cpu_loop.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. /*
  2. * qemu user cpu loop
  3. *
  4. * Copyright (c) 2003-2008 Fabrice Bellard
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu-common.h"
  21. #include "qemu.h"
  22. #include "cpu_loop-common.h"
  23. static void gen_sigill_reg(CPUTLGState *env)
  24. {
  25. target_siginfo_t info;
  26. info.si_signo = TARGET_SIGILL;
  27. info.si_errno = 0;
  28. info.si_code = TARGET_ILL_PRVREG;
  29. info._sifields._sigfault._addr = env->pc;
  30. queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
  31. }
  32. static void do_signal(CPUTLGState *env, int signo, int sigcode)
  33. {
  34. target_siginfo_t info;
  35. info.si_signo = signo;
  36. info.si_errno = 0;
  37. info._sifields._sigfault._addr = env->pc;
  38. if (signo == TARGET_SIGSEGV) {
  39. /* The passed in sigcode is a dummy; check for a page mapping
  40. and pass either MAPERR or ACCERR. */
  41. target_ulong addr = env->excaddr;
  42. info._sifields._sigfault._addr = addr;
  43. if (page_check_range(addr, 1, PAGE_VALID) < 0) {
  44. sigcode = TARGET_SEGV_MAPERR;
  45. } else {
  46. sigcode = TARGET_SEGV_ACCERR;
  47. }
  48. }
  49. info.si_code = sigcode;
  50. queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
  51. }
  52. static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr)
  53. {
  54. env->excaddr = addr;
  55. do_signal(env, TARGET_SIGSEGV, 0);
  56. }
  57. static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val)
  58. {
  59. if (unlikely(reg >= TILEGX_R_COUNT)) {
  60. switch (reg) {
  61. case TILEGX_R_SN:
  62. case TILEGX_R_ZERO:
  63. return;
  64. case TILEGX_R_IDN0:
  65. case TILEGX_R_IDN1:
  66. case TILEGX_R_UDN0:
  67. case TILEGX_R_UDN1:
  68. case TILEGX_R_UDN2:
  69. case TILEGX_R_UDN3:
  70. gen_sigill_reg(env);
  71. return;
  72. default:
  73. g_assert_not_reached();
  74. }
  75. }
  76. env->regs[reg] = val;
  77. }
  78. /*
  79. * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
  80. * memory at the address held in the first source register. If the values are
  81. * not equal, then no memory operation is performed. If the values are equal,
  82. * the 8-byte quantity from the second source register is written into memory
  83. * at the address held in the first source register. In either case, the result
  84. * of the instruction is the value read from memory. The compare and write to
  85. * memory are atomic and thus can be used for synchronization purposes. This
  86. * instruction only operates for addresses aligned to a 8-byte boundary.
  87. * Unaligned memory access causes an Unaligned Data Reference interrupt.
  88. *
  89. * Functional Description (64-bit)
  90. * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
  91. * rf[Dest] = memVal;
  92. * if (memVal == SPR[CmpValueSPR])
  93. * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
  94. *
  95. * Functional Description (32-bit)
  96. * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
  97. * rf[Dest] = memVal;
  98. * if (memVal == signExtend32 (SPR[CmpValueSPR]))
  99. * memoryWriteWord (rf[SrcA], rf[SrcB]);
  100. *
  101. *
  102. * This function also processes exch and exch4 which need not process SPR.
  103. */
  104. static void do_exch(CPUTLGState *env, bool quad, bool cmp)
  105. {
  106. target_ulong addr;
  107. target_long val, sprval;
  108. start_exclusive();
  109. addr = env->atomic_srca;
  110. if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
  111. goto sigsegv_maperr;
  112. }
  113. if (cmp) {
  114. if (quad) {
  115. sprval = env->spregs[TILEGX_SPR_CMPEXCH];
  116. } else {
  117. sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32);
  118. }
  119. }
  120. if (!cmp || val == sprval) {
  121. target_long valb = env->atomic_srcb;
  122. if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
  123. goto sigsegv_maperr;
  124. }
  125. }
  126. set_regval(env, env->atomic_dstr, val);
  127. end_exclusive();
  128. return;
  129. sigsegv_maperr:
  130. end_exclusive();
  131. gen_sigsegv_maperr(env, addr);
  132. }
  133. static void do_fetch(CPUTLGState *env, int trapnr, bool quad)
  134. {
  135. int8_t write = 1;
  136. target_ulong addr;
  137. target_long val, valb;
  138. start_exclusive();
  139. addr = env->atomic_srca;
  140. valb = env->atomic_srcb;
  141. if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
  142. goto sigsegv_maperr;
  143. }
  144. switch (trapnr) {
  145. case TILEGX_EXCP_OPCODE_FETCHADD:
  146. case TILEGX_EXCP_OPCODE_FETCHADD4:
  147. valb += val;
  148. break;
  149. case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
  150. valb += val;
  151. if (valb < 0) {
  152. write = 0;
  153. }
  154. break;
  155. case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
  156. valb += val;
  157. if ((int32_t)valb < 0) {
  158. write = 0;
  159. }
  160. break;
  161. case TILEGX_EXCP_OPCODE_FETCHAND:
  162. case TILEGX_EXCP_OPCODE_FETCHAND4:
  163. valb &= val;
  164. break;
  165. case TILEGX_EXCP_OPCODE_FETCHOR:
  166. case TILEGX_EXCP_OPCODE_FETCHOR4:
  167. valb |= val;
  168. break;
  169. default:
  170. g_assert_not_reached();
  171. }
  172. if (write) {
  173. if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
  174. goto sigsegv_maperr;
  175. }
  176. }
  177. set_regval(env, env->atomic_dstr, val);
  178. end_exclusive();
  179. return;
  180. sigsegv_maperr:
  181. end_exclusive();
  182. gen_sigsegv_maperr(env, addr);
  183. }
  184. void cpu_loop(CPUTLGState *env)
  185. {
  186. CPUState *cs = env_cpu(env);
  187. int trapnr;
  188. while (1) {
  189. cpu_exec_start(cs);
  190. trapnr = cpu_exec(cs);
  191. cpu_exec_end(cs);
  192. process_queued_cpu_work(cs);
  193. switch (trapnr) {
  194. case TILEGX_EXCP_SYSCALL:
  195. {
  196. abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR],
  197. env->regs[0], env->regs[1],
  198. env->regs[2], env->regs[3],
  199. env->regs[4], env->regs[5],
  200. env->regs[6], env->regs[7]);
  201. if (ret == -TARGET_ERESTARTSYS) {
  202. env->pc -= 8;
  203. } else if (ret != -TARGET_QEMU_ESIGRETURN) {
  204. env->regs[TILEGX_R_RE] = ret;
  205. env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0;
  206. }
  207. break;
  208. }
  209. case TILEGX_EXCP_OPCODE_EXCH:
  210. do_exch(env, true, false);
  211. break;
  212. case TILEGX_EXCP_OPCODE_EXCH4:
  213. do_exch(env, false, false);
  214. break;
  215. case TILEGX_EXCP_OPCODE_CMPEXCH:
  216. do_exch(env, true, true);
  217. break;
  218. case TILEGX_EXCP_OPCODE_CMPEXCH4:
  219. do_exch(env, false, true);
  220. break;
  221. case TILEGX_EXCP_OPCODE_FETCHADD:
  222. case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
  223. case TILEGX_EXCP_OPCODE_FETCHAND:
  224. case TILEGX_EXCP_OPCODE_FETCHOR:
  225. do_fetch(env, trapnr, true);
  226. break;
  227. case TILEGX_EXCP_OPCODE_FETCHADD4:
  228. case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
  229. case TILEGX_EXCP_OPCODE_FETCHAND4:
  230. case TILEGX_EXCP_OPCODE_FETCHOR4:
  231. do_fetch(env, trapnr, false);
  232. break;
  233. case TILEGX_EXCP_SIGNAL:
  234. do_signal(env, env->signo, env->sigcode);
  235. break;
  236. case TILEGX_EXCP_REG_IDN_ACCESS:
  237. case TILEGX_EXCP_REG_UDN_ACCESS:
  238. gen_sigill_reg(env);
  239. break;
  240. case EXCP_ATOMIC:
  241. cpu_exec_step_atomic(cs);
  242. break;
  243. default:
  244. fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr);
  245. g_assert_not_reached();
  246. }
  247. process_pending_signals(env);
  248. }
  249. }
  250. void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
  251. {
  252. int i;
  253. for (i = 0; i < TILEGX_R_COUNT; i++) {
  254. env->regs[i] = regs->regs[i];
  255. }
  256. for (i = 0; i < TILEGX_SPR_COUNT; i++) {
  257. env->spregs[i] = 0;
  258. }
  259. env->pc = regs->pc;
  260. }