2
0

vm86.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. /*
  2. * vm86 linux syscall support
  3. *
  4. * Copyright (c) 2003 Fabrice Bellard
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu.h"
  21. //#define DEBUG_VM86
  22. #ifdef DEBUG_VM86
  23. # define LOG_VM86(...) qemu_log(__VA_ARGS__);
  24. #else
  25. # define LOG_VM86(...) do { } while (0)
  26. #endif
  27. #define set_flags(X,new,mask) \
  28. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  29. #define SAFE_MASK (0xDD5)
  30. #define RETURN_MASK (0xDFF)
  31. static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
  32. {
  33. return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
  34. }
  35. static inline void vm_putw(CPUX86State *env, uint32_t segptr,
  36. unsigned int reg16, unsigned int val)
  37. {
  38. cpu_stw_data(env, segptr + (reg16 & 0xffff), val);
  39. }
  40. static inline void vm_putl(CPUX86State *env, uint32_t segptr,
  41. unsigned int reg16, unsigned int val)
  42. {
  43. cpu_stl_data(env, segptr + (reg16 & 0xffff), val);
  44. }
  45. static inline unsigned int vm_getb(CPUX86State *env,
  46. uint32_t segptr, unsigned int reg16)
  47. {
  48. return cpu_ldub_data(env, segptr + (reg16 & 0xffff));
  49. }
  50. static inline unsigned int vm_getw(CPUX86State *env,
  51. uint32_t segptr, unsigned int reg16)
  52. {
  53. return cpu_lduw_data(env, segptr + (reg16 & 0xffff));
  54. }
  55. static inline unsigned int vm_getl(CPUX86State *env,
  56. uint32_t segptr, unsigned int reg16)
  57. {
  58. return cpu_ldl_data(env, segptr + (reg16 & 0xffff));
  59. }
  60. void save_v86_state(CPUX86State *env)
  61. {
  62. CPUState *cs = env_cpu(env);
  63. TaskState *ts = cs->opaque;
  64. struct target_vm86plus_struct * target_v86;
  65. if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
  66. /* FIXME - should return an error */
  67. return;
  68. /* put the VM86 registers in the userspace register structure */
  69. target_v86->regs.eax = tswap32(env->regs[R_EAX]);
  70. target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
  71. target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
  72. target_v86->regs.edx = tswap32(env->regs[R_EDX]);
  73. target_v86->regs.esi = tswap32(env->regs[R_ESI]);
  74. target_v86->regs.edi = tswap32(env->regs[R_EDI]);
  75. target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
  76. target_v86->regs.esp = tswap32(env->regs[R_ESP]);
  77. target_v86->regs.eip = tswap32(env->eip);
  78. target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
  79. target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
  80. target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
  81. target_v86->regs.es = tswap16(env->segs[R_ES].selector);
  82. target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
  83. target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
  84. set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
  85. target_v86->regs.eflags = tswap32(env->eflags);
  86. unlock_user_struct(target_v86, ts->target_v86, 1);
  87. LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
  88. env->eflags, env->segs[R_CS].selector, env->eip);
  89. /* restore 32 bit registers */
  90. env->regs[R_EAX] = ts->vm86_saved_regs.eax;
  91. env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
  92. env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
  93. env->regs[R_EDX] = ts->vm86_saved_regs.edx;
  94. env->regs[R_ESI] = ts->vm86_saved_regs.esi;
  95. env->regs[R_EDI] = ts->vm86_saved_regs.edi;
  96. env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
  97. env->regs[R_ESP] = ts->vm86_saved_regs.esp;
  98. env->eflags = ts->vm86_saved_regs.eflags;
  99. env->eip = ts->vm86_saved_regs.eip;
  100. cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
  101. cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
  102. cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
  103. cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
  104. cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
  105. cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
  106. }
  107. /* return from vm86 mode to 32 bit. The vm86() syscall will return
  108. 'retval' */
  109. static inline void return_to_32bit(CPUX86State *env, int retval)
  110. {
  111. LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
  112. save_v86_state(env);
  113. env->regs[R_EAX] = retval;
  114. }
  115. static inline int set_IF(CPUX86State *env)
  116. {
  117. CPUState *cs = env_cpu(env);
  118. TaskState *ts = cs->opaque;
  119. ts->v86flags |= VIF_MASK;
  120. if (ts->v86flags & VIP_MASK) {
  121. return_to_32bit(env, TARGET_VM86_STI);
  122. return 1;
  123. }
  124. return 0;
  125. }
  126. static inline void clear_IF(CPUX86State *env)
  127. {
  128. CPUState *cs = env_cpu(env);
  129. TaskState *ts = cs->opaque;
  130. ts->v86flags &= ~VIF_MASK;
  131. }
  132. static inline void clear_TF(CPUX86State *env)
  133. {
  134. env->eflags &= ~TF_MASK;
  135. }
  136. static inline void clear_AC(CPUX86State *env)
  137. {
  138. env->eflags &= ~AC_MASK;
  139. }
  140. static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
  141. {
  142. CPUState *cs = env_cpu(env);
  143. TaskState *ts = cs->opaque;
  144. set_flags(ts->v86flags, eflags, ts->v86mask);
  145. set_flags(env->eflags, eflags, SAFE_MASK);
  146. if (eflags & IF_MASK)
  147. return set_IF(env);
  148. else
  149. clear_IF(env);
  150. return 0;
  151. }
  152. static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
  153. {
  154. CPUState *cs = env_cpu(env);
  155. TaskState *ts = cs->opaque;
  156. set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
  157. set_flags(env->eflags, flags, SAFE_MASK);
  158. if (flags & IF_MASK)
  159. return set_IF(env);
  160. else
  161. clear_IF(env);
  162. return 0;
  163. }
  164. static inline unsigned int get_vflags(CPUX86State *env)
  165. {
  166. CPUState *cs = env_cpu(env);
  167. TaskState *ts = cs->opaque;
  168. unsigned int flags;
  169. flags = env->eflags & RETURN_MASK;
  170. if (ts->v86flags & VIF_MASK)
  171. flags |= IF_MASK;
  172. flags |= IOPL_MASK;
  173. return flags | (ts->v86flags & ts->v86mask);
  174. }
  175. #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
  176. /* handle VM86 interrupt (NOTE: the CPU core currently does not
  177. support TSS interrupt revectoring, so this code is always executed) */
  178. static void do_int(CPUX86State *env, int intno)
  179. {
  180. CPUState *cs = env_cpu(env);
  181. TaskState *ts = cs->opaque;
  182. uint32_t int_addr, segoffs, ssp;
  183. unsigned int sp;
  184. if (env->segs[R_CS].selector == TARGET_BIOSSEG)
  185. goto cannot_handle;
  186. if (is_revectored(intno, &ts->vm86plus.int_revectored))
  187. goto cannot_handle;
  188. if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
  189. &ts->vm86plus.int21_revectored))
  190. goto cannot_handle;
  191. int_addr = (intno << 2);
  192. segoffs = cpu_ldl_data(env, int_addr);
  193. if ((segoffs >> 16) == TARGET_BIOSSEG)
  194. goto cannot_handle;
  195. LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
  196. intno, segoffs >> 16, segoffs & 0xffff);
  197. /* save old state */
  198. ssp = env->segs[R_SS].selector << 4;
  199. sp = env->regs[R_ESP] & 0xffff;
  200. vm_putw(env, ssp, sp - 2, get_vflags(env));
  201. vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector);
  202. vm_putw(env, ssp, sp - 6, env->eip);
  203. ADD16(env->regs[R_ESP], -6);
  204. /* goto interrupt handler */
  205. env->eip = segoffs & 0xffff;
  206. cpu_x86_load_seg(env, R_CS, segoffs >> 16);
  207. clear_TF(env);
  208. clear_IF(env);
  209. clear_AC(env);
  210. return;
  211. cannot_handle:
  212. LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
  213. return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
  214. }
  215. void handle_vm86_trap(CPUX86State *env, int trapno)
  216. {
  217. if (trapno == 1 || trapno == 3) {
  218. return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
  219. } else {
  220. do_int(env, trapno);
  221. }
  222. }
  223. #define CHECK_IF_IN_TRAP() \
  224. if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
  225. (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
  226. newflags |= TF_MASK
  227. #define VM86_FAULT_RETURN \
  228. if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
  229. (ts->v86flags & (IF_MASK | VIF_MASK))) \
  230. return_to_32bit(env, TARGET_VM86_PICRETURN); \
  231. return
  232. void handle_vm86_fault(CPUX86State *env)
  233. {
  234. CPUState *cs = env_cpu(env);
  235. TaskState *ts = cs->opaque;
  236. uint32_t csp, ssp;
  237. unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
  238. int data32, pref_done;
  239. csp = env->segs[R_CS].selector << 4;
  240. ip = env->eip & 0xffff;
  241. ssp = env->segs[R_SS].selector << 4;
  242. sp = env->regs[R_ESP] & 0xffff;
  243. LOG_VM86("VM86 exception %04x:%08x\n",
  244. env->segs[R_CS].selector, env->eip);
  245. data32 = 0;
  246. pref_done = 0;
  247. do {
  248. opcode = vm_getb(env, csp, ip);
  249. ADD16(ip, 1);
  250. switch (opcode) {
  251. case 0x66: /* 32-bit data */ data32=1; break;
  252. case 0x67: /* 32-bit address */ break;
  253. case 0x2e: /* CS */ break;
  254. case 0x3e: /* DS */ break;
  255. case 0x26: /* ES */ break;
  256. case 0x36: /* SS */ break;
  257. case 0x65: /* GS */ break;
  258. case 0x64: /* FS */ break;
  259. case 0xf2: /* repnz */ break;
  260. case 0xf3: /* rep */ break;
  261. default: pref_done = 1;
  262. }
  263. } while (!pref_done);
  264. /* VM86 mode */
  265. switch(opcode) {
  266. case 0x9c: /* pushf */
  267. if (data32) {
  268. vm_putl(env, ssp, sp - 4, get_vflags(env));
  269. ADD16(env->regs[R_ESP], -4);
  270. } else {
  271. vm_putw(env, ssp, sp - 2, get_vflags(env));
  272. ADD16(env->regs[R_ESP], -2);
  273. }
  274. env->eip = ip;
  275. VM86_FAULT_RETURN;
  276. case 0x9d: /* popf */
  277. if (data32) {
  278. newflags = vm_getl(env, ssp, sp);
  279. ADD16(env->regs[R_ESP], 4);
  280. } else {
  281. newflags = vm_getw(env, ssp, sp);
  282. ADD16(env->regs[R_ESP], 2);
  283. }
  284. env->eip = ip;
  285. CHECK_IF_IN_TRAP();
  286. if (data32) {
  287. if (set_vflags_long(newflags, env))
  288. return;
  289. } else {
  290. if (set_vflags_short(newflags, env))
  291. return;
  292. }
  293. VM86_FAULT_RETURN;
  294. case 0xcd: /* int */
  295. intno = vm_getb(env, csp, ip);
  296. ADD16(ip, 1);
  297. env->eip = ip;
  298. if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
  299. if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
  300. (intno &7)) & 1) {
  301. return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
  302. return;
  303. }
  304. }
  305. do_int(env, intno);
  306. break;
  307. case 0xcf: /* iret */
  308. if (data32) {
  309. newip = vm_getl(env, ssp, sp) & 0xffff;
  310. newcs = vm_getl(env, ssp, sp + 4) & 0xffff;
  311. newflags = vm_getl(env, ssp, sp + 8);
  312. ADD16(env->regs[R_ESP], 12);
  313. } else {
  314. newip = vm_getw(env, ssp, sp);
  315. newcs = vm_getw(env, ssp, sp + 2);
  316. newflags = vm_getw(env, ssp, sp + 4);
  317. ADD16(env->regs[R_ESP], 6);
  318. }
  319. env->eip = newip;
  320. cpu_x86_load_seg(env, R_CS, newcs);
  321. CHECK_IF_IN_TRAP();
  322. if (data32) {
  323. if (set_vflags_long(newflags, env))
  324. return;
  325. } else {
  326. if (set_vflags_short(newflags, env))
  327. return;
  328. }
  329. VM86_FAULT_RETURN;
  330. case 0xfa: /* cli */
  331. env->eip = ip;
  332. clear_IF(env);
  333. VM86_FAULT_RETURN;
  334. case 0xfb: /* sti */
  335. env->eip = ip;
  336. if (set_IF(env))
  337. return;
  338. VM86_FAULT_RETURN;
  339. default:
  340. /* real VM86 GPF exception */
  341. return_to_32bit(env, TARGET_VM86_UNKNOWN);
  342. break;
  343. }
  344. }
  345. int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
  346. {
  347. CPUState *cs = env_cpu(env);
  348. TaskState *ts = cs->opaque;
  349. struct target_vm86plus_struct * target_v86;
  350. int ret;
  351. switch (subfunction) {
  352. case TARGET_VM86_REQUEST_IRQ:
  353. case TARGET_VM86_FREE_IRQ:
  354. case TARGET_VM86_GET_IRQ_BITS:
  355. case TARGET_VM86_GET_AND_RESET_IRQ:
  356. gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
  357. ret = -TARGET_EINVAL;
  358. goto out;
  359. case TARGET_VM86_PLUS_INSTALL_CHECK:
  360. /* NOTE: on old vm86 stuff this will return the error
  361. from verify_area(), because the subfunction is
  362. interpreted as (invalid) address to vm86_struct.
  363. So the installation check works.
  364. */
  365. ret = 0;
  366. goto out;
  367. }
  368. /* save current CPU regs */
  369. ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
  370. ts->vm86_saved_regs.ebx = env->regs[R_EBX];
  371. ts->vm86_saved_regs.ecx = env->regs[R_ECX];
  372. ts->vm86_saved_regs.edx = env->regs[R_EDX];
  373. ts->vm86_saved_regs.esi = env->regs[R_ESI];
  374. ts->vm86_saved_regs.edi = env->regs[R_EDI];
  375. ts->vm86_saved_regs.ebp = env->regs[R_EBP];
  376. ts->vm86_saved_regs.esp = env->regs[R_ESP];
  377. ts->vm86_saved_regs.eflags = env->eflags;
  378. ts->vm86_saved_regs.eip = env->eip;
  379. ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
  380. ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
  381. ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
  382. ts->vm86_saved_regs.es = env->segs[R_ES].selector;
  383. ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
  384. ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
  385. ts->target_v86 = vm86_addr;
  386. if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
  387. return -TARGET_EFAULT;
  388. /* build vm86 CPU state */
  389. ts->v86flags = tswap32(target_v86->regs.eflags);
  390. env->eflags = (env->eflags & ~SAFE_MASK) |
  391. (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
  392. ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
  393. switch (ts->vm86plus.cpu_type) {
  394. case TARGET_CPU_286:
  395. ts->v86mask = 0;
  396. break;
  397. case TARGET_CPU_386:
  398. ts->v86mask = NT_MASK | IOPL_MASK;
  399. break;
  400. case TARGET_CPU_486:
  401. ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
  402. break;
  403. default:
  404. ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
  405. break;
  406. }
  407. env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
  408. env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
  409. env->regs[R_EDX] = tswap32(target_v86->regs.edx);
  410. env->regs[R_ESI] = tswap32(target_v86->regs.esi);
  411. env->regs[R_EDI] = tswap32(target_v86->regs.edi);
  412. env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
  413. env->regs[R_ESP] = tswap32(target_v86->regs.esp);
  414. env->eip = tswap32(target_v86->regs.eip);
  415. cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
  416. cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
  417. cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
  418. cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
  419. cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
  420. cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
  421. ret = tswap32(target_v86->regs.eax); /* eax will be restored at
  422. the end of the syscall */
  423. memcpy(&ts->vm86plus.int_revectored,
  424. &target_v86->int_revectored, 32);
  425. memcpy(&ts->vm86plus.int21_revectored,
  426. &target_v86->int21_revectored, 32);
  427. ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
  428. memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
  429. target_v86->vm86plus.vm86dbg_intxxtab, 32);
  430. unlock_user_struct(target_v86, vm86_addr, 0);
  431. LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
  432. env->segs[R_CS].selector, env->eip);
  433. /* now the virtual CPU is ready for vm86 execution ! */
  434. out:
  435. return ret;
  436. }