123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 |
- /*
- * General purpose implementation of a simple periodic countdown timer.
- *
- * Copyright (c) 2007 CodeSourcery.
- *
- * This code is licensed under the GNU LGPL.
- */
- #include "qemu/osdep.h"
- #include "hw/ptimer.h"
- #include "migration/vmstate.h"
- #include "qemu/host-utils.h"
- #include "sysemu/replay.h"
- #include "sysemu/cpu-timers.h"
- #include "sysemu/qtest.h"
- #include "block/aio.h"
- #include "sysemu/cpus.h"
- #define DELTA_ADJUST 1
- #define DELTA_NO_ADJUST -1
- struct ptimer_state
- {
- uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
- uint64_t limit;
- uint64_t delta;
- uint32_t period_frac;
- int64_t period;
- int64_t last_event;
- int64_t next_event;
- uint8_t policy_mask;
- QEMUTimer *timer;
- ptimer_cb callback;
- void *callback_opaque;
- /*
- * These track whether we're in a transaction block, and if we
- * need to do a timer reload when the block finishes. They don't
- * need to be migrated because migration can never happen in the
- * middle of a transaction block.
- */
- bool in_transaction;
- bool need_reload;
- };
- /* Use a bottom-half routine to avoid reentrancy issues. */
- static void ptimer_trigger(ptimer_state *s)
- {
- s->callback(s->callback_opaque);
- }
- static void ptimer_reload(ptimer_state *s, int delta_adjust)
- {
- uint32_t period_frac;
- uint64_t period;
- uint64_t delta;
- bool suppress_trigger = false;
- /*
- * Note that if delta_adjust is 0 then we must be here because of
- * a count register write or timer start, not because of timer expiry.
- * In that case the policy might require us to suppress the timer trigger
- * that we would otherwise generate for a zero delta.
- */
- if (delta_adjust == 0 &&
- (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
- suppress_trigger = true;
- }
- if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
- && !suppress_trigger) {
- ptimer_trigger(s);
- }
- /*
- * Note that ptimer_trigger() might call the device callback function,
- * which can then modify timer state, so we must not cache any fields
- * from ptimer_state until after we have called it.
- */
- delta = s->delta;
- period = s->period;
- period_frac = s->period_frac;
- if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
- delta = s->delta = s->limit;
- }
- if (s->period == 0) {
- if (!qtest_enabled()) {
- fprintf(stderr, "Timer with period zero, disabling\n");
- }
- timer_del(s->timer);
- s->enabled = 0;
- return;
- }
- if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
- if (delta_adjust != DELTA_NO_ADJUST) {
- delta += delta_adjust;
- }
- }
- if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
- if (s->enabled == 1 && s->limit == 0) {
- delta = 1;
- }
- }
- if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
- if (delta_adjust != DELTA_NO_ADJUST) {
- delta = 1;
- }
- }
- if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
- if (s->enabled == 1 && s->limit != 0) {
- delta = 1;
- }
- }
- if (delta == 0) {
- if (!qtest_enabled()) {
- fprintf(stderr, "Timer with delta zero, disabling\n");
- }
- timer_del(s->timer);
- s->enabled = 0;
- return;
- }
- /*
- * Artificially limit timeout rate to something
- * achievable under QEMU. Otherwise, QEMU spends all
- * its time generating timer interrupts, and there
- * is no forward progress.
- * About ten microseconds is the fastest that really works
- * on the current generation of host machines.
- */
- if (s->enabled == 1 && (delta * period < 10000) &&
- !icount_enabled() && !qtest_enabled()) {
- period = 10000 / delta;
- period_frac = 0;
- }
- s->last_event = s->next_event;
- s->next_event = s->last_event + delta * period;
- if (period_frac) {
- s->next_event += ((int64_t)period_frac * delta) >> 32;
- }
- timer_mod(s->timer, s->next_event);
- }
- static void ptimer_tick(void *opaque)
- {
- ptimer_state *s = (ptimer_state *)opaque;
- bool trigger = true;
- /*
- * We perform all the tick actions within a begin/commit block
- * because the callback function that ptimer_trigger() calls
- * might make calls into the ptimer APIs that provoke another
- * trigger, and we want that to cause the callback function
- * to be called iteratively, not recursively.
- */
- ptimer_transaction_begin(s);
- if (s->enabled == 2) {
- s->delta = 0;
- s->enabled = 0;
- } else {
- int delta_adjust = DELTA_ADJUST;
- if (s->delta == 0 || s->limit == 0) {
- /* If a "continuous trigger" policy is not used and limit == 0,
- we should error out. delta == 0 means that this tick is
- caused by a "no immediate reload" policy, so it shouldn't
- be adjusted. */
- delta_adjust = DELTA_NO_ADJUST;
- }
- if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
- /* Avoid re-trigger on deferred reload if "no immediate trigger"
- policy isn't used. */
- trigger = (delta_adjust == DELTA_ADJUST);
- }
- s->delta = s->limit;
- ptimer_reload(s, delta_adjust);
- }
- if (trigger) {
- ptimer_trigger(s);
- }
- ptimer_transaction_commit(s);
- }
- uint64_t ptimer_get_count(ptimer_state *s)
- {
- uint64_t counter;
- if (s->enabled && s->delta != 0) {
- int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- int64_t next = s->next_event;
- int64_t last = s->last_event;
- bool expired = (now - next >= 0);
- bool oneshot = (s->enabled == 2);
- /* Figure out the current counter value. */
- if (expired) {
- /* Prevent timer underflowing if it should already have
- triggered. */
- counter = 0;
- } else {
- uint64_t rem;
- uint64_t div;
- int clz1, clz2;
- int shift;
- uint32_t period_frac = s->period_frac;
- uint64_t period = s->period;
- if (!oneshot && (s->delta * period < 10000) &&
- !icount_enabled() && !qtest_enabled()) {
- period = 10000 / s->delta;
- period_frac = 0;
- }
- /* We need to divide time by period, where time is stored in
- rem (64-bit integer) and period is stored in period/period_frac
- (64.32 fixed point).
- Doing full precision division is hard, so scale values and
- do a 64-bit division. The result should be rounded down,
- so that the rounding error never causes the timer to go
- backwards.
- */
- rem = next - now;
- div = period;
- clz1 = clz64(rem);
- clz2 = clz64(div);
- shift = clz1 < clz2 ? clz1 : clz2;
- rem <<= shift;
- div <<= shift;
- if (shift >= 32) {
- div |= ((uint64_t)period_frac << (shift - 32));
- } else {
- if (shift != 0)
- div |= (period_frac >> (32 - shift));
- /* Look at remaining bits of period_frac and round div up if
- necessary. */
- if ((uint32_t)(period_frac << shift))
- div += 1;
- }
- counter = rem / div;
- if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
- /* Before wrapping around, timer should stay with counter = 0
- for a one period. */
- if (!oneshot && s->delta == s->limit) {
- if (now == last) {
- /* Counter == delta here, check whether it was
- adjusted and if it was, then right now it is
- that "one period". */
- if (counter == s->limit + DELTA_ADJUST) {
- return 0;
- }
- } else if (counter == s->limit) {
- /* Since the counter is rounded down and now != last,
- the counter == limit means that delta was adjusted
- by +1 and right now it is that adjusted period. */
- return 0;
- }
- }
- }
- }
- if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
- /* If now == last then delta == limit, i.e. the counter already
- represents the correct value. It would be rounded down a 1ns
- later. */
- if (now != last) {
- counter += 1;
- }
- }
- } else {
- counter = s->delta;
- }
- return counter;
- }
- void ptimer_set_count(ptimer_state *s, uint64_t count)
- {
- assert(s->in_transaction);
- s->delta = count;
- if (s->enabled) {
- s->need_reload = true;
- }
- }
- void ptimer_run(ptimer_state *s, int oneshot)
- {
- bool was_disabled = !s->enabled;
- assert(s->in_transaction);
- if (was_disabled && s->period == 0) {
- if (!qtest_enabled()) {
- fprintf(stderr, "Timer with period zero, disabling\n");
- }
- return;
- }
- s->enabled = oneshot ? 2 : 1;
- if (was_disabled) {
- s->need_reload = true;
- }
- }
- /* Pause a timer. Note that this may cause it to "lose" time, even if it
- is immediately restarted. */
- void ptimer_stop(ptimer_state *s)
- {
- assert(s->in_transaction);
- if (!s->enabled)
- return;
- s->delta = ptimer_get_count(s);
- timer_del(s->timer);
- s->enabled = 0;
- s->need_reload = false;
- }
- /* Set counter increment interval in nanoseconds. */
- void ptimer_set_period(ptimer_state *s, int64_t period)
- {
- assert(s->in_transaction);
- s->delta = ptimer_get_count(s);
- s->period = period;
- s->period_frac = 0;
- if (s->enabled) {
- s->need_reload = true;
- }
- }
- /* Set counter frequency in Hz. */
- void ptimer_set_freq(ptimer_state *s, uint32_t freq)
- {
- assert(s->in_transaction);
- s->delta = ptimer_get_count(s);
- s->period = 1000000000ll / freq;
- s->period_frac = (1000000000ll << 32) / freq;
- if (s->enabled) {
- s->need_reload = true;
- }
- }
- /* Set the initial countdown value. If reload is nonzero then also set
- count = limit. */
- void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
- {
- assert(s->in_transaction);
- s->limit = limit;
- if (reload)
- s->delta = limit;
- if (s->enabled && reload) {
- s->need_reload = true;
- }
- }
- uint64_t ptimer_get_limit(ptimer_state *s)
- {
- return s->limit;
- }
- void ptimer_transaction_begin(ptimer_state *s)
- {
- assert(!s->in_transaction);
- s->in_transaction = true;
- s->need_reload = false;
- }
- void ptimer_transaction_commit(ptimer_state *s)
- {
- assert(s->in_transaction);
- /*
- * We must loop here because ptimer_reload() can call the callback
- * function, which might then update ptimer state in a way that
- * means we need to do another reload and possibly another callback.
- * A disabled timer never needs reloading (and if we don't check
- * this then we loop forever if ptimer_reload() disables the timer).
- */
- while (s->need_reload && s->enabled) {
- s->need_reload = false;
- s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- ptimer_reload(s, 0);
- }
- /* Now we've finished reload we can leave the transaction block. */
- s->in_transaction = false;
- }
- const VMStateDescription vmstate_ptimer = {
- .name = "ptimer",
- .version_id = 1,
- .minimum_version_id = 1,
- .fields = (VMStateField[]) {
- VMSTATE_UINT8(enabled, ptimer_state),
- VMSTATE_UINT64(limit, ptimer_state),
- VMSTATE_UINT64(delta, ptimer_state),
- VMSTATE_UINT32(period_frac, ptimer_state),
- VMSTATE_INT64(period, ptimer_state),
- VMSTATE_INT64(last_event, ptimer_state),
- VMSTATE_INT64(next_event, ptimer_state),
- VMSTATE_TIMER_PTR(timer, ptimer_state),
- VMSTATE_END_OF_LIST()
- }
- };
- ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
- uint8_t policy_mask)
- {
- ptimer_state *s;
- /* The callback function is mandatory. */
- assert(callback);
- s = g_new0(ptimer_state, 1);
- s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
- s->policy_mask = policy_mask;
- s->callback = callback;
- s->callback_opaque = callback_opaque;
- /*
- * These two policies are incompatible -- trigger-on-decrement implies
- * a timer trigger when the count becomes 0, but no-immediate-trigger
- * implies a trigger when the count stops being 0.
- */
- assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
- (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
- return s;
- }
- void ptimer_free(ptimer_state *s)
- {
- timer_free(s->timer);
- g_free(s);
- }
|