j];
  210. }
  211. }
  212. }
  213. /* Calculate current pending hard interrupts for display */
  214. s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
  215. CPU_IRQ_TIMER_IN;
  216. if (i == s->target_cpu) {
  217. for (j = 0; j < 32; j++) {
  218. if ((s->intregm_pending & (1U << j)) && intbit_to_level[j]) {
  219. s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
  220. }
  221. }
  222. }
  223. /* Level 15 and CPU timer interrupts are only masked when
  224. the MASTER_DISABLE bit is set */
  225. if (!(s->intregm_disabled & MASTER_DISABLE)) {
  226. pil_pending |= s->slaves[i].intreg_pending &
  227. (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
  228. }
  229. /* Add soft interrupts */
  230. pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
  231. if (set_irqs) {
  232. /* Since there is not really an interrupt 0 (and pil_pending
  233. * and irl_out bit zero are thus always zero) there is no need
  234. * to do anything with cpu_irqs[i][0] and it is OK not to do
  235. * the j=0 iteration of this loop.
  236. */
  237. for (j = MAX_PILS-1; j > 0; j--) {
  238. if (pil_pending & (1 << j)) {
  239. if (!(s->slaves[i].irl_out & (1 << j))) {
  240. qemu_irq_raise(s->cpu_irqs[i][j]);
  241. }
  242. } else {
  243. if (s->slaves[i].irl_out & (1 << j)) {
  244. qemu_irq_lower(s->cpu_irqs[i][j]);
  245. }
  246. }
  247. }
  248. }
  249. s->slaves[i].irl_out = pil_pending;
  250. }
  251. }
  252. /*
  253. * "irq" here is the bit number in the system interrupt register to
  254. * separate serial and keyboard interrupts sharing a level.
  255. */
  256. static void slavio_set_irq(void *opaque, int irq, int level)
  257. {
  258. SLAVIO_INTCTLState *s = opaque;
  259. uint32_t mask = 1 << irq;
  260. uint32_t pil = intbit_to_level[irq];
  261. unsigned int i;
  262. trace_slavio_set_irq(s->target_cpu, irq, pil, level);
  263. if (pil > 0) {
  264. if (level) {
  265. #ifdef DEBUG_IRQ_COUNT
  266. s->irq_count[pil]++;
  267. #endif
  268. s->intregm_pending |= mask;
  269. if (pil == 15) {
  270. for (i = 0; i < MAX_CPUS; i++) {
  271. s->slaves[i].intreg_pending |= 1 << pil;
  272. }
  273. }
  274. } else {
  275. s->intregm_pending &= ~mask;
  276. if (pil == 15) {
  277. for (i = 0; i < MAX_CPUS; i++) {
  278. s->slaves[i].intreg_pending &= ~(1 << pil);
  279. }
  280. }
  281. }
  282. slavio_check_interrupts(s, 1);
  283. }
  284. }
  285. static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
  286. {
  287. SLAVIO_INTCTLState *s = opaque;
  288. trace_slavio_set_timer_irq_cpu(cpu, level);
  289. if (level) {
  290. s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
  291. } else {
  292. s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
  293. }
  294. slavio_check_interrupts(s, 1);
  295. }
  296. static void slavio_set_irq_all(void *opaque, int irq, int level)
  297. {
  298. if (irq < 32) {
  299. slavio_set_irq(opaque, irq, level);
  300. } else {
  301. slavio_set_timer_irq_cpu(opaque, irq - 32, level);
  302. }
  303. }
  304. static int vmstate_intctl_post_load(void *opaque, int version_id)
  305. {
  306. SLAVIO_INTCTLState *s = opaque;
  307. slavio_check_interrupts(s, 0);
  308. return 0;
  309. }
  310. static const VMStateDescription vmstate_intctl_cpu = {
  311. .name ="slavio_intctl_cpu",
  312. .version_id = 1,
  313. .minimum_version_id = 1,
  314. .fields = (VMStateField[]) {
  315. VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
  316. VMSTATE_END_OF_LIST()
  317. }
  318. };
  319. static const VMStateDescription vmstate_intctl = {
  320. .name ="slavio_intctl",
  321. .version_id = 1,
  322. .minimum_version_id = 1,
  323. .post_load = vmstate_intctl_post_load,
  324. .fields = (VMStateField[]) {
  325. VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
  326. vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
  327. VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
  328. VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
  329. VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
  330. VMSTATE_END_OF_LIST()
  331. }
  332. };
  333. static void slavio_intctl_reset(DeviceState *d)
  334. {
  335. SLAVIO_INTCTLState *s = SLAVIO_INTCTL(d);
  336. int i;
  337. for (i = 0; i < MAX_CPUS; i++) {
  338. s->slaves[i].intreg_pending = 0;
  339. s->slaves[i].irl_out = 0;
  340. }
  341. s->intregm_disabled = ~MASTER_IRQ_MASK;
  342. s->intregm_pending = 0;
  343. s->target_cpu = 0;
  344. slavio_check_interrupts(s, 0);
  345. }
  346. #ifdef DEBUG_IRQ_COUNT
  347. static bool slavio_intctl_get_statistics(InterruptStatsProvider *obj,
  348. uint64_t **irq_counts,
  349. unsigned int *nb_irqs)
  350. {
  351. SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
  352. *irq_counts = s->irq_count;
  353. *nb_irqs = ARRAY_SIZE(s->irq_count);
  354. return true;
  355. }
  356. #endif
  357. static void slavio_intctl_print_info(InterruptStatsProvider *obj, Monitor *mon)
  358. {
  359. SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
  360. int i;
  361. for (i = 0; i < MAX_CPUS; i++) {
  362. monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
  363. s->slaves[i].intreg_pending);
  364. }
  365. monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
  366. s->intregm_pending, s->intregm_disabled);
  367. }
  368. static void slavio_intctl_init(Object *obj)
  369. {
  370. DeviceState *dev = DEVICE(obj);
  371. SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
  372. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  373. unsigned int i, j;
  374. char slave_name[45];
  375. qdev_init_gpio_in(dev, slavio_set_irq_all, 32 + MAX_CPUS);
  376. memory_region_init_io(&s->iomem, obj, &slavio_intctlm_mem_ops, s,
  377. "master-interrupt-controller", INTCTLM_SIZE);
  378. sysbus_init_mmio(sbd, &s->iomem);
  379. for (i = 0; i < MAX_CPUS; i++) {
  380. snprintf(slave_name, sizeof(slave_name),
  381. "slave-interrupt-controller-%i", i);
  382. for (j = 0; j < MAX_PILS; j++) {
  383. sysbus_init_irq(sbd, &s->cpu_irqs[i][j]);
  384. }
  385. memory_region_init_io(&s->slaves[i].iomem, OBJECT(s),
  386. &slavio_intctl_mem_ops,
  387. &s->slaves[i], slave_name, INTCTL_SIZE);
  388. sysbus_init_mmio(sbd, &s->slaves[i].iomem);
  389. s->slaves[i].cpu = i;
  390. s->slaves[i].master = s;
  391. }
  392. }
  393. static void slavio_intctl_class_init(ObjectClass *klass, void *data)
  394. {
  395. DeviceClass *dc = DEVICE_CLASS(klass);
  396. InterruptStatsProviderClass *ic = INTERRUPT_STATS_PROVIDER_CLASS(klass);
  397. dc->reset = slavio_intctl_reset;
  398. dc->vmsd = &vmstate_intctl;
  399. #ifdef DEBUG_IRQ_COUNT
  400. ic->get_statistics = slavio_intctl_get_statistics;
  401. #endif
  402. ic->print_info = slavio_intctl_print_info;
  403. }
  404. static const TypeInfo slavio_intctl_info = {
  405. .name = TYPE_SLAVIO_INTCTL,
  406. .parent = TYPE_SYS_BUS_DEVICE,
  407. .instance_size = sizeof(SLAVIO_INTCTLState),
  408. .instance_init = slavio_intctl_init,
  409. .class_init = slavio_intctl_class_init,
  410. .interfaces = (InterfaceInfo[]) {
  411. { TYPE_INTERRUPT_STATS_PROVIDER },
  412. { }
  413. },
  414. };
  415. static void slavio_intctl_register_types(void)
  416. {
  417. type_register_static(&slavio_intctl_info);
  418. }
  419. type_init(slavio_intctl_register_types)