2
0

intel-hda.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. *
  4. * written by Gerd Hoffmann <kraxel@redhat.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "hw/pci/pci.h"
  21. #include "hw/qdev-properties.h"
  22. #include "hw/pci/msi.h"
  23. #include "qemu/timer.h"
  24. #include "qemu/bitops.h"
  25. #include "qemu/log.h"
  26. #include "qemu/module.h"
  27. #include "qemu/error-report.h"
  28. #include "hw/audio/soundhw.h"
  29. #include "intel-hda.h"
  30. #include "migration/vmstate.h"
  31. #include "intel-hda-defs.h"
  32. #include "sysemu/dma.h"
  33. #include "qapi/error.h"
  34. #include "qom/object.h"
  35. /* --------------------------------------------------------------------- */
  36. /* hda bus */
  37. static Property hda_props[] = {
  38. DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
  39. DEFINE_PROP_END_OF_LIST()
  40. };
  41. static const TypeInfo hda_codec_bus_info = {
  42. .name = TYPE_HDA_BUS,
  43. .parent = TYPE_BUS,
  44. .instance_size = sizeof(HDACodecBus),
  45. };
  46. void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size,
  47. hda_codec_response_func response,
  48. hda_codec_xfer_func xfer)
  49. {
  50. qbus_create_inplace(bus, bus_size, TYPE_HDA_BUS, dev, NULL);
  51. bus->response = response;
  52. bus->xfer = xfer;
  53. }
  54. static void hda_codec_dev_realize(DeviceState *qdev, Error **errp)
  55. {
  56. HDACodecBus *bus = HDA_BUS(qdev->parent_bus);
  57. HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
  58. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  59. if (dev->cad == -1) {
  60. dev->cad = bus->next_cad;
  61. }
  62. if (dev->cad >= 15) {
  63. error_setg(errp, "HDA audio codec address is full");
  64. return;
  65. }
  66. bus->next_cad = dev->cad + 1;
  67. if (cdc->init(dev) != 0) {
  68. error_setg(errp, "HDA audio init failed");
  69. }
  70. }
  71. static void hda_codec_dev_unrealize(DeviceState *qdev)
  72. {
  73. HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
  74. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  75. if (cdc->exit) {
  76. cdc->exit(dev);
  77. }
  78. }
  79. HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
  80. {
  81. BusChild *kid;
  82. HDACodecDevice *cdev;
  83. QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) {
  84. DeviceState *qdev = kid->child;
  85. cdev = HDA_CODEC_DEVICE(qdev);
  86. if (cdev->cad == cad) {
  87. return cdev;
  88. }
  89. }
  90. return NULL;
  91. }
  92. void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  93. {
  94. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  95. bus->response(dev, solicited, response);
  96. }
  97. bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  98. uint8_t *buf, uint32_t len)
  99. {
  100. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  101. return bus->xfer(dev, stnr, output, buf, len);
  102. }
  103. /* --------------------------------------------------------------------- */
  104. /* intel hda emulation */
  105. typedef struct IntelHDAStream IntelHDAStream;
  106. typedef struct IntelHDAState IntelHDAState;
  107. typedef struct IntelHDAReg IntelHDAReg;
  108. typedef struct bpl {
  109. uint64_t addr;
  110. uint32_t len;
  111. uint32_t flags;
  112. } bpl;
  113. struct IntelHDAStream {
  114. /* registers */
  115. uint32_t ctl;
  116. uint32_t lpib;
  117. uint32_t cbl;
  118. uint32_t lvi;
  119. uint32_t fmt;
  120. uint32_t bdlp_lbase;
  121. uint32_t bdlp_ubase;
  122. /* state */
  123. bpl *bpl;
  124. uint32_t bentries;
  125. uint32_t bsize, be, bp;
  126. };
  127. struct IntelHDAState {
  128. PCIDevice pci;
  129. const char *name;
  130. HDACodecBus codecs;
  131. /* registers */
  132. uint32_t g_ctl;
  133. uint32_t wake_en;
  134. uint32_t state_sts;
  135. uint32_t int_ctl;
  136. uint32_t int_sts;
  137. uint32_t wall_clk;
  138. uint32_t corb_lbase;
  139. uint32_t corb_ubase;
  140. uint32_t corb_rp;
  141. uint32_t corb_wp;
  142. uint32_t corb_ctl;
  143. uint32_t corb_sts;
  144. uint32_t corb_size;
  145. uint32_t rirb_lbase;
  146. uint32_t rirb_ubase;
  147. uint32_t rirb_wp;
  148. uint32_t rirb_cnt;
  149. uint32_t rirb_ctl;
  150. uint32_t rirb_sts;
  151. uint32_t rirb_size;
  152. uint32_t dp_lbase;
  153. uint32_t dp_ubase;
  154. uint32_t icw;
  155. uint32_t irr;
  156. uint32_t ics;
  157. /* streams */
  158. IntelHDAStream st[8];
  159. /* state */
  160. MemoryRegion container;
  161. MemoryRegion mmio;
  162. MemoryRegion alias;
  163. uint32_t rirb_count;
  164. int64_t wall_base_ns;
  165. /* debug logging */
  166. const IntelHDAReg *last_reg;
  167. uint32_t last_val;
  168. uint32_t last_write;
  169. uint32_t last_sec;
  170. uint32_t repeat_count;
  171. /* properties */
  172. uint32_t debug;
  173. OnOffAuto msi;
  174. bool old_msi_addr;
  175. };
  176. #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic"
  177. DECLARE_INSTANCE_CHECKER(IntelHDAState, INTEL_HDA,
  178. TYPE_INTEL_HDA_GENERIC)
  179. struct IntelHDAReg {
  180. const char *name; /* register name */
  181. uint32_t size; /* size in bytes */
  182. uint32_t reset; /* reset value */
  183. uint32_t wmask; /* write mask */
  184. uint32_t wclear; /* write 1 to clear bits */
  185. uint32_t offset; /* location in IntelHDAState */
  186. uint32_t shift; /* byte access entries for dwords */
  187. uint32_t stream;
  188. void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
  189. void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
  190. };
  191. static void intel_hda_reset(DeviceState *dev);
  192. /* --------------------------------------------------------------------- */
  193. static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase)
  194. {
  195. return ((uint64_t)ubase << 32) | lbase;
  196. }
  197. static void intel_hda_update_int_sts(IntelHDAState *d)
  198. {
  199. uint32_t sts = 0;
  200. uint32_t i;
  201. /* update controller status */
  202. if (d->rirb_sts & ICH6_RBSTS_IRQ) {
  203. sts |= (1 << 30);
  204. }
  205. if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
  206. sts |= (1 << 30);
  207. }
  208. if (d->state_sts & d->wake_en) {
  209. sts |= (1 << 30);
  210. }
  211. /* update stream status */
  212. for (i = 0; i < 8; i++) {
  213. /* buffer completion interrupt */
  214. if (d->st[i].ctl & (1 << 26)) {
  215. sts |= (1 << i);
  216. }
  217. }
  218. /* update global status */
  219. if (sts & d->int_ctl) {
  220. sts |= (1U << 31);
  221. }
  222. d->int_sts = sts;
  223. }
  224. static void intel_hda_update_irq(IntelHDAState *d)
  225. {
  226. bool msi = msi_enabled(&d->pci);
  227. int level;
  228. intel_hda_update_int_sts(d);
  229. if (d->int_sts & (1U << 31) && d->int_ctl & (1U << 31)) {
  230. level = 1;
  231. } else {
  232. level = 0;
  233. }
  234. dprint(d, 2, "%s: level %d [%s]\n", __func__,
  235. level, msi ? "msi" : "intx");
  236. if (msi) {
  237. if (level) {
  238. msi_notify(&d->pci, 0);
  239. }
  240. } else {
  241. pci_set_irq(&d->pci, level);
  242. }
  243. }
  244. static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
  245. {
  246. uint32_t cad, nid, data;
  247. HDACodecDevice *codec;
  248. HDACodecDeviceClass *cdc;
  249. cad = (verb >> 28) & 0x0f;
  250. if (verb & (1 << 27)) {
  251. /* indirect node addressing, not specified in HDA 1.0 */
  252. dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __func__);
  253. return -1;
  254. }
  255. nid = (verb >> 20) & 0x7f;
  256. data = verb & 0xfffff;
  257. codec = hda_codec_find(&d->codecs, cad);
  258. if (codec == NULL) {
  259. dprint(d, 1, "%s: addressed non-existing codec\n", __func__);
  260. return -1;
  261. }
  262. cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
  263. cdc->command(codec, nid, data);
  264. return 0;
  265. }
  266. static void intel_hda_corb_run(IntelHDAState *d)
  267. {
  268. hwaddr addr;
  269. uint32_t rp, verb;
  270. if (d->ics & ICH6_IRS_BUSY) {
  271. dprint(d, 2, "%s: [icw] verb 0x%08x\n", __func__, d->icw);
  272. intel_hda_send_command(d, d->icw);
  273. return;
  274. }
  275. for (;;) {
  276. if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
  277. dprint(d, 2, "%s: !run\n", __func__);
  278. return;
  279. }
  280. if ((d->corb_rp & 0xff) == d->corb_wp) {
  281. dprint(d, 2, "%s: corb ring empty\n", __func__);
  282. return;
  283. }
  284. if (d->rirb_count == d->rirb_cnt) {
  285. dprint(d, 2, "%s: rirb count reached\n", __func__);
  286. return;
  287. }
  288. rp = (d->corb_rp + 1) & 0xff;
  289. addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
  290. verb = ldl_le_pci_dma(&d->pci, addr + 4*rp);
  291. d->corb_rp = rp;
  292. dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __func__, rp, verb);
  293. intel_hda_send_command(d, verb);
  294. }
  295. }
  296. static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  297. {
  298. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  299. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  300. hwaddr addr;
  301. uint32_t wp, ex;
  302. if (d->ics & ICH6_IRS_BUSY) {
  303. dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
  304. __func__, response, dev->cad);
  305. d->irr = response;
  306. d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
  307. d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
  308. return;
  309. }
  310. if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
  311. dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __func__);
  312. return;
  313. }
  314. ex = (solicited ? 0 : (1 << 4)) | dev->cad;
  315. wp = (d->rirb_wp + 1) & 0xff;
  316. addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
  317. stl_le_pci_dma(&d->pci, addr + 8*wp, response);
  318. stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex);
  319. d->rirb_wp = wp;
  320. dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
  321. __func__, wp, response, ex);
  322. d->rirb_count++;
  323. if (d->rirb_count == d->rirb_cnt) {
  324. dprint(d, 2, "%s: rirb count reached (%d)\n", __func__, d->rirb_count);
  325. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  326. d->rirb_sts |= ICH6_RBSTS_IRQ;
  327. intel_hda_update_irq(d);
  328. }
  329. } else if ((d->corb_rp & 0xff) == d->corb_wp) {
  330. dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __func__,
  331. d->rirb_count, d->rirb_cnt);
  332. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  333. d->rirb_sts |= ICH6_RBSTS_IRQ;
  334. intel_hda_update_irq(d);
  335. }
  336. }
  337. }
  338. static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  339. uint8_t *buf, uint32_t len)
  340. {
  341. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  342. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  343. hwaddr addr;
  344. uint32_t s, copy, left;
  345. IntelHDAStream *st;
  346. bool irq = false;
  347. st = output ? d->st + 4 : d->st;
  348. for (s = 0; s < 4; s++) {
  349. if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
  350. st = st + s;
  351. break;
  352. }
  353. }
  354. if (s == 4) {
  355. return false;
  356. }
  357. if (st->bpl == NULL) {
  358. return false;
  359. }
  360. left = len;
  361. s = st->bentries;
  362. while (left > 0 && s-- > 0) {
  363. copy = left;
  364. if (copy > st->bsize - st->lpib)
  365. copy = st->bsize - st->lpib;
  366. if (copy > st->bpl[st->be].len - st->bp)
  367. copy = st->bpl[st->be].len - st->bp;
  368. dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
  369. st->be, st->bp, st->bpl[st->be].len, copy);
  370. pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output);
  371. st->lpib += copy;
  372. st->bp += copy;
  373. buf += copy;
  374. left -= copy;
  375. if (st->bpl[st->be].len == st->bp) {
  376. /* bpl entry filled */
  377. if (st->bpl[st->be].flags & 0x01) {
  378. irq = true;
  379. }
  380. st->bp = 0;
  381. st->be++;
  382. if (st->be == st->bentries) {
  383. /* bpl wrap around */
  384. st->be = 0;
  385. st->lpib = 0;
  386. }
  387. }
  388. }
  389. if (d->dp_lbase & 0x01) {
  390. s = st - d->st;
  391. addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
  392. stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib);
  393. }
  394. dprint(d, 3, "dma: --\n");
  395. if (irq) {
  396. st->ctl |= (1 << 26); /* buffer completion interrupt */
  397. intel_hda_update_irq(d);
  398. }
  399. return true;
  400. }
  401. static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
  402. {
  403. hwaddr addr;
  404. uint8_t buf[16];
  405. uint32_t i;
  406. addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
  407. st->bentries = st->lvi +1;
  408. g_free(st->bpl);
  409. st->bpl = g_malloc(sizeof(bpl) * st->bentries);
  410. for (i = 0; i < st->bentries; i++, addr += 16) {
  411. pci_dma_read(&d->pci, addr, buf, 16);
  412. st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
  413. st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
  414. st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
  415. dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
  416. i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
  417. }
  418. st->bsize = st->cbl;
  419. st->lpib = 0;
  420. st->be = 0;
  421. st->bp = 0;
  422. }
  423. static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
  424. {
  425. BusChild *kid;
  426. HDACodecDevice *cdev;
  427. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  428. DeviceState *qdev = kid->child;
  429. HDACodecDeviceClass *cdc;
  430. cdev = HDA_CODEC_DEVICE(qdev);
  431. cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
  432. if (cdc->stream) {
  433. cdc->stream(cdev, stream, running, output);
  434. }
  435. }
  436. }
  437. /* --------------------------------------------------------------------- */
  438. static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  439. {
  440. if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
  441. intel_hda_reset(DEVICE(d));
  442. }
  443. }
  444. static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  445. {
  446. intel_hda_update_irq(d);
  447. }
  448. static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  449. {
  450. intel_hda_update_irq(d);
  451. }
  452. static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  453. {
  454. intel_hda_update_irq(d);
  455. }
  456. static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
  457. {
  458. int64_t ns;
  459. ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns;
  460. d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
  461. }
  462. static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  463. {
  464. intel_hda_corb_run(d);
  465. }
  466. static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  467. {
  468. intel_hda_corb_run(d);
  469. }
  470. static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  471. {
  472. if (d->rirb_wp & ICH6_RIRBWP_RST) {
  473. d->rirb_wp = 0;
  474. }
  475. }
  476. static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  477. {
  478. intel_hda_update_irq(d);
  479. if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
  480. /* cleared ICH6_RBSTS_IRQ */
  481. d->rirb_count = 0;
  482. intel_hda_corb_run(d);
  483. }
  484. }
  485. static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  486. {
  487. if (d->ics & ICH6_IRS_BUSY) {
  488. intel_hda_corb_run(d);
  489. }
  490. }
  491. static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  492. {
  493. bool output = reg->stream >= 4;
  494. IntelHDAStream *st = d->st + reg->stream;
  495. if (st->ctl & 0x01) {
  496. /* reset */
  497. dprint(d, 1, "st #%d: reset\n", reg->stream);
  498. st->ctl = SD_STS_FIFO_READY << 24;
  499. }
  500. if ((st->ctl & 0x02) != (old & 0x02)) {
  501. uint32_t stnr = (st->ctl >> 20) & 0x0f;
  502. /* run bit flipped */
  503. if (st->ctl & 0x02) {
  504. /* start */
  505. dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
  506. reg->stream, stnr, st->cbl);
  507. intel_hda_parse_bdl(d, st);
  508. intel_hda_notify_codecs(d, stnr, true, output);
  509. } else {
  510. /* stop */
  511. dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
  512. intel_hda_notify_codecs(d, stnr, false, output);
  513. }
  514. }
  515. intel_hda_update_irq(d);
  516. }
  517. /* --------------------------------------------------------------------- */
  518. #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
  519. static const struct IntelHDAReg regtab[] = {
  520. /* global */
  521. [ ICH6_REG_GCAP ] = {
  522. .name = "GCAP",
  523. .size = 2,
  524. .reset = 0x4401,
  525. },
  526. [ ICH6_REG_VMIN ] = {
  527. .name = "VMIN",
  528. .size = 1,
  529. },
  530. [ ICH6_REG_VMAJ ] = {
  531. .name = "VMAJ",
  532. .size = 1,
  533. .reset = 1,
  534. },
  535. [ ICH6_REG_OUTPAY ] = {
  536. .name = "OUTPAY",
  537. .size = 2,
  538. .reset = 0x3c,
  539. },
  540. [ ICH6_REG_INPAY ] = {
  541. .name = "INPAY",
  542. .size = 2,
  543. .reset = 0x1d,
  544. },
  545. [ ICH6_REG_GCTL ] = {
  546. .name = "GCTL",
  547. .size = 4,
  548. .wmask = 0x0103,
  549. .offset = offsetof(IntelHDAState, g_ctl),
  550. .whandler = intel_hda_set_g_ctl,
  551. },
  552. [ ICH6_REG_WAKEEN ] = {
  553. .name = "WAKEEN",
  554. .size = 2,
  555. .wmask = 0x7fff,
  556. .offset = offsetof(IntelHDAState, wake_en),
  557. .whandler = intel_hda_set_wake_en,
  558. },
  559. [ ICH6_REG_STATESTS ] = {
  560. .name = "STATESTS",
  561. .size = 2,
  562. .wmask = 0x7fff,
  563. .wclear = 0x7fff,
  564. .offset = offsetof(IntelHDAState, state_sts),
  565. .whandler = intel_hda_set_state_sts,
  566. },
  567. /* interrupts */
  568. [ ICH6_REG_INTCTL ] = {
  569. .name = "INTCTL",
  570. .size = 4,
  571. .wmask = 0xc00000ff,
  572. .offset = offsetof(IntelHDAState, int_ctl),
  573. .whandler = intel_hda_set_int_ctl,
  574. },
  575. [ ICH6_REG_INTSTS ] = {
  576. .name = "INTSTS",
  577. .size = 4,
  578. .wmask = 0xc00000ff,
  579. .wclear = 0xc00000ff,
  580. .offset = offsetof(IntelHDAState, int_sts),
  581. },
  582. /* misc */
  583. [ ICH6_REG_WALLCLK ] = {
  584. .name = "WALLCLK",
  585. .size = 4,
  586. .offset = offsetof(IntelHDAState, wall_clk),
  587. .rhandler = intel_hda_get_wall_clk,
  588. },
  589. /* dma engine */
  590. [ ICH6_REG_CORBLBASE ] = {
  591. .name = "CORBLBASE",
  592. .size = 4,
  593. .wmask = 0xffffff80,
  594. .offset = offsetof(IntelHDAState, corb_lbase),
  595. },
  596. [ ICH6_REG_CORBUBASE ] = {
  597. .name = "CORBUBASE",
  598. .size = 4,
  599. .wmask = 0xffffffff,
  600. .offset = offsetof(IntelHDAState, corb_ubase),
  601. },
  602. [ ICH6_REG_CORBWP ] = {
  603. .name = "CORBWP",
  604. .size = 2,
  605. .wmask = 0xff,
  606. .offset = offsetof(IntelHDAState, corb_wp),
  607. .whandler = intel_hda_set_corb_wp,
  608. },
  609. [ ICH6_REG_CORBRP ] = {
  610. .name = "CORBRP",
  611. .size = 2,
  612. .wmask = 0x80ff,
  613. .offset = offsetof(IntelHDAState, corb_rp),
  614. },
  615. [ ICH6_REG_CORBCTL ] = {
  616. .name = "CORBCTL",
  617. .size = 1,
  618. .wmask = 0x03,
  619. .offset = offsetof(IntelHDAState, corb_ctl),
  620. .whandler = intel_hda_set_corb_ctl,
  621. },
  622. [ ICH6_REG_CORBSTS ] = {
  623. .name = "CORBSTS",
  624. .size = 1,
  625. .wmask = 0x01,
  626. .wclear = 0x01,
  627. .offset = offsetof(IntelHDAState, corb_sts),
  628. },
  629. [ ICH6_REG_CORBSIZE ] = {
  630. .name = "CORBSIZE",
  631. .size = 1,
  632. .reset = 0x42,
  633. .offset = offsetof(IntelHDAState, corb_size),
  634. },
  635. [ ICH6_REG_RIRBLBASE ] = {
  636. .name = "RIRBLBASE",
  637. .size = 4,
  638. .wmask = 0xffffff80,
  639. .offset = offsetof(IntelHDAState, rirb_lbase),
  640. },
  641. [ ICH6_REG_RIRBUBASE ] = {
  642. .name = "RIRBUBASE",
  643. .size = 4,
  644. .wmask = 0xffffffff,
  645. .offset = offsetof(IntelHDAState, rirb_ubase),
  646. },
  647. [ ICH6_REG_RIRBWP ] = {
  648. .name = "RIRBWP",
  649. .size = 2,
  650. .wmask = 0x8000,
  651. .offset = offsetof(IntelHDAState, rirb_wp),
  652. .whandler = intel_hda_set_rirb_wp,
  653. },
  654. [ ICH6_REG_RINTCNT ] = {
  655. .name = "RINTCNT",
  656. .size = 2,
  657. .wmask = 0xff,
  658. .offset = offsetof(IntelHDAState, rirb_cnt),
  659. },
  660. [ ICH6_REG_RIRBCTL ] = {
  661. .name = "RIRBCTL",
  662. .size = 1,
  663. .wmask = 0x07,
  664. .offset = offsetof(IntelHDAState, rirb_ctl),
  665. },
  666. [ ICH6_REG_RIRBSTS ] = {
  667. .name = "RIRBSTS",
  668. .size = 1,
  669. .wmask = 0x05,
  670. .wclear = 0x05,
  671. .offset = offsetof(IntelHDAState, rirb_sts),
  672. .whandler = intel_hda_set_rirb_sts,
  673. },
  674. [ ICH6_REG_RIRBSIZE ] = {
  675. .name = "RIRBSIZE",
  676. .size = 1,
  677. .reset = 0x42,
  678. .offset = offsetof(IntelHDAState, rirb_size),
  679. },
  680. [ ICH6_REG_DPLBASE ] = {
  681. .name = "DPLBASE",
  682. .size = 4,
  683. .wmask = 0xffffff81,
  684. .offset = offsetof(IntelHDAState, dp_lbase),
  685. },
  686. [ ICH6_REG_DPUBASE ] = {
  687. .name = "DPUBASE",
  688. .size = 4,
  689. .wmask = 0xffffffff,
  690. .offset = offsetof(IntelHDAState, dp_ubase),
  691. },
  692. [ ICH6_REG_IC ] = {
  693. .name = "ICW",
  694. .size = 4,
  695. .wmask = 0xffffffff,
  696. .offset = offsetof(IntelHDAState, icw),
  697. },
  698. [ ICH6_REG_IR ] = {
  699. .name = "IRR",
  700. .size = 4,
  701. .offset = offsetof(IntelHDAState, irr),
  702. },
  703. [ ICH6_REG_IRS ] = {
  704. .name = "ICS",
  705. .size = 2,
  706. .wmask = 0x0003,
  707. .wclear = 0x0002,
  708. .offset = offsetof(IntelHDAState, ics),
  709. .whandler = intel_hda_set_ics,
  710. },
  711. #define HDA_STREAM(_t, _i) \
  712. [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
  713. .stream = _i, \
  714. .name = _t stringify(_i) " CTL", \
  715. .size = 4, \
  716. .wmask = 0x1cff001f, \
  717. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  718. .whandler = intel_hda_set_st_ctl, \
  719. }, \
  720. [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
  721. .stream = _i, \
  722. .name = _t stringify(_i) " CTL(stnr)", \
  723. .size = 1, \
  724. .shift = 16, \
  725. .wmask = 0x00ff0000, \
  726. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  727. .whandler = intel_hda_set_st_ctl, \
  728. }, \
  729. [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
  730. .stream = _i, \
  731. .name = _t stringify(_i) " CTL(sts)", \
  732. .size = 1, \
  733. .shift = 24, \
  734. .wmask = 0x1c000000, \
  735. .wclear = 0x1c000000, \
  736. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  737. .whandler = intel_hda_set_st_ctl, \
  738. .reset = SD_STS_FIFO_READY << 24 \
  739. }, \
  740. [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
  741. .stream = _i, \
  742. .name = _t stringify(_i) " LPIB", \
  743. .size = 4, \
  744. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  745. }, \
  746. [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
  747. .stream = _i, \
  748. .name = _t stringify(_i) " CBL", \
  749. .size = 4, \
  750. .wmask = 0xffffffff, \
  751. .offset = offsetof(IntelHDAState, st[_i].cbl), \
  752. }, \
  753. [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
  754. .stream = _i, \
  755. .name = _t stringify(_i) " LVI", \
  756. .size = 2, \
  757. .wmask = 0x00ff, \
  758. .offset = offsetof(IntelHDAState, st[_i].lvi), \
  759. }, \
  760. [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
  761. .stream = _i, \
  762. .name = _t stringify(_i) " FIFOS", \
  763. .size = 2, \
  764. .reset = HDA_BUFFER_SIZE, \
  765. }, \
  766. [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
  767. .stream = _i, \
  768. .name = _t stringify(_i) " FMT", \
  769. .size = 2, \
  770. .wmask = 0x7f7f, \
  771. .offset = offsetof(IntelHDAState, st[_i].fmt), \
  772. }, \
  773. [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
  774. .stream = _i, \
  775. .name = _t stringify(_i) " BDLPL", \
  776. .size = 4, \
  777. .wmask = 0xffffff80, \
  778. .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
  779. }, \
  780. [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
  781. .stream = _i, \
  782. .name = _t stringify(_i) " BDLPU", \
  783. .size = 4, \
  784. .wmask = 0xffffffff, \
  785. .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
  786. }, \
  787. HDA_STREAM("IN", 0)
  788. HDA_STREAM("IN", 1)
  789. HDA_STREAM("IN", 2)
  790. HDA_STREAM("IN", 3)
  791. HDA_STREAM("OUT", 4)
  792. HDA_STREAM("OUT", 5)
  793. HDA_STREAM("OUT", 6)
  794. HDA_STREAM("OUT", 7)
  795. };
  796. static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr)
  797. {
  798. const IntelHDAReg *reg;
  799. if (addr >= ARRAY_SIZE(regtab)) {
  800. goto noreg;
  801. }
  802. reg = regtab+addr;
  803. if (reg->name == NULL) {
  804. goto noreg;
  805. }
  806. return reg;
  807. noreg:
  808. dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
  809. return NULL;
  810. }
  811. static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
  812. {
  813. uint8_t *addr = (void*)d;
  814. addr += reg->offset;
  815. return (uint32_t*)addr;
  816. }
  817. static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
  818. uint32_t wmask)
  819. {
  820. uint32_t *addr;
  821. uint32_t old;
  822. if (!reg) {
  823. return;
  824. }
  825. if (!reg->wmask) {
  826. qemu_log_mask(LOG_GUEST_ERROR, "intel-hda: write to r/o reg %s\n",
  827. reg->name);
  828. return;
  829. }
  830. if (d->debug) {
  831. time_t now = time(NULL);
  832. if (d->last_write && d->last_reg == reg && d->last_val == val) {
  833. d->repeat_count++;
  834. if (d->last_sec != now) {
  835. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  836. d->last_sec = now;
  837. d->repeat_count = 0;
  838. }
  839. } else {
  840. if (d->repeat_count) {
  841. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  842. }
  843. dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
  844. d->last_write = 1;
  845. d->last_reg = reg;
  846. d->last_val = val;
  847. d->last_sec = now;
  848. d->repeat_count = 0;
  849. }
  850. }
  851. assert(reg->offset != 0);
  852. addr = intel_hda_reg_addr(d, reg);
  853. old = *addr;
  854. if (reg->shift) {
  855. val <<= reg->shift;
  856. wmask <<= reg->shift;
  857. }
  858. wmask &= reg->wmask;
  859. *addr &= ~wmask;
  860. *addr |= wmask & val;
  861. *addr &= ~(val & reg->wclear);
  862. if (reg->whandler) {
  863. reg->whandler(d, reg, old);
  864. }
  865. }
  866. static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
  867. uint32_t rmask)
  868. {
  869. uint32_t *addr, ret;
  870. if (!reg) {
  871. return 0;
  872. }
  873. if (reg->rhandler) {
  874. reg->rhandler(d, reg);
  875. }
  876. if (reg->offset == 0) {
  877. /* constant read-only register */
  878. ret = reg->reset;
  879. } else {
  880. addr = intel_hda_reg_addr(d, reg);
  881. ret = *addr;
  882. if (reg->shift) {
  883. ret >>= reg->shift;
  884. }
  885. ret &= rmask;
  886. }
  887. if (d->debug) {
  888. time_t now = time(NULL);
  889. if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
  890. d->repeat_count++;
  891. if (d->last_sec != now) {
  892. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  893. d->last_sec = now;
  894. d->repeat_count = 0;
  895. }
  896. } else {
  897. if (d->repeat_count) {
  898. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  899. }
  900. dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
  901. d->last_write = 0;
  902. d->last_reg = reg;
  903. d->last_val = ret;
  904. d->last_sec = now;
  905. d->repeat_count = 0;
  906. }
  907. }
  908. return ret;
  909. }
  910. static void intel_hda_regs_reset(IntelHDAState *d)
  911. {
  912. uint32_t *addr;
  913. int i;
  914. for (i = 0; i < ARRAY_SIZE(regtab); i++) {
  915. if (regtab[i].name == NULL) {
  916. continue;
  917. }
  918. if (regtab[i].offset == 0) {
  919. continue;
  920. }
  921. addr = intel_hda_reg_addr(d, regtab + i);
  922. *addr = regtab[i].reset;
  923. }
  924. }
  925. /* --------------------------------------------------------------------- */
  926. static void intel_hda_mmio_write(void *opaque, hwaddr addr, uint64_t val,
  927. unsigned size)
  928. {
  929. IntelHDAState *d = opaque;
  930. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  931. intel_hda_reg_write(d, reg, val, MAKE_64BIT_MASK(0, size * 8));
  932. }
  933. static uint64_t intel_hda_mmio_read(void *opaque, hwaddr addr, unsigned size)
  934. {
  935. IntelHDAState *d = opaque;
  936. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  937. return intel_hda_reg_read(d, reg, MAKE_64BIT_MASK(0, size * 8));
  938. }
  939. static const MemoryRegionOps intel_hda_mmio_ops = {
  940. .read = intel_hda_mmio_read,
  941. .write = intel_hda_mmio_write,
  942. .impl = {
  943. .min_access_size = 1,
  944. .max_access_size = 4,
  945. },
  946. .endianness = DEVICE_NATIVE_ENDIAN,
  947. };
  948. /* --------------------------------------------------------------------- */
  949. static void intel_hda_reset(DeviceState *dev)
  950. {
  951. BusChild *kid;
  952. IntelHDAState *d = INTEL_HDA(dev);
  953. HDACodecDevice *cdev;
  954. intel_hda_regs_reset(d);
  955. d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  956. /* reset codecs */
  957. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  958. DeviceState *qdev = kid->child;
  959. cdev = HDA_CODEC_DEVICE(qdev);
  960. device_legacy_reset(DEVICE(cdev));
  961. d->state_sts |= (1 << cdev->cad);
  962. }
  963. intel_hda_update_irq(d);
  964. }
  965. static void intel_hda_realize(PCIDevice *pci, Error **errp)
  966. {
  967. IntelHDAState *d = INTEL_HDA(pci);
  968. uint8_t *conf = d->pci.config;
  969. Error *err = NULL;
  970. int ret;
  971. d->name = object_get_typename(OBJECT(d));
  972. pci_config_set_interrupt_pin(conf, 1);
  973. /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
  974. conf[0x40] = 0x01;
  975. if (d->msi != ON_OFF_AUTO_OFF) {
  976. ret = msi_init(&d->pci, d->old_msi_addr ? 0x50 : 0x60,
  977. 1, true, false, &err);
  978. /* Any error other than -ENOTSUP(board's MSI support is broken)
  979. * is a programming error */
  980. assert(!ret || ret == -ENOTSUP);
  981. if (ret && d->msi == ON_OFF_AUTO_ON) {
  982. /* Can't satisfy user's explicit msi=on request, fail */
  983. error_append_hint(&err, "You have to use msi=auto (default) or "
  984. "msi=off with this machine type.\n");
  985. error_propagate(errp, err);
  986. return;
  987. }
  988. assert(!err || d->msi == ON_OFF_AUTO_AUTO);
  989. /* With msi=auto, we fall back to MSI off silently */
  990. error_free(err);
  991. }
  992. memory_region_init(&d->container, OBJECT(d),
  993. "intel-hda-container", 0x4000);
  994. memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d,
  995. "intel-hda", 0x2000);
  996. memory_region_add_subregion(&d->container, 0x0000, &d->mmio);
  997. memory_region_init_alias(&d->alias, OBJECT(d), "intel-hda-alias",
  998. &d->mmio, 0, 0x2000);
  999. memory_region_add_subregion(&d->container, 0x2000, &d->alias);
  1000. pci_register_bar(&d->pci, 0, 0, &d->container);
  1001. hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs),
  1002. intel_hda_response, intel_hda_xfer);
  1003. }
  1004. static void intel_hda_exit(PCIDevice *pci)
  1005. {
  1006. IntelHDAState *d = INTEL_HDA(pci);
  1007. msi_uninit(&d->pci);
  1008. }
  1009. static int intel_hda_post_load(void *opaque, int version)
  1010. {
  1011. IntelHDAState* d = opaque;
  1012. int i;
  1013. dprint(d, 1, "%s\n", __func__);
  1014. for (i = 0; i < ARRAY_SIZE(d->st); i++) {
  1015. if (d->st[i].ctl & 0x02) {
  1016. intel_hda_parse_bdl(d, &d->st[i]);
  1017. }
  1018. }
  1019. intel_hda_update_irq(d);
  1020. return 0;
  1021. }
  1022. static const VMStateDescription vmstate_intel_hda_stream = {
  1023. .name = "intel-hda-stream",
  1024. .version_id = 1,
  1025. .fields = (VMStateField[]) {
  1026. VMSTATE_UINT32(ctl, IntelHDAStream),
  1027. VMSTATE_UINT32(lpib, IntelHDAStream),
  1028. VMSTATE_UINT32(cbl, IntelHDAStream),
  1029. VMSTATE_UINT32(lvi, IntelHDAStream),
  1030. VMSTATE_UINT32(fmt, IntelHDAStream),
  1031. VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
  1032. VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
  1033. VMSTATE_END_OF_LIST()
  1034. }
  1035. };
  1036. static const VMStateDescription vmstate_intel_hda = {
  1037. .name = "intel-hda",
  1038. .version_id = 1,
  1039. .post_load = intel_hda_post_load,
  1040. .fields = (VMStateField[]) {
  1041. VMSTATE_PCI_DEVICE(pci, IntelHDAState),
  1042. /* registers */
  1043. VMSTATE_UINT32(g_ctl, IntelHDAState),
  1044. VMSTATE_UINT32(wake_en, IntelHDAState),
  1045. VMSTATE_UINT32(state_sts, IntelHDAState),
  1046. VMSTATE_UINT32(int_ctl, IntelHDAState),
  1047. VMSTATE_UINT32(int_sts, IntelHDAState),
  1048. VMSTATE_UINT32(wall_clk, IntelHDAState),
  1049. VMSTATE_UINT32(corb_lbase, IntelHDAState),
  1050. VMSTATE_UINT32(corb_ubase, IntelHDAState),
  1051. VMSTATE_UINT32(corb_rp, IntelHDAState),
  1052. VMSTATE_UINT32(corb_wp, IntelHDAState),
  1053. VMSTATE_UINT32(corb_ctl, IntelHDAState),
  1054. VMSTATE_UINT32(corb_sts, IntelHDAState),
  1055. VMSTATE_UINT32(corb_size, IntelHDAState),
  1056. VMSTATE_UINT32(rirb_lbase, IntelHDAState),
  1057. VMSTATE_UINT32(rirb_ubase, IntelHDAState),
  1058. VMSTATE_UINT32(rirb_wp, IntelHDAState),
  1059. VMSTATE_UINT32(rirb_cnt, IntelHDAState),
  1060. VMSTATE_UINT32(rirb_ctl, IntelHDAState),
  1061. VMSTATE_UINT32(rirb_sts, IntelHDAState),
  1062. VMSTATE_UINT32(rirb_size, IntelHDAState),
  1063. VMSTATE_UINT32(dp_lbase, IntelHDAState),
  1064. VMSTATE_UINT32(dp_ubase, IntelHDAState),
  1065. VMSTATE_UINT32(icw, IntelHDAState),
  1066. VMSTATE_UINT32(irr, IntelHDAState),
  1067. VMSTATE_UINT32(ics, IntelHDAState),
  1068. VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
  1069. vmstate_intel_hda_stream,
  1070. IntelHDAStream),
  1071. /* additional state info */
  1072. VMSTATE_UINT32(rirb_count, IntelHDAState),
  1073. VMSTATE_INT64(wall_base_ns, IntelHDAState),
  1074. VMSTATE_END_OF_LIST()
  1075. }
  1076. };
  1077. static Property intel_hda_properties[] = {
  1078. DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
  1079. DEFINE_PROP_ON_OFF_AUTO("msi", IntelHDAState, msi, ON_OFF_AUTO_AUTO),
  1080. DEFINE_PROP_BOOL("old_msi_addr", IntelHDAState, old_msi_addr, false),
  1081. DEFINE_PROP_END_OF_LIST(),
  1082. };
  1083. static void intel_hda_class_init(ObjectClass *klass, void *data)
  1084. {
  1085. DeviceClass *dc = DEVICE_CLASS(klass);
  1086. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1087. k->realize = intel_hda_realize;
  1088. k->exit = intel_hda_exit;
  1089. k->vendor_id = PCI_VENDOR_ID_INTEL;
  1090. k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO;
  1091. dc->reset = intel_hda_reset;
  1092. dc->vmsd = &vmstate_intel_hda;
  1093. device_class_set_props(dc, intel_hda_properties);
  1094. }
  1095. static void intel_hda_class_init_ich6(ObjectClass *klass, void *data)
  1096. {
  1097. DeviceClass *dc = DEVICE_CLASS(klass);
  1098. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1099. k->device_id = 0x2668;
  1100. k->revision = 1;
  1101. set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
  1102. dc->desc = "Intel HD Audio Controller (ich6)";
  1103. }
  1104. static void intel_hda_class_init_ich9(ObjectClass *klass, void *data)
  1105. {
  1106. DeviceClass *dc = DEVICE_CLASS(klass);
  1107. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1108. k->device_id = 0x293e;
  1109. k->revision = 3;
  1110. set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
  1111. dc->desc = "Intel HD Audio Controller (ich9)";
  1112. }
  1113. static const TypeInfo intel_hda_info = {
  1114. .name = TYPE_INTEL_HDA_GENERIC,
  1115. .parent = TYPE_PCI_DEVICE,
  1116. .instance_size = sizeof(IntelHDAState),
  1117. .class_init = intel_hda_class_init,
  1118. .abstract = true,
  1119. .interfaces = (InterfaceInfo[]) {
  1120. { INTERFACE_CONVENTIONAL_PCI_DEVICE },
  1121. { },
  1122. },
  1123. };
  1124. static const TypeInfo intel_hda_info_ich6 = {
  1125. .name = "intel-hda",
  1126. .parent = TYPE_INTEL_HDA_GENERIC,
  1127. .class_init = intel_hda_class_init_ich6,
  1128. };
  1129. static const TypeInfo intel_hda_info_ich9 = {
  1130. .name = "ich9-intel-hda",
  1131. .parent = TYPE_INTEL_HDA_GENERIC,
  1132. .class_init = intel_hda_class_init_ich9,
  1133. };
  1134. static void hda_codec_device_class_init(ObjectClass *klass, void *data)
  1135. {
  1136. DeviceClass *k = DEVICE_CLASS(klass);
  1137. k->realize = hda_codec_dev_realize;
  1138. k->unrealize = hda_codec_dev_unrealize;
  1139. set_bit(DEVICE_CATEGORY_SOUND, k->categories);
  1140. k->bus_type = TYPE_HDA_BUS;
  1141. device_class_set_props(k, hda_props);
  1142. }
  1143. static const TypeInfo hda_codec_device_type_info = {
  1144. .name = TYPE_HDA_CODEC_DEVICE,
  1145. .parent = TYPE_DEVICE,
  1146. .instance_size = sizeof(HDACodecDevice),
  1147. .abstract = true,
  1148. .class_size = sizeof(HDACodecDeviceClass),
  1149. .class_init = hda_codec_device_class_init,
  1150. };
  1151. /*
  1152. * create intel hda controller with codec attached to it,
  1153. * so '-soundhw hda' works.
  1154. */
  1155. static int intel_hda_and_codec_init(PCIBus *bus)
  1156. {
  1157. DeviceState *controller;
  1158. BusState *hdabus;
  1159. DeviceState *codec;
  1160. warn_report("'-soundhw hda' is deprecated, "
  1161. "please use '-device intel-hda -device hda-duplex' instead");
  1162. controller = DEVICE(pci_create_simple(bus, -1, "intel-hda"));
  1163. hdabus = QLIST_FIRST(&controller->child_bus);
  1164. codec = qdev_new("hda-duplex");
  1165. qdev_realize_and_unref(codec, hdabus, &error_fatal);
  1166. return 0;
  1167. }
  1168. static void intel_hda_register_types(void)
  1169. {
  1170. type_register_static(&hda_codec_bus_info);
  1171. type_register_static(&intel_hda_info);
  1172. type_register_static(&intel_hda_info_ich6);
  1173. type_register_static(&intel_hda_info_ich9);
  1174. type_register_static(&hda_codec_device_type_info);
  1175. pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init);
  1176. }
  1177. type_init(intel_hda_register_types)